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Abstract

This paper provides analysis for efficient detection of signal components when missing data samples are
present. This analysis is important for both areas of L-statistics and compressive sensing. In both cases, few
samples are available due to either noisy sample elimination or random undersampling signal strategies. The
analysis enables the determination of the sufficient number of observation and as such the minimum number
of missing samples which still allow proper signal detection. Both single component and multicomponent
signals are considered. The results are verified by computer simulations using different component frequencies

and under various missing-available samples senarios.

1. Introduction

Robust transforms have been introduced to deal with signals affected by impulsive noise [1]-[18]. These
transforms, which use robust statistics and Huber’s estimation theory, were originally applied to the Fourier
transform and then extended to the time-frequency analysis [1, 2]. One of the most effective robust distri-
butions is the L-estimation form, obtained by using the L-statistics. The main idea is to remove samples
corrupted by impulsive noise (by using trimming procedure) and to compute the distribution using the
remaining incomplete set of samples. Thus, the L-estimation can lead to significantly reduced number of
signal samples or observations. Having in mind random positions of these observations, the problem can be
cast as compressive sensing (CS) if the underlying signal is sparse in a particular domain. The task becomes
sparse signal reconstruction with a large number of missing samples [7]-[17]. Although there are numerous
papers on the L-estimation, the appropriate number of samples that should be omitted remained unclear
[2]. As a consequence, we might end up throwing much more samples than needed to ensure noise elimi-
nation. The missing samples effect as source of generation of undesirable sidelobes in the spectral analysis
of nonuniformly sampled data sequences has been considered in [19]. In this paper, analysis of the effects
of missing samples on transform values is performed from a noise perspective. It is shown that the missing
samples, when using the Fourier transform, could be described by a new type of noise which deteriorates

signal representation [20]. Increasing the number of missing samples increases the corresponding noise level,

Preprint submitted to Signal Processing, (Fast Communication) April 27, 2018



rendering signal component detection more difficult. The expression which relates the number of missing
samples to the statistics of this noise is derived. This relation is also crucial for the analysis of the initial
steps (transforms) in the sparse signal reconstruction algorithms [7]-[13].

The paper is structured as follows. After Introduction, the variance of induced noise, generated by missing
samples, is derived in Section II. This analysis is further extended to general sparse signals. Theoretical

results are illustrated by numerical examples.

2. Theory

Both of the L-estimation based robust signal analysis and the CS deal with an incomplete set of randomly
selected samples. Unlike in the L-estimation where the reduced observations are the consequence of omitting
corrupted noisy samples, in the CS the missing observations are the result of the sampling strategy. In both
cases, the signal is assumed sparse in the transformation domain.

Consider a set of M signal values:

Without loss of generality, assume that the signal samples are zero-mean. Furthermore, consider the discrete
Fourier transformation (DFT) domain, as an example of a sparse signal transform and a study case in this

paper. A sparse signal in the DFT domain can be written as

K
s(n) =Y Ajel?mhom/M, (1)

i=1
where the level of sparsity is K <« M, while A; and ko; denote amplitudes and frequencies of the signal
components, respectively. The DFT of this signal is

M K

S(k)y=> 3 Ajemd2rh—hoon/M, (2)

n=1i=1
Normalized signal components exp(j2mnko; /M) are multiplied by the basis function exp(—j2mnk/M)) to
produce z(n) = exp(—j2mnl; /M), where I; = k — ko; is assumed to be an integer. Values of z(n) are from
the set
= {e2mL/N n=0,1,2,..,M—1}. (3)

Note that k # ko; implies I; # 0.

Assume that the only relation among the members of set ® is
(1) +2z(2)+ ... +z(M) =0. (4)

This is evident for any I; # 0. Cases when [; = 0 will be analyzed separately.
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Consider a subset of M4 < M randomly positioned available samples from ®

v = {y(l)ay(2>’ ’y(MA)} Co.

This set corresponds to a compressed signal. The same holds after the applying the L-statistics to z(n) to
remove the corrupted samples. In both cases, Mg = M — M, signal samples are unavailable though for
different reasons.

In linear discrete signal transforms, where the inner products are performed between the signal values
and the basis functions, omitting some of the signal samples produces the same result as if these samples
assume zero values. Thus, the basic idea is to model missing samples with zero values, since any sum over
all values in the subset ¥ = {y(1),y(2),...,y(Ma)} will be the same as the sum over all values within the
complete set & = {z(1),z(2),...,2(M)} with removed/unavailable samples, belonging to = = ® — U, being
set to zero.

A transform with a reduced number of signal samples can be considered as transform of complete set of

samples, affected by disturbance (noise). For K =1 and Ay =1, ko1 = ko, I = k — ko,

(n) 0 for remaining signal samples
e(n) =
—x(n) = —e??™/N  for removed (unavailable) signal samples.

The DFT over the available set of samples from ¥ will be

Ma M
X(k) = yn) = [a(n) +e(n)].

It is a random variable, formed as a sum of M 4 randomly positioned samples
y(n) € W € ® = {2(1),2(2), .., 2(M)},

X=y1)+y2)+..+y(Ma).

In our example, this random variable corresponds to the DFT of a CS signal or to the L-estimation based
DFT calculation. Samples z(n) are functions of k (or I). The same holds for y(n). Note that due to (4),
the statistics is the same for the sum of complementary samples (disturbance €(n)) from the set == & — ¥
containing Mg = M — M 4 missing values.
Obviously, for [ # 0,
E{Xijz0} =0

since E{y(n)} =0 and E{xz(m)} =0. For I =0 (k = ko)
E{Xi—o} = M4

holds, since for this value of [ all 2(n) = 1. Thus, X is a zero mean random variable for [ # 0 and deterministic
for [ = 0. Therefore, removing/omitting samples in the L-estimation or in the initial transform of the CS
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algorithm corresponds to a new additive noise. The resulting noise depends on the signal and the number
of samples.

Let us now calculate the variance of this noise in X for [ # 0. It is defined by
var{X} = E{ly(1) + y(2) + ... + y(Ma)] [y(1) + y(2) + ... + y(Ma)]"} (5)
= B{ly)P} + E{ly@ P} + .. + B {ly(Ma) 1}
+E{y(y" )} + E{y(V)y"(3)} + .. + E{y()y"(Ma)} +

+ E{y(2)y" (D)} + E{y(2)y" )} + .. + E{y(2)y"(Ma)} +

+ E{y(Ma)y* (1)} + E{y(Ma)y"(2)} + ... + E{y(Ma)y"(Ma — 1)}

Obviously,
E{lyI} + E{ly@P} + ..+ E{ly(Ma)*} = Ma.
According to the assumption, all signal samples are not statistically independent for [ # 0. They satisfy (4).

By multiplying (4) with z(i) we obtain
(i) [2(1) + 2(2) + . + x(M)]" = 0
with expectation
E{z())z* (1)} + B{z(i)z*(2)} + ... + E{z(i)z* (i)} + ... + B{z(i)a" (M)} = 0. (6)
Since all variables z(n) are equally distributed we may write
E{z(i)z* (1)} = E{z(i)a*(2)} = ... = B{x(i)a" (M)} = B.

With
E{z(i)z* (i)} = 1.

From (6) we obtain

B = B{z(i)e* (i)} = Byl ()} = 571 # 5

Now we can easily calculate terms in (5), for example, the first line (with mixed terms) produces

E{y(Wy* )} + E{y(Dy" )} + - + E{y()y" (Ma)} = (Ma — 1) (—Ml_ 1) :

The same result holds for all other lines with mixed terms in (5). Finally, the variance of X, for I # 0, is

1
UGT{X}ZMA+(MA—1)(—M_1)MA (7)
_ My—-1] M — My
I =



For M4 < M a very rough approximation
var{X} = Mu

follows. It corresponds to the assumption of statistically independent values x(n).

3. Amplitude Analysis of the Signal and CS Noise in the DFT

It is easy to find the ratio of the DFT at the signal position [ = 0 and the values at the other DFT
positions due to this induced type of noise, for [ # 0. This ratio may be used as a measure of the wrong signal
detection event. The DFT value at the signal position is X;—g = M4 since all terms are added in phase
for the signal component. Variable X;¢ is complex-valued with variance (7). If the number of missing or
available samples is not too small, then according to the central limit theorem the real and imaginary part

of variable X;o behave as Gaussian variables with variance

5 var{X} M — My
SR S Y Y e )}
7 2 1/

Absolute value of X;¢ is therefore Rayleigh distributed. In the Rayleigh distribution, a random variable

| X120] is above v/60 with probability 0.9508. Thus, the ratio

\/60' _ 3(M - MA) (8)
Ma  \ M —1)

holds with probability 0.95. For example, for M = 256 and M4 = 32, the value of | Xjx| is greater than
0.27|X;=0| with probability 5%. Threshold for any other probability can be easily calculated.

This ratio can be used to find the range of M4 that the initial CS and the L-estimate algorithm will be
able to detect signal component. It is especially important in multicomponent signal cases, whose detailed
analysis follows. Then, all components, for a given Mg = M — M4, bellow the noise level will be lost in the
DFT. The ratio Rgs as a function of My is presented in Fig.1. For small number of missing samples Mg
(large number of available samples M 4), this ratio is very small. It means that the values X;o, caused by
missing samples, are very small compared to the signal value X;—y. On the other side, just a few available
samples M4 = M — Mg are enough to make this ratio lower than 1 and as such enable detection of a sinusoid
in one-component signal. This is in accordance with the fact that a real sinusoidal signal is determined by
only 3 independent signal samples. For M = 512 and Mg = 256 (M4 = 256), Mg = 392 (M4 = 128),
Mg =448 (M4 = 64), and Mg = 480 (M4 = 32) the values of Ry5 are indicated in Fig.1.

Before we proceed with multicomponent signals, the theoretical results from this section are statistically
verified. Two quantities are calculated and checked.

The variance is calculated according to relation (7) for various M and M 4. Then, the statistical results
are obtained for the same variance and various M and M4 based on 100000 realizations with randomly
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positioned samples. The results for variance produced by the theory are given in Table I, in the column
denoted by Var(T). The statistical results for the same variance are presented as Var(E) in the same Table.
It is obvious that the results matching is very high.

The level of 0.9502 (or 4.98%) is also calculated using (8) for various M and M. Then the DFT with
removed /unavailable samples is calculated. The DFT values at | # 0 above Rgs |X;—o| are detected and
their percent (with respect to the total number of DFT value) is calculated. It should be around 4.98%.
The statistically obtained percent for various M and M4 is given in the column denoted by Py gge, of Table
I. Matching with the true percent is also high.

Case 1: For M = 128 samples and various numbers of randomly positioned missing samples, the variance
relation (7) and the level of 0.9508 (or 4.92%) are calculated. The results are given in Table I (left). Note
that the variance values (Var) for Mg > M/2 are the same as for M — M. This is obvious from (7). It is
statistically verified and presented in Table I (for Mg = M — 32 =96 and Mg = M — 16 = 112).

Case 2: The same results are presented for M = 256 and Mg up to M/2. For Mg > M/2 the same
results as for M — Mg follow, Table I (right).

The illustration of the DF'T for a single signal realization, with a various number of available samples, is
presented in Fig.2. The reference level of Rgs | X;—|, calculated according to (8), is presented by a horizontal

dashed line. In multicomponent signals, a similar reference level will play a role of a detection threshold.
4. Multicomponent Signal Analysis
The analysis will be extended to a variable z(n) € ®
x(n) = Ay exp(—j2mnly /M) + Agexp(—j2mnls /M) + ... + Ak exp(—j2mnly /M),

corresponding to a K —component signal, defined by (1) and (2), where I; = k — ko1, lo = k — koo, ...,
lxk =k — kok in the study case of Fourier domain analysis. Samples z(n) are also k (or ) dependent. The

mean value of a subset ¥ of M, < M randomly positioned values y(n) € ¥ C ® = {z(1),x(2),...,z(M)} is

E{X} = AlMA5(ll) + AQMA5(12) + ...+ AKMA5(ZK).

The DFT variance at the points where there are no signal components (i.e., I3 # 0, I3 # 0, and g # 0)
is
M — My
M—-1

M-M

o3 =var{X} = My 7

M — M
AT + My 7_5114%(7 (9)

M
since the signal components are uncorrelated zero-mean. At a frequency point of a signal component, for
example, at [y =0, ls # 0, and i # 0, we get
M — My
M—-1
6

M — My

0% =var{X} = My 71

A2 4 .+ My A3 (10)



for the DFT variance. It means that a DFT of signal sample X;,—¢ will be a random variable disturbed by
an additive noise so that the resulting variance is 0%;, while the noise only DFT values will be a random
variable with variance 3.

Next, we will find a probability that a DFT value of noise at any I3 # 0, ls # 0, and [ # 0 is higher
than a signal DFT value, for example, at I; # 0, lo # 0,..., [;_1 # 0, l; =0, l;41 # 0,..., [k # 0. This case
corresponds to a false signal detection of the ith component.

Real and imaginary parts of noise DFT value can be described by Gaussian distribution, according to
the central limit theorem,

N(0,0%/2)

with zero mean and variance o%; defined by (9). Real and imaginary parts of the signal DFT value can be

described by Gaussian distribution
N(MAAi’U.%'i/2)v N(0,0’?gi/Q), (11)

respectively, where M4 A; is the mean and variance U?gi is defined by (10) with missing amplitude A4; instead
of A;. A real-valued A; is assumed without any loss of generality.
The probability density function (pdf) for the absolute DFT values at the position of the ith signal
component, [; = 0, (whose real and imaginary parts are described by (11)) is Rice-distributed
2 _ 2 2 2 0_2
p(E) = e AN 1y (4, M, 26/03,), € 2 0. (12)
S
where I is the zero-order modified Bessel function.
The probability density function for the absolute DFT values outside signal components is Rayleigh-
distributed (Rice-distribution with M4 = 0 and I5(0) = 1)
2
o) = 2e€1% g > 0.
ON

The DFT at a noise only position takes a value greater than =, with probability

o0 2 2 E2
QE) = / f}ﬁveﬁ (7R = exp(— =) (13)

The probability that a DFT of noise-alone is lower than Z is [1 — Q(E)]. The total number of noise-alone
points is Mg = M — K, where K is the number of signal points. The probability that M independent DFT
noise-alone values are lower than = is [1 — Q(E)]MK . Probability that at least one of My DFT noise-alone
values is greater than Z, is

GE) =1-[1-QE)" . (14)

When a noise-alone DFT value surpasses the DFT signal value, then an error in the considered methods
occurs. To calculate this probability, consider the absolute DFT value of a signal component at and around
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¢. The DFT signal value is within £ and £ + d¢ with the probability p(£)d¢ , where p(€) is defined by (12).

The probability that at least one of M DFT noise-alone values is above £ in amplitude is
G(&) =1-[1-Q("" .

Thus, the probability that the absolute DFT signal component value is within £ and £ + d€ and that at least
one of the absolute DFT noise-alone values outside the DFT signal value exceeds the DFT signal value is
G(&)p(§)d¢. Considering all possible values of £, from (13) and (14), it follows that the probability of the

wrong detection of the ith signal component is

2
N ich

) 0o 2 Mg 2 2272 2
. / G(E)p(€)dE = / (1—[1—exp<—§2>} >2§e<f HAIMEDIE, 1o (Ma2¢f03 )dE. (15)

4.1. Approximative Error Expression

Approximation of this expression can be calculated by assuming that the DFT of the ith signal component
is not random and that it is equal to MaA; (positioned at the mean value of the signals DFT). This
approximation assumes that the influence of noise to amplitude is symmetric and equally increases and

decreases the DFT signal value. The form of error probability is then very simple

M3A2 M
Pp~1-|1- exp(—%) : (16)
N
This expression can be easily used for simple rough approximative analysis.

The mean of a Rice-distributed variable described by (12) is
Mpice = 05,V/TL1 jo(—M3A? /0% )/2 2 MaA;,

where Ly /3(x) = e®?[(1 — ) Ig(—x/2) — xI;(—x/2)], and I;(x) is the modified first-order Bessel function.

The variance of the Rice-distributed variable is

2 2 42 2 2
Var Rice = JSi + MAAi — MRice = Jsi.

From numerical analysis, we concluded that a closer approximation than (16) is achieved if the Rice distri-
bution mean is slightly corrected, for one standard deviation, as Mg;cc — 1/Vargice. The explanation lays in
the fact that the DFT amplitudes lower than the mean value contribute more to the error than those above
the mean value. Then,

(MaA; —o0g,)2 1M

Pp 21— |1 —exp(——2 50| (17)
N

It will be shown that this simple expression is a good approximation. It predicts almost exactly 1% error

level as the very complex integral form in (15). Note that variances o}, and 0%, are defined by (9) and (10).

The approximations will be checked on an example with a sparse signal. Probabilities of detection error

for a four component signal of amplitudes A; = 1, Ay = 0.5, A3 = 0.25, and A4 = 0.1 are show in Fig.3.
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Probabilities are calculated for each signal component, according to (15) and (17). Results obtained by the
exact integral (15) are shown by a dashed line, while the ones calculated using the simple approximation
(17) are given by a full line. We can see that the strongest component is detectable with a very small number
of available samples, as expected. The number of required available samples increases as the amplitude of a
component decreases. A level of error probability of 1% is presented by a thick horizontal line in this figure.
Both results are highly consistent at this important level, which defines the number of samples required to
detect a component with 99% probability.

Now we will discuss the results on a single realization of a sparse signal with amplitudes A; = 1, As = 0.5,
A3 =0.25, and A4 = 0.1, for M = 512 and various number of available samples, Fig.4.

Based on the theoretically calculated level, it is easy to conclude that: 1) The strongest signal component
with A; = 1 will be detectable with a quite small number of random samples. From Fig.3 (M = 512, upper
subplot) we see that M4 > 15 random samples are sufficient. 2) From the same figure we see that the next
component with Ay = 0.5 will be detected with M4 > 75. 3) The component with Az = 0.25, in this case,
requires M4 > 220 random samples, while 4) for the weakest component with A4 = 0.1 we need M4 > 420
samples in order to detect it. This is in accordance with the single DFT realization shown in Fig.4 for
different number of the available samples M 4. For the first two subplots (M4 = 16 and M4 = 32) only the
strongest component is detectable in the L-estimation or in the initial transform in the CS. For M4 = 128
two components are detected in this stage, while M4 = 384 clearly indicates existence of three components
in the analyzed signal with missing Mg = M — M4 = 128 samples. In addition to the 5% level, defined by

Rys, here we have also drawn the level of 0.1% delectability error, calculated using the level Rgg 9 = 1.5Rgs.

5. Conclusion

We provided analysis that enables determination of the number of missing samples allowed for accurate
detection of sinusoidal signals This analysis proves useful when applying L-statistics and when using sparse
signal reconstruction techniques with Fourier basis. The latter is clearly the case in Orthogonal Matching
Persuit. The analytical expressions derived are validated by computer simulations for a single and multiple
components and under different numbers of missing and available samples. The proposed approach can
be generalized for all existing L-estimate based signal transforms and L-estimation based time-frequency

distributions.
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Table 1: Statistical Variance (denoted by (E)) with Theory Obtained one (Denoted by (T)) for Various Number of Available
Samples. The probability Level of 4.92 is Statistically Checked. M=256 (left) and M=512 (right).

Mg Pyosy Var(E) Var(T) Mg Pyosy Var(E) Var(T)

8 4.64 7.60 7.56 16 4.87 1555 15.53

16 4.81 14.16 14.11 32 4.80 29.85 30.06

24 4.76 9.64 19.65 48 4.90 43.71 43.59

32 4.79 24.15 24.19 64 4.95 56.04 56.11

40 4.89 27.65 27.72 96 5.01 78.29 78.15

48 497  30.26  30.24 128 489 9596  96.19

56 4.91 31.71 31.74 160 5.01 110.14 110.22

64 4.93 32.15 32.25 192 4.95 120.17  120.23
96(32) 4.77 24.13 24.19 224 491 126.12 126.25
112(16) 4.80 14.19 14.11 256 4.93 127.69 128.25

100 200 300 400 500

Figure 1: The DFT amplitude ratio at the signal and outside signal
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Figure 2: Illustration of the DFT of one signal component for different number of available samples along with the calculated

threshold level for 95% of samples obtained by theory. Threshold level Rgs is plotted by a horizontal dashed line.

12



Error probability for component detection
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Figure 3: Probability that a component will not be detected in a four components signal as a function of the number of available
samples M 4 (full lines approximative expression and dashed line exact integral expression for the error). Think line is the 1%

error probability line.
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Figure 4: Illustration of four component signal for different number of available samples, along with the threshold calculated

by theory. Detection threshold Rgs (5% level ) is presented by a dash line, while the threshold Rgg.9 (0.1% level ) is given by
a dash-dot line.
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