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Abstract

This paper provides analysis for efficient detection of signal components when missing data samples are

present. This analysis is important for both areas of L-statistics and compressive sensing. In both cases, few

samples are available due to either noisy sample elimination or random undersampling signal strategies. The

analysis enables the determination of the sufficient number of observation and as such the minimum number

of missing samples which still allow proper signal detection. Both single component and multicomponent

signals are considered. The results are verified by computer simulations using different component frequencies

and under various missing-available samples senarios.

1. Introduction

Robust transforms have been introduced to deal with signals affected by impulsive noise [1]-[18]. These

transforms, which use robust statistics and Huber’s estimation theory, were originally applied to the Fourier

transform and then extended to the time-frequency analysis [1, 2]. One of the most effective robust distri-

butions is the L-estimation form, obtained by using the L-statistics. The main idea is to remove samples

corrupted by impulsive noise (by using trimming procedure) and to compute the distribution using the

remaining incomplete set of samples. Thus, the L-estimation can lead to significantly reduced number of

signal samples or observations. Having in mind random positions of these observations, the problem can be

cast as compressive sensing (CS) if the underlying signal is sparse in a particular domain. The task becomes

sparse signal reconstruction with a large number of missing samples [7]-[17]. Although there are numerous

papers on the L-estimation, the appropriate number of samples that should be omitted remained unclear

[2]. As a consequence, we might end up throwing much more samples than needed to ensure noise elimi-

nation. The missing samples effect as source of generation of undesirable sidelobes in the spectral analysis

of nonuniformly sampled data sequences has been considered in [19]. In this paper, analysis of the effects

of missing samples on transform values is performed from a noise perspective. It is shown that the missing

samples, when using the Fourier transform, could be described by a new type of noise which deteriorates

signal representation [20]. Increasing the number of missing samples increases the corresponding noise level,
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rendering signal component detection more difficult. The expression which relates the number of missing

samples to the statistics of this noise is derived. This relation is also crucial for the analysis of the initial

steps (transforms) in the sparse signal reconstruction algorithms [7]-[13].

The paper is structured as follows. After Introduction, the variance of induced noise, generated by missing

samples, is derived in Section II. This analysis is further extended to general sparse signals. Theoretical

results are illustrated by numerical examples.

2. Theory

Both of the L-estimation based robust signal analysis and the CS deal with an incomplete set of randomly

selected samples. Unlike in the L-estimation where the reduced observations are the consequence of omitting

corrupted noisy samples, in the CS the missing observations are the result of the sampling strategy. In both

cases, the signal is assumed sparse in the transformation domain.

Consider a set of M signal values:

Θ = {s(1), s(2), ..., s(M)}.

Without loss of generality, assume that the signal samples are zero-mean. Furthermore, consider the discrete

Fourier transformation (DFT) domain, as an example of a sparse signal transform and a study case in this

paper. A sparse signal in the DFT domain can be written as

s(n) =

K∑
i=1

Aie
j2πk0in/M , (1)

where the level of sparsity is K � M , while Ai and k0i denote amplitudes and frequencies of the signal

components, respectively. The DFT of this signal is

S(k) =

M∑
n=1

K∑
i=1

Aie
−j2π(k−k0i)n/M . (2)

Normalized signal components exp(j2πnk0i/M) are multiplied by the basis function exp(−j2πnk/M)) to

produce x(n) = exp(−j2πnli/M), where li = k − k0i is assumed to be an integer. Values of x(n) are from

the set

Φ = {e−j2πnli/N , n = 0, 1, 2, ...,M − 1}. (3)

Note that k 6= k0i implies li 6= 0.

Assume that the only relation among the members of set Φ is

x(1) + x(2) + ...+ x(M) = 0. (4)

This is evident for any li 6= 0. Cases when li = 0 will be analyzed separately.
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Consider a subset of MA ≤M randomly positioned available samples from Φ

Ψ = {y(1), y(2), ..., y(MA)} ⊂ Φ.

This set corresponds to a compressed signal. The same holds after the applying the L-statistics to x(n) to

remove the corrupted samples. In both cases, MQ = M −MA signal samples are unavailable though for

different reasons.

In linear discrete signal transforms, where the inner products are performed between the signal values

and the basis functions, omitting some of the signal samples produces the same result as if these samples

assume zero values. Thus, the basic idea is to model missing samples with zero values, since any sum over

all values in the subset Ψ = {y(1), y(2), ..., y(MA)} will be the same as the sum over all values within the

complete set Φ = {x(1), x(2), ..., x(M)} with removed/unavailable samples, belonging to Ξ = Φ−Ψ, being

set to zero.

A transform with a reduced number of signal samples can be considered as transform of complete set of

samples, affected by disturbance (noise). For K = 1 and A1 = 1, k01 = k0, l = k − k0,

ε(n) =

 0 for remaining signal samples

−x(n) = −ej2πnl/N for removed (unavailable) signal samples.

The DFT over the available set of samples from Ψ will be

X(k) =

MA∑
n=1

y(n) =

M∑
n=1

[x(n) + ε(n)].

It is a random variable, formed as a sum of MA randomly positioned samples

y(n) ∈ Ψ ⊂ Φ = {x(1), x(2), ..., x(M)},

X = y(1) + y(2) + ...+ y(MA).

In our example, this random variable corresponds to the DFT of a CS signal or to the L-estimation based

DFT calculation. Samples x(n) are functions of k (or l). The same holds for y(n). Note that due to (4),

the statistics is the same for the sum of complementary samples (disturbance ε(n)) from the set Ξ = Φ−Ψ

containing MQ = M −MA missing values.

Obviously, for l 6= 0,

E{Xl 6=0} = 0

since E{y(n)} = 0 and E{x(m)} = 0. For l = 0 (k = k0)

E{Xl=0} = MA

holds, since for this value of l all x(n) = 1. Thus, X is a zero mean random variable for l 6= 0 and deterministic

for l = 0. Therefore, removing/omitting samples in the L-estimation or in the initial transform of the CS
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algorithm corresponds to a new additive noise. The resulting noise depends on the signal and the number

of samples.

Let us now calculate the variance of this noise in X for l 6= 0. It is defined by

var{X} = E
{

[y(1) + y(2) + ...+ y(MA)] [y(1) + y(2) + ...+ y(MA)]
∗}

(5)

= E
{
|y(1)|2

}
+ E

{
|y(2)|2

}
+ ...+ E

{
|y(MA)|2

}
+ E {y(1)y∗(2)}+ E {y(1)y∗(3)}+ ...+ E {y(1)y∗(MA)}+

+ E {y(2)y∗(1)}+ E {y(2)y∗(3)}+ ...+ E {y(2)y∗(MA)}+

...

+ E {y(MA)y∗(1)}+ E {y(MA)y∗(2)}+ ...+ E {y(MA)y∗(MA − 1)}

Obviously,

E
{
|y(1)|2

}
+ E

{
|y(2)|2

}
+ ...+ E

{
|y(MA)|2

}
= MA.

According to the assumption, all signal samples are not statistically independent for l 6= 0. They satisfy (4).

By multiplying (4) with x(i) we obtain

x(i) [x(1) + x(2) + ...+ x(M)]
∗

= 0

with expectation

E{x(i)x∗(1)}+ E{x(i)x∗(2)}+ ...+ E{x(i)x∗(i)}+ ...+ E{x(i)x∗(M)} = 0. (6)

Since all variables x(n) are equally distributed we may write

E{x(i)x∗(1)} = E{x(i)x∗(2)} = ... = E{x(i)x∗(M)} = B.

With

E{x(i)x∗(i)} = 1.

From (6) we obtain

B = E{x(i)x∗(j)} = E{y(i)y∗(j)} = − 1

M − 1
, i 6= j.

Now we can easily calculate terms in (5), for example, the first line (with mixed terms) produces

E {y(1)y∗(2)}+ E {y(1)y∗(3)}+ ...+ E {y(1)y∗(MA)} = (MA − 1)

(
− 1

M − 1

)
.

The same result holds for all other lines with mixed terms in (5). Finally, the variance of X, for l 6= 0, is

var{X} = MA + (MA − 1)

(
− 1

M − 1

)
MA (7)

= MA

[
1− MA − 1

M − 1

]
= MA

M −MA

M − 1
.
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For MA �M a very rough approximation

var{X} = MA

follows. It corresponds to the assumption of statistically independent values x(n).

3. Amplitude Analysis of the Signal and CS Noise in the DFT

It is easy to find the ratio of the DFT at the signal position l = 0 and the values at the other DFT

positions due to this induced type of noise, for l 6= 0. This ratio may be used as a measure of the wrong signal

detection event. The DFT value at the signal position is Xl=0 = MA since all terms are added in phase

for the signal component. Variable Xl 6=0 is complex-valued with variance (7). If the number of missing or

available samples is not too small, then according to the central limit theorem the real and imaginary part

of variable Xl 6=0 behave as Gaussian variables with variance

σ2 =
var{X}

2
= MA

M −MA

M − 1
/2.

Absolute value of Xl 6=0 is therefore Rayleigh distributed. In the Rayleigh distribution, a random variable

|Xl 6=0| is above
√

6σ with probability 0.9508. Thus, the ratio

R95 =

∣∣∣∣Xl 6=0

Xl=0

∣∣∣∣ < √6σ

MA
=

√
3(M −MA)

MA(M − 1)
(8)

holds with probability 0.95. For example, for M = 256 and MA = 32, the value of |Xl 6=0| is greater than

0.27 |Xl=0| with probability 5%. Threshold for any other probability can be easily calculated.

This ratio can be used to find the range of MA that the initial CS and the L-estimate algorithm will be

able to detect signal component. It is especially important in multicomponent signal cases, whose detailed

analysis follows. Then, all components, for a given MQ = M −MA, bellow the noise level will be lost in the

DFT. The ratio R95 as a function of MA is presented in Fig.1. For small number of missing samples MQ

(large number of available samples MA), this ratio is very small. It means that the values Xl 6=0, caused by

missing samples, are very small compared to the signal value Xl=0. On the other side, just a few available

samples MA = M−MQ are enough to make this ratio lower than 1 and as such enable detection of a sinusoid

in one-component signal. This is in accordance with the fact that a real sinusoidal signal is determined by

only 3 independent signal samples. For M = 512 and MQ = 256 (MA = 256), MQ = 392 (MA = 128),

MQ = 448 (MA = 64), and MQ = 480 (MA = 32) the values of R95 are indicated in Fig.1.

Before we proceed with multicomponent signals, the theoretical results from this section are statistically

verified. Two quantities are calculated and checked.

The variance is calculated according to relation (7) for various M and MA. Then, the statistical results

are obtained for the same variance and various M and MA based on 100000 realizations with randomly
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positioned samples. The results for variance produced by the theory are given in Table I, in the column

denoted by Var(T). The statistical results for the same variance are presented as Var(E) in the same Table.

It is obvious that the results matching is very high.

The level of 0.9502 (or 4.98%) is also calculated using (8) for various M and MA. Then the DFT with

removed/unavailable samples is calculated. The DFT values at l 6= 0 above R95 |Xl=0| are detected and

their percent (with respect to the total number of DFT value) is calculated. It should be around 4.98%.

The statistically obtained percent for various M and MA is given in the column denoted by P4.98% of Table

I. Matching with the true percent is also high.

Case 1: For M = 128 samples and various numbers of randomly positioned missing samples, the variance

relation (7) and the level of 0.9508 (or 4.92%) are calculated. The results are given in Table I (left). Note

that the variance values (Var) for MQ > M/2 are the same as for M −MQ. This is obvious from (7). It is

statistically verified and presented in Table I (for MQ = M − 32 = 96 and MQ = M − 16 = 112).

Case 2: The same results are presented for M = 256 and MQ up to M/2. For MQ > M/2 the same

results as for M −MQ follow, Table I (right).

The illustration of the DFT for a single signal realization, with a various number of available samples, is

presented in Fig.2. The reference level of R95 |Xl=0|, calculated according to (8), is presented by a horizontal

dashed line. In multicomponent signals, a similar reference level will play a role of a detection threshold.

4. Multicomponent Signal Analysis

The analysis will be extended to a variable x(n) ∈ Φ

x(n) = A1 exp(−j2πnl1/M) +A2 exp(−j2πnl2/M) + ...+AK exp(−j2πnlK/M),

corresponding to a K−component signal, defined by (1) and (2), where l1 = k − k01, l2 = k − k02, ...,

lK = k − k0K in the study case of Fourier domain analysis. Samples x(n) are also k (or l) dependent. The

mean value of a subset Ψ of MA ≤M randomly positioned values y(n) ∈ Ψ ⊂ Φ = {x(1), x(2), ..., x(M)} is

E{X} = A1MAδ(l1) +A2MAδ(l2) + ...+AKMAδ(lK).

The DFT variance at the points where there are no signal components (i.e., l1 6= 0, l2 6= 0, and lK 6= 0)

is

σ2
N = var{X} = MA

M −MA

M − 1
A2

1 +MA
M −MA

M − 1
A2

2 + ...+MA
M −MA

M − 1
A2
K , (9)

since the signal components are uncorrelated zero-mean. At a frequency point of a signal component, for

example, at l1 = 0, l2 6= 0, and lK 6= 0, we get

σ2
S1 = var{X} = MA

M −MA

M − 1
A2

2 + ...+MA
M −MA

M − 1
A2
K (10)
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for the DFT variance. It means that a DFT of signal sample Xl1=0 will be a random variable disturbed by

an additive noise so that the resulting variance is σ2
S1, while the noise only DFT values will be a random

variable with variance σ2
N .

Next, we will find a probability that a DFT value of noise at any l1 6= 0, l2 6= 0, and lK 6= 0 is higher

than a signal DFT value, for example, at l1 6= 0, l2 6= 0,..., li−1 6= 0, li = 0, li+1 6= 0,..., lK 6= 0. This case

corresponds to a false signal detection of the ith component.

Real and imaginary parts of noise DFT value can be described by Gaussian distribution, according to

the central limit theorem,

N(0, σ2
N/2)

with zero mean and variance σ2
N defined by (9). Real and imaginary parts of the signal DFT value can be

described by Gaussian distribution

N(MAAi, σ
2
Si
/2), N(0, σ2

Si
/2), (11)

respectively, where MAAi is the mean and variance σ2
Si

is defined by (10) with missing amplitude Ai instead

of A1. A real-valued Ai is assumed without any loss of generality.

The probability density function (pdf) for the absolute DFT values at the position of the ith signal

component, li = 0, (whose real and imaginary parts are described by (11)) is Rice-distributed

p(ξ) =
2ξ

σ2
Si

e−(ξ2+A2
iM

2
A)/σ2

Si I0(A1MA2ξ/σ2
Si

), ξ ≥ 0. (12)

where I0 is the zero-order modified Bessel function.

The probability density function for the absolute DFT values outside signal components is Rayleigh-

distributed (Rice-distribution with MA = 0 and I0(0) = 1)

q(ξ) =
2ξ

σ2
N

e−ξ
2/σ2

N , ξ ≥ 0.

The DFT at a noise only position takes a value greater than Ξ, with probability

Q(Ξ) =

∫ ∞
Ξ

2ξ

σ2
N

e−ξ
2/σ2

Ndξ = exp(− Ξ2

σ2
N

). (13)

The probability that a DFT of noise-alone is lower than Ξ is [1−Q(Ξ)]. The total number of noise-alone

points is MK = M−K, where K is the number of signal points. The probability that MK independent DFT

noise-alone values are lower than Ξ is [1−Q(Ξ)]
MK . Probability that at least one of MK DFT noise-alone

values is greater than Ξ, is

G(Ξ) = 1− [1−Q(Ξ)]
MK . (14)

When a noise-alone DFT value surpasses the DFT signal value, then an error in the considered methods

occurs. To calculate this probability, consider the absolute DFT value of a signal component at and around
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ξ. The DFT signal value is within ξ and ξ + dξ with the probability p(ξ)dξ , where p(ξ) is defined by (12).

The probability that at least one of M DFT noise-alone values is above ξ in amplitude is

G(ξ) = 1− [1−Q(ξ)]
MK .

Thus, the probability that the absolute DFT signal component value is within ξ and ξ+dξ and that at least

one of the absolute DFT noise-alone values outside the DFT signal value exceeds the DFT signal value is

G(ξ)p(ξ)dξ. Considering all possible values of ξ, from (13) and (14), it follows that the probability of the

wrong detection of the ith signal component is

PE =

∫ ∞
0

G(ξ)p(ξ)dξ =

∫ ∞
0

(
1−

[
1− exp(− ξ2

σ2
N

)

]MK
)

2ξ

σ2
Si

e−(ξ2+A2
iM

2
A)/σ2

Si I0(MA2ξ/σ2
Si

)dξ. (15)

4.1. Approximative Error Expression

Approximation of this expression can be calculated by assuming that the DFT of the ith signal component

is not random and that it is equal to MAAi (positioned at the mean value of the signals DFT). This

approximation assumes that the influence of noise to amplitude is symmetric and equally increases and

decreases the DFT signal value. The form of error probability is then very simple

PE ∼= 1−
[
1− exp(−M

2
AA

2
i

σ2
N

)

]MK

. (16)

This expression can be easily used for simple rough approximative analysis.

The mean of a Rice-distributed variable described by (12) is

MRice = σSi

√
πL1/2(−M2

AA
2
i /σ

2
Si

)/2 ∼= MAAi,

where L1/2(x) = ex/2[(1 − x)I0(−x/2) − xI1(−x/2)], and I1(x) is the modified first-order Bessel function.

The variance of the Rice-distributed variable is

varRice = σ2
Si

+M2
AA

2
i −M2

Rice
∼= σ2

Si
.

From numerical analysis, we concluded that a closer approximation than (16) is achieved if the Rice distri-

bution mean is slightly corrected, for one standard deviation, as MRice−
√
varRice. The explanation lays in

the fact that the DFT amplitudes lower than the mean value contribute more to the error than those above

the mean value. Then,

PE ∼= 1−
[
1− exp(− (MAAi − σSi)

2

σ2
N

)

]MK

. (17)

It will be shown that this simple expression is a good approximation. It predicts almost exactly 1% error

level as the very complex integral form in (15). Note that variances σ2
N and σ2

Si
are defined by (9) and (10).

The approximations will be checked on an example with a sparse signal. Probabilities of detection error

for a four component signal of amplitudes A1 = 1, A2 = 0.5, A3 = 0.25, and A4 = 0.1 are show in Fig.3.
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Probabilities are calculated for each signal component, according to (15) and (17). Results obtained by the

exact integral (15) are shown by a dashed line, while the ones calculated using the simple approximation

(17) are given by a full line. We can see that the strongest component is detectable with a very small number

of available samples, as expected. The number of required available samples increases as the amplitude of a

component decreases. A level of error probability of 1% is presented by a thick horizontal line in this figure.

Both results are highly consistent at this important level, which defines the number of samples required to

detect a component with 99% probability.

Now we will discuss the results on a single realization of a sparse signal with amplitudes A1 = 1, A2 = 0.5,

A3 = 0.25, and A4 = 0.1, for M = 512 and various number of available samples, Fig.4.

Based on the theoretically calculated level, it is easy to conclude that: 1) The strongest signal component

with A1 = 1 will be detectable with a quite small number of random samples. From Fig.3 (M = 512, upper

subplot) we see that MA > 15 random samples are sufficient. 2) From the same figure we see that the next

component with A2 = 0.5 will be detected with MA > 75. 3) The component with A3 = 0.25, in this case,

requires MA > 220 random samples, while 4) for the weakest component with A4 = 0.1 we need MA > 420

samples in order to detect it. This is in accordance with the single DFT realization shown in Fig.4 for

different number of the available samples MA. For the first two subplots (MA = 16 and MA = 32) only the

strongest component is detectable in the L-estimation or in the initial transform in the CS. For MA = 128

two components are detected in this stage, while MA = 384 clearly indicates existence of three components

in the analyzed signal with missing MQ = M −MA = 128 samples. In addition to the 5% level, defined by

R95, here we have also drawn the level of 0.1% delectability error, calculated using the level R99.9 = 1.5R95.

5. Conclusion

We provided analysis that enables determination of the number of missing samples allowed for accurate

detection of sinusoidal signals This analysis proves useful when applying L-statistics and when using sparse

signal reconstruction techniques with Fourier basis. The latter is clearly the case in Orthogonal Matching

Persuit. The analytical expressions derived are validated by computer simulations for a single and multiple

components and under different numbers of missing and available samples. The proposed approach can

be generalized for all existing L-estimate based signal transforms and L-estimation based time-frequency

distributions.
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[20] L. Stanković, S. Stanković, I. Orović, M. Amin, ”Robust Time-Frequency Analysis based on the L-estimation and Com-

pressive Sensing”, IEEE Signal processing Letters, Vol. 20, no. 5, May 2013, pp.499-502.

10



Table 1: Statistical Variance (denoted by (E)) with Theory Obtained one (Denoted by (T)) for Various Number of Available

Samples. The probability Level of 4.92 is Statistically Checked. M=256 (left) and M=512 (right).

MQ P4.98% Var(E) Var(T)

8 4.64 7.60 7.56

16 4.81 14.16 14.11

24 4.76 9.64 19.65

32 4.79 24.15 24.19

40 4.89 27.65 27.72

48 4.97 30.26 30.24

56 4.91 31.71 31.74

64 4.93 32.15 32.25

96(32) 4.77 24.13 24.19

112(16) 4.80 14.19 14.11

MQ P4.98% Var(E) Var(T)

16 4.87 15.55 15.53

32 4.80 29.85 30.06

48 4.90 43.71 43.59

64 4.95 56.04 56.11

96 5.01 78.29 78.15
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Figure 1: The DFT amplitude ratio at the signal and outside signal
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Figure 2: Illustration of the DFT of one signal component for different number of available samples along with the calculated

threshold level for 95% of samples obtained by theory. Threshold level R95 is plotted by a horizontal dashed line.
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Figure 3: Probability that a component will not be detected in a four components signal as a function of the number of available

samples MA (full lines approximative expression and dashed line exact integral expression for the error). Think line is the 1%

error probability line.
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Figure 4: Illustration of four component signal for different number of available samples, along with the threshold calculated

by theory. Detection threshold R95 (5% level ) is presented by a dash line, while the threshold R99.9 (0.1% level ) is given by

a dash-dot line.
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