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Abstract 
 

A robust time-varying filtering procedure for speech 

signals corrupted by mixed Gaussian and impulse noise is 

presented. It is based on the robust time-frequency 

distributions that can provide efficient representation of 

the noisy speech signals. The proposed approach has 

been compared with the time-varying filtering procedure 

based on the standard time-frequency distributions. 

Keywords – robust time-frequency distributions, time-

varying filtering, speech signals 

 

1. Introduction 
 

In the last two decades time-frequency distributions 

are intensively used in various applications dealing with 

nonstationary signals [1]-[4].  Since the speech signals are 

characterized with high nonstationarity, the time-

frequency distributions represent an efficient tool for their 

analysis. The time-frequency distributions have been used 

in various speech signal processing applications, such as 

filtering, watermarking and coding, [5]-[8].  

 The time-varying filtering of the noisy speech signal, 

based on the time-frequency signal representation, has 

been proposed in [5], where the noise with Gaussian 

probability density function (pdf) has been assumed. 

According to the maximum likelihood (ML) estimation 

theory, the standard time-frequency distributions can 

provide an optimal representation for signals in the 

Gaussian noise environment. However, the speech signals 

are often corrupted by a kind of impulse noise or by the 

mixed Gaussian and impulse noise. In that case the 

standard time-frequency distributions produce poor results 

[9]. In order to overcome this problem the robust time-

frequency distributions have been introduced [9]-[13]. It 

has been shown that the L-estimate forms of robust time-

frequency distributions outperforms the other estimate 

forms, if the present noise is mixed: Gaussian and impulse 

noise, [12].   

 In this paper we propose the robust time-varying 

filtering procedure for speech signals corrupted by mixed 

Gaussian and impulse noise. It is based on using the 

robust time-frequency distributions. Namely, the L-

estimate robust spectrogram is used to define the robust 

time-varying filter function that is further used to 

reconstruct the signal from the time-frequency domain. 

The experimental results confirm the advantages of using 

the robust time-varying filtering procedure. Also, it has 

been shown that, for speech signal corrupted by impulse 

noise, the L-estimate robust spectrogram provides much 

better signal representation compared to the standard 

spectrogram. 

 

2. Theoretical background 
 

The standard short-time Fourier transform (STFT) can 

be defined as, [1]: 
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where N is the number of samples within the window, 

while x(n)=s(n)+v(n) represents the noisy speech signal, 

where s(n) is noiseless speech signal corrupted with noise 

v(n). Generally, the STFT can be obtained as a solution of 

the following optimization problem, [9]:  
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where F(e) is the loss function, while ( , , )e n k m  is the error 

function, [9]: 

 

 2 /( , , ) ( ) .j mk Ne n k m x n m e π µ−= + −  (3) 

 

The parameter µ represents the optimization parameter. 

According to the ML estimation theory the optimal time-

frequency representation will be obtained by using the 

loss function that corresponds to the assumed pdf of noise. 



For the noise with Gaussian pdf the optimal loss function 

is 
2

( )F e e= . Thus, the standard STFT is obtained by 

using this function in the optimization problem given by 

(2). However, the ML estimate approach is very sensitive 

to the assumed noise distribution. Since in practical 

application the pdf of noise is not known or could not be 

precisely determined in advance, the ML estimate 

approach usually failed to provide good results. This 

problem could be solved by using Huber theory of robust 

estimates. Namely, the robust estimate is determined for a 

specific class of noises. The noise with heaviest tails, 

belonging to the specific class, is considered and its ML 

estimate is determined. That estimate is used as a robust 

estimate for all noises from the considered class. The 

noise with Laplacian pdf can be considered as a worst 

case noise, for various noise classes. For the noise with 

Laplacian pdf, the ML estimator produces the loss 

function F(e)=|e|. The direct solution of the optimization 

problem in (2) for the absolute loss function produces 

nonlinear equation that requires computationally 

demanding iterative procedure. It could be solved by 

using the loss function ( ) Re( ) Im( )F e e e= +  that produces 

marginal median estimate, [10]: 
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where [ / 2, / 2)m N N∈ − . This form provides efficient 

results if the pure impulse noise is present. However, in 

practice the signals are often corrupted by mixed Gaussian 

and impulse noise. In that case the L-estimate approach 

provides better results compared to the standard and the 

median based approaches. The L-estimate robust STFT 

can be defined as, [12]: 
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The elements: ( , )ir n k  and ( , )ii n k  are sorted in non-

decreasing order as: 1( , ) ( , )i ir n k r n k+≤  and 

1( , ) ( , )i ii n k i n k+≤ , respectively. The coefficients ai can be 

defined in analogy with α-trimmed mean in the non-linear 

digital filter theory, [14]: 
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where N is even number, while the parameter α takes 

values within the range [0,1/2]. Note that for α=0 and 

α=1/2 the standard STFT and the marginal median STFT 

are obtained, respectively. By using smaller value of the 

parameter α better spectral characteristics will be 

obtained, while using higher value of α provides better 

reduction of heavy-tailed noise. Consequently, the value 

of parameter α should be chosen to satisfy trade-off 

between these requirements. 

By using the L-estimate robust STFT, the L-estimate 

robust spectrogram can be obtained as: 
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In the case of multicomponent signals, such as speech 

signals, the spectrogram does not contain the cross-terms. 

Also, it is less affected by noise compared with quadratic 

time-frequency distributions. Thus, we will use the L-

estimate robust spectrogram to define the robust time-

varying filtering procedure. 

 

3. Robust time-varying filtering procedure 
 

The time domain or frequency domain filtering 

procedures cannot provide satisfactory noise reduction in 

the case of nonstationary multicomponent signals. In that 

case the time-varying filtering procedure should be used. 

An efficient procedure for time-varying filtering of speech 

signals corrupted by Gaussian noise has been proposed in 

[5].  

However, using the same procedure in the presence of 

mixed Gaussian and impulse noise does not produce 

efficient noise reduction. Namely, the standard time-

frequency distributions are very sensitive to the presence 

of impulse noise and do not provide appropriate signal 

representation. Therefore, for filtering of nonstationary 

signals corrupted by impulsive noise we will define the 

robust time-varying filtering procedure that is based on 

the robust time-frequency distribution. 

For a given noisy signal x, the pseudo form of robust 

time-varying filtering, can be defined as, [5]: 
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where w is a lag window, while h represents the impulse 

response of the robust time-varying filter. Previous 

relation can be written in the form, [5]: 
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that is more suitable for realization. The support function 

LH(n,k), has been defined as Weyl symbol mapping of the 

impulse response into the time-frequency domain, [5]: 
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There are several ways to determine the appropriate 

support function. Here, we will use simple approach that 

is based on the robust time-frequency representation of the 

signal. Using a threshold valued, the robust support 

function can be defined as: 
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The threshold value ξ can be determined as: 

L
,

max(SPEC ( , ))
n k

n kξ λ= , where λ represent scaling 

parameter. Note that the support function will be zero in 

the regions where signal components are not present, or 

they are very weak. This form of the support function is 

used in (9) to reconstruct the signal from the time-

frequency domain. In the next section it will be shown that 

support function given by (11) provides efficient 

reduction of mixed Gaussian and impulse noise. 

 

4. Examples 
 

4.1. Example 1 
 

 The aim of this example is to illustrate the advantages 

of using the L-estimate robust spectrogram over the 

standard spectrogram, in the case of speech signals 

corrupted by mixed Gaussian and impulse noise.  

 The speech signal sampled at 8 KHz, corrupted by 

mixed Gaussian and impulse noise is considered. In order 

to obtain good frequency resolution the Hanning window 

of the width N=1024 is used. The parameter α=3/8 is used 

in the calculation of the L-estimate robust STFT. Namely, 

this value of parameter α provides satisfying trade-off 

between distribution concentration and noise reduction.  

The standard spectrogram and the L-estimate robust 

spectrogram are shown in Figure 1. Observe that the 

standard spectrogram cannot provide good representation 

due to the presence of impulse noise. The influence of 

noise is significantly reduced in the case of the L-estimate 

robust spectrogram. Thus, the L-estimate robust 

spectrogram can be used as an efficient tool for analysis of 

speech signals corrupted by mixed Gaussian and impulse 

noise. 

 

 
Figure 1. Time-frequency representations of 
speech signal corrupted by mixture of impulse 
and Gaussian noise: a) the standard 
spectrogram, b) the L-estimate robust 
spectrogram 
 

4.2. Example 2 
 

 In this example, the proposed robust time-varying 

filtering procedure is applied on the speech signal 

corrupted by mixed Gaussian and impulse noise. The 

proposed procedure is compared with the standard time-

varying filtering procedure based on the standard 

spectrogram. The same speech signal as in the previous 

example is considered. The STFT is calculated by using 

the rectangular window of the width N=256. 

 The standard spectrogram and the L-estimate robust 

spectrogram are shown in Figure 2.a and Figure 2.b, 

respectively. They are used in (11) to obtain the standard 

and the robust support functions that are shown in Figure 

2.c and Figure 2.d, respectively. The value 0.05 for the 

parameter λ is used. 

 Note that the standard support function contains 

nonzero values in the regions where speech components 

are not present. Consequently, the noise will remain 

present in the signal filtered by using this support 

function. On the other hand, the robust support function 

has nonzero values only in the region where speech 

components are dominant. Thus, it will provide efficient 

reduction of mixed Gaussian and impulse noise.   



 
Figure 2. Time-frequency representations and 

corresponding support functions: a) the 
standard spectrogram, b) the L-estimate robust 
spectrogram, c) the standard support function, 
d) the robust support function. 
 

  The speech signal can be reconstructed from the time-

frequency domain by using (9). The filtered speech 

signals, obtained by using the standard and the robust 

support functions, are shown in the last two rows in Figure 

3, respectively. The original speech signal and non-

filtered signal corrupted by mixed Gaussian and impulse 

noise are shown in the first two rows of Figure 3. 

  

0 1000 2000 3000 4000 5000 6000 7000
-2

0

2
x 10

4 original signal

0 1000 2000 3000 4000 5000 6000 7000
-2

0

2
x 10

4 noisy signal

0 1000 2000 3000 4000 5000 6000 7000
-2

0

2
x 10

4 standard time-varying filtering

0 1000 2000 3000 4000 5000 6000 7000
-2

0

2
x 10

4 robust time-varying filtering

 
Figure 3. Time domain representations of: 
original signal, noisy signal, signal filtered with 
standard support function, and signal filtered 
with robust support function.   
 

One may observe that significant amount of noise is 

still present in the case of signal filtered by using the 

standard support function. On the other side, the noise is 

almost completely removed from the signal that is filtered 

by using the robust support function.  

 

5. Conclusion 
 

 The robust time-varying filtering procedure based on 

the robust time-frequency distributions is proposed. It is 

employed for filtering of speech signals corrupted by 

mixed Gaussian and impulse noise. For that purpose the 

appropriate time-frequency representation is obtained by 

using the L-estimate robust spectrogram. It has been 

shown that, for the considered type of noise, proposed 

procedure outperforms the standard time-varying filtering 

procedure. 
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