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Abstract 
 

An efficient approach for instantaneous frequency (IF) 

rate estimation is proposed. It is based on a time-

frequency rate representation with complex-lag 

argument. The proposed representation is derived in a 

manner to reduce the spread factor, and thus to provide 

high concentration along the IF rate. Due to the 

significantly reduced spread factor, it is suitable for 

periodically frequency modulated signals whose phase 

vary fast even within a few samples. The theory is proven 

by the example. 
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rate representation, complex-lag argument 

 

1. Introduction 
 

 The instantaneous frequency rate is defined as the 

second derivative of the signal’s phase function, i.e. the 

first derivative of the instantaneous frequency. For a 

frequency modulated signal ( )( ) j ts t Ae φ= , with  a phase 

function ( )tφ , the IF rate is defined as: 
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Hence, an ideal representation of the IF rate can be 

written in the form: 

 

 (2)( , ) ( ( ))IFRTF t tδ φΩ = Ω −  (2) 

 

where (2) ( )tφ  denotes the second phase derivative, while 

δ is delta pulse. The IF rate estimation can be useful in 

many practical applications such as radar, sonar, 

communications and video surveillance. Namely, the IF 

rate can be used to estimate the time-varying acceleration 

of radar moving targets [1],[2]. Also, it can be used for 

the estimation of instantaneous acceleration for object 

tracking in video surveillance applications [3],[4].  

 One of the commonly used techniques for the IF rate 

estimation is based on the time-frequency rate 

representation called the cubic phase function [5]. It is 

suitable for the IF rate analysis of the cubic phase signals. 

However, for higher order non-linearities of the phase 

function, this method cannot provide good concentration 

along the IF rate. An IF rate estimator with a second order 

non-linearity for high-order polynomial phase signals has 

been proposed in [6]- [8].  

 In this paper we propose a second order time-

frequency rate representation for IF rate estimation of 

periodically frequency modulated signals with fast varying 

IF rate. The proposed representation is based on the 

complex-lag argument. Generally, the complex-lag time-

frequency distributions has been introduced to provide 

high concentration along the IF for signals with fast 

varying phase function [9]-[11]. Therein, it has been 

shown that the complex-lag distribution outperforms 

commonly used time-frequency distributions such as the 

Wigner distribution. Thus, the complex-lag argument is 

considered also within the time-frequency rate 

representation in order to provide high concentration 

along the IF rate. The efficiency of the proposed 

representation is illustrated by the examples. 

The paper is organized as follows. The theoretical 

background on the IF rate estimation is given in Section 

II. The time-frequency rate representation based on the 

complex-lag argument is proposed in Section III. The 

experimental results are presented in Section IV, while the 

concluding remarks are given in Section V. 

 

2. Theoretical background 
 

The cubic phase function, as one of the commonly used 

time-frequency rate representations, is defined as [5]: 
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Thus, for a cubic phase signal:  
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the function ( , )CP t Ω produces peaks along the IF rate 

law 2 32( 3 )a a tΩ = + : 
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Consider the signal moment: ( ) ( ) ( )M t s t s tτ τ= + − , where 

( )( ) j ts t Ae φ= . The Taylor series expansion applied to the 

phase of M(t) results in: 
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All phase derivatives apart from the second one 

represent the spread factor (the fourth and higher order 

phase derivatives). It defines spreading of the time-

frequency rate concentration. According to (6), the cubic 

phase function can be efficiently used for signals whose 

phase has derivatives up to the third order. For phase 

function with higher non-stationarity, the influence of 

higher order phase derivatives becomes significant. These 

terms reduce the concentration within the time-frequency 

rate domain, which further influence the precision of the 

IF rate estimation. 

 

3. Introducing Highly Concentrated Time-

Frequency Rate Representation with a 

Complex-lag Argument 
 

The complex-lag argument has been introduced into 

the definition of time-frequency distributions for the 

purpose of fast varying IF estimation [9],[11]. Since the 

signal is available along the real axis only, the signal 

terms with complex-lag argument has to be calculated by 

using signal with a real argument.  

The complex-lag distributions are able to provide high 

concentration along the IF. An appropriate combination of 

signal terms with complex-lag argument provides 

elimination of certain higher phase derivatives from the 

spread factor. In this way, the spread factor decreases, 

providing high concentration in the time-frequency plane. 

This is especially emphasized for signals with highly non-

stationary IF, when the complex-lag distributions provides 

significantly better results comparing to the Wigner 

distribution, for example. This concept can be used not 

only for the IF, but also for the IF rate representation.  

Consequently, in order to improve the concentration 

along the IF rate, we propose the complex-lag time-

frequency rate representation. Let us start from the time-

frequency rate representation given in the form: 
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where j= 1− . Note that the proposed time-frequency rate 

representation is of the second order like the cubic phase 

function.  

In [11], it has been shown that the signal with complex-

lag argument can be calculated as follows: 
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where S(ω) is the Fourier transform of signal s(t). In other 

words, the signal with complex-lag argument is calculated 

as the inverse Fourier transform of ( )S e ωτω ∓ . Note that 

the real exponential functions e ωτ∓ , for large values of 

ωτ  could exceed the computer precision range, 

producing calculation errors. Thus, in the direct numerical 

implementations the above relation should be carefully 

used.  

Accordingly, the signal term with complex-lag 

argument used in the definition of ( , )CTFR t Ω  can be 

calculated as:   
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In order to obtain the final form of the time-frequency 

rate representation defined by (7), let us observe the phase 

of the signal moment ( , ) ( ) ( )M t s t j s t jτ τ τ= + − . The 

Taylor series expansion of the moment phase function is 

given by: 
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Thus, all odd phase derivatives are eliminated. In order to 

focus on the second order derivative and to eliminate the 

influence of the fourth order derivative for example, we 

introduce the following modification: 
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Therefore, the highly concentrated time-frequency rate 

representation is obtained as:  
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The spread factor of ( , )CTFR t Ω  can be now written 

as: 
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Hence, the first term in the spread factor is of the sixth 

order, while the total number of terms is significantly 

reduced comparing to the cubic phase function. Namely, 

the spread factor contains only the phase derivatives in the 

form 4n+2, n=1,2,... . Consequently, the proposed time-

frequency rate representation will provide significantly 

higher concentration of the fast varying IF rate. 

   

4. Numerical Example 

 
In this Section, the efficiency of the proposed time-

frequency rate representation is experimentally 

demonstrated. For this purpose, a periodically frequency 

modulated signal, with fast varying phase function is 

considered. The signal is given in the form [11]: 

 
(6cos( ) 2 / 3cos(3 ) 2 / 3cos(5 ))( ) .j t t ts t e π π π+ +=  

In real cases, this kind of signal corresponds, for example, 

to radar signal produced by non-uniform rotation of 

reflecting point. The exact IF rate is given by: 
2 2 2( ) -6 cos( t)-6 cos(3 t)-50/3 cos(5 t)t π π π π π πΩ = . 

The signal is calculated for t=-1: t∆ :1- t∆ , where 

2 /t N∆ = , while N=128. The proposed time-frequency 

rate representation is illustrated in Figure 1.a. In order to 

compare the results, the cubic phase function is calculated 

and shown in  Figure 1.b. Note that for the considered IF 

rate, the cubic phase function does not provide 

satisfactory concentration and cannot properly follow the 

IF rate variations.  
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c) 

Figure 1. a) The results for the proposed time-
frequency rate representation CTFR, b) the 
results for the cubic phase function, c) the IF 
rate estimated by using the proposed CTFR and 
by using the cubic phase function  
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On the other hand, the proposed representation, 

provide good concentration in the time-frequency rate 

domain, and thus higher precision of the IF rate estimation 

(Figure 1.c).     

The precision of the IF rate estimation is expressed in 

terms of the mean square error as follows: 

 

 �
21

( ( ) ( )) ,MSE t t
N

= Ω − Ω∑  (13) 

 

where ( )tΩ denotes the exact IF rate, while the estimated 

�( )tΩ  is: � ( ) arg max{ ( , )}t TFR t
ω

Ω = Ω , TFR is time-frequency 

rate representation. The MSEs for the cubic phase 

function CP and for the proposed time-frequency rate 

representation CTFR are given in Table 1. 

 
Table 1. Comparison of IF rate estimation in 

terms of MSE 

 
Time-frequency 

rate representation 
(TFR) 

Cubic Phase 
function 

(CP) 

Proposed 
CTFR 

MSE 99.33 4 

 

 

5. Conclusion 
 

A time-frequency rate representation that provides high 

concentration along the IF rate is proposed. It is based on 

the use of the second order signal moment with complex-

lag argument. The proposed representation provides 

significant reducing of the spread factor comparing to the 

existing cubic phase function. Namely, the number of 

higher phase derivatives that cause concentration 

spreading is reduced twice and contains only the 

derivatives in the form 4n+1. Therefore, the proposed 

distribution can be efficiently used for the IF rate 

estimation of signals with fast varying phase function, as it 

is demonstrated by the example. The results have shown 

that the proposed representation provides high precision 

of the IF rate estimation. 
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