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A Real-Time Time-Frequency Based
Instantaneous Frequency Estimator
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Abstract—Commonly used time-frequency representations,
like the short-time Fourier transform, the Wigner distribution
and the higher order polynomial distributions, estimate the
instantaneous frequency at the middle of the time-interval used
in the analysis. For real time applications, like for example
in radar signal processing, where the target parameters are
estimated in the same way as the instantaneous frequency, the
delay of a half of the considered interval may be unacceptable.
Here, we propose a distribution that inherently estimates the
instantaneous frequency at the end of the considered time
interval. With a presented procedure for on-line implementation
it can outperform other time-frequency representations for real
time instantaneous frequency estimation.

I. INTRODUCTION

Estimation of the instantaneous frequency (IF) is of great
importance in many applications. For example, in radar sig-
nal processing it produces information about target’s range
and cross-range position. Many IF estimators are based on
the time-frequency representations [1]-[7]. Most commonly
used are the short time Fourier transom (STFT), the Wigner
distribution (WD) and other quadratic reduced interference
distributions, defined by the Cohen class. Higher order
spectra and distributions are introduced in order to improve
the IF estimation, as well. In most of them the IF estimate
is obtained for the mid point of the lag interval. Therefore,
the IF estimate is delayed for a half of the lag interval. In
radars, for example, it means that the estimate of target
data is done with a delay corresponding to the half of lag
interval (coherence integration time-CIT). This delay can be
significant and unacceptable in many cases. Some efforts
have been made in the IF extrapolation, in order to deal
with this problem.

In this paper we will present a distribution that inherently
estimates the IF value at the ending point of the lag window.
The distribution preserves property of the WD that it is
fully concentrated if the phase variations of signal are up
to the quadratic order. Bias and variance analysis of the
proposed IF estimator, in the case of signals with nonlinear
IE is done. Simulations show the efficiency of the presented
distribution, when the current instant for the IF estimate
is considered as relevant, rather than the one delayed for
half of the lag interval. A procedure for reduced cross-
terms realization of the proposed distribution is described.
This procedure can be used in the multicomponent signals
analysis. It improves performance in the case of high noise,
as well.
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II. DEFINITION

In recent research, an interest to the highly concentrated
distributions has been again increased. For a frequency
modulated signal x(f) = Aexp(j@(#)) the model of a fully
concentrated distribution, along the IF

TF(t,w) = 21 A%6(w — ¢ (1)) = FT;[A2e/?' 07 o))

is set again as the basic reference model in sparse time-
frequency signal processing (and other recent develop-
ments). Assume that the phase function could be con-
sidered as quadratic, within the lag time interval. Our
goal here is to find the simplest distribution, that is fully
concentrated at ¢’(z), at the current instant . In contrast
to the other distributions derived in a similar way, here
we impose the constraint that only the past signal values
are available for calculation. This kind of constraint is
especially important in real time applications where an IF
estimation, delayed by a half of the lag interval, may not
be acceptable. In general, time-frequency distributions are
defined as the Fourier transform (FT) of generalized local-
autocorrelation functions. Here, in the definition of the local
auto-correlation function, we use only the current and past
instants as

r(t,1) = ej[ao(p(t)+a1(p(t—r/2)+u2(p(t—r)] — ej(p’(t)r' )

Without loss of generality, a signal normalized in amplitude
A=1 is used. We also assume that the lag values are of the
form 7 and 7/2, so that they can be sampled with sampling
interval corresponding to the WD calculation i.e. with Az/2.
Therefore, an interpolation of discrete signal is not required.
After an expansion of the phase functions ¢(t—7/2) and
¢(t—71) into a Taylor series arount ¢, the coefficients should
satisfy the following system: ag+a; +a, =0; —a;/2—ay =1
and a;/8+ ap/2=0. It produces ay=3, a; =—4 and ap =1,
with
3 *4 T
r(t,7)=x"(0x (t—E)x(t—T). 3)

A time-frequency representation (TFR) of a continuous
signal x(?), then, is

D(t, ) =f SO x(t-1)x (- %)e‘j“”dr. @)
0

Integration is from 0 to oo since this distribution is defined
to be causal. Notation x*"*(f) means the n-th power of
complex conjugate of a signal. Since the causal from is used,
the reprsentation of a signal x(t) = Aexp(j(1)), with ¢ (1)
being negligible, is

Jj2w

D(t,w) = A%5(w - ¢' (1) + ————
w—@'(1)

%)
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with second term, which does not change the nature of
distribution begin concentrated at w = ¢'(z).
Its pseudo form reads

h .
D(t,w):f w(r)xs(t)x(t—T)x*4(t—%)eifmdr. (6)
0

The past time interval [t—h, t] is used for D(¢,w) calculation.
A lag window is denoted by w(z) for 7 € [0, h]. Note that the
pseudo WD definition, by using signal values from the same
interval, would be of the form

wp-" w)—fh wmxt- "+ Dt =Py e ot g )
277 2 2 2 2 ‘

In order to analyze performance of (6) as an IF estimator,
let us consider a single component frequency modulated
signal

x(1) = A(el ), (8)

with small amplitude changes over the considered time
interval, i.e.,, A(¢t—1) = A(t) for 0 <7 < h and ¢(¢) is a
continuous and differentiable function of time. The IF of

this signal is

_de®
wl(t)——dt =¢'(1), )

with the phase in the local auto-correlation function of the
form

"

T ! 1 3
3p(t)+(t—1)—4¢(t - 5) =¢ (t)‘r—ﬁ(p Hr’+...

=¢' (DT +A@(L,T). (10)

The IF estimation is based on
D(t,w) =~ Ag(t)W(a)—(p’(t)) *wFT{e_jﬁ(p’/!(t)‘[3+...} . (11)

where W (w) is the FT of w(r). Maximal value of |D(t, w)|?
is reached at w = ¢'(t) with a possible bias caused by the
third and higher order derivatives of phase. Note that in the
WD case the maximal value would be reached at wyp =
@' (t—hi2).

This distribution has been defined with the aim to be
real-time instantaneous frequency estimator, in the first
place. It also satisfies some other time-frequency represen-
tation properties. It preserves shift in time and frequency.
For y(1) = x(t—to) exp(jwot), Dy(t,Q) = Dx(t—tp,w —wp). In
addition for a signal y(f) = x(t)ej‘”zlz, Dy(t,w) = Dy(t,w -
at). Time marginal is [ D(t,w)dw/2n = |x()|®. For a
scaled version of the signal y(1) = v]alx(at), a # 0, this dis-
tribution reads Dy (f,w) = Dy(at,w/a).The time constraint
is satisfied, as well, since D(f,w) =0, when x(t) =0.

III. ESTIMATOR PERFORMANCE

A discrete-time form definition of (6), at an instant ¢ =
nT, reads:
N-1 ]
D(t,w)= Y. wy(kT)x(t—2kT)x** (¢t - kT)e /2kT,
k=0

(12)

The lag independent part x3(¢) is omitted, since it will not
influence the IF analysis. Consider a noisy signal

x(nT) =s(nT) +enT) = A??" D 1 ¢(nT), (13)

where €(nT) is a complex i.i.d. white Gaussian stationary
noise with zero mean and variance 02, and ¢(nT) are dis-
crete time samples of the differentiable continuous function
¢(t), with bounded derivatives.

The IE at a time instant ¢ = nT, is estimated by:

() =argm£1x|D(1,‘,a))|2 =argmwaxF(t,a)), (14)

where F(t,w) = D(t,w)D*(t,w).

In order to analyze the estimators performance, we will
linearize 0F(f,w)/0w around the stationary point where
O0F(t,w)/0wyp =0, with respect to the estimation error A®,
noise and higher order phase terms [8]

0F(t,w) _ 0°F(t,w) .  OF(t,0)
dw 1o dw? o dw o NP0
OF(t,w)
0w 0 " (1)

Approach to the analysis of this expression is similar to the
one applied in the WD case, [8]. However, since the distri-
bution D(t,w) is not real-valued, it is not straightforward.
Thus, we will provide few basic steps for this derivation in
the case of complex-valued distributions.

The first derivative in (15) is calculated as

OF(t,w) 0D(t,w)
= e|———
ow ow
The second derivative 0°F(t,w)/dw?, at the stationary
point (with ¢(nT) =0, w = ¢'(¢) and A@(t,7) =0, [8]), is
obtained in the form,

D*(t,w)|.

(16)

0%F(t,
;zw) =8AY -V + VA, 17)
ow? o
where N1 '
Vi=) oo (kD) wy(kT). (18)
The estimation error follows from (15)
OF (t,w) OF(t,w)
. B 00+ 50" 0 02p(nT)
Ad = L (19)
BALO [V, Vp — V2]
The estimation bias is
bias Ad = ! OF(t,w) (20)
= 8A10[V2V0—V12] 30 Do Ap(nT)
where
OF(t,w) ~
0w 10 ApnT) =
x 3 (—2)k —a(-1)*
AN ZoW () (Vi1 Vo — Vi V)
=4 k!
10 (p”l(t)
~ A T(V1V3—V4Vo), (21)

assuming small Ap(t, kT), exp(jA@(t,kT)) =1+ jAp(t, kT),
e(nT)=0 and w = ¢'(¢). Its final form is
WiV - V4V

n
———¢ ' (1).
AN

biasA® = (22)
The estimation variance is
1 OF(t,w)

varAo = var O¢,,
(BAC[Va V) - VE])? dw o

(23)
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with
OF(tw) . _
dw o '

N-1 '
2Re [ Z (=j2kT) wh(kT)S(t—ZkT)s*4(t_ kT)e—]ZwkT
k=0
N-1 ,
x Y wy(kT)s* (t—2kT)s* (¢ - kT)e/2kT
k=0
N-1 .
- Z (=j2kT) wh(kT)x(t—ZkT)x*4(t_kT)e—ijkT
k=0
N-1 '
x ) wp(kT)x* (t -2k T)x* (¢t — kT)el?“*T |
k=0

(24)

Having in mind that the variance of the real part of a
complex zero mean random variable X can be expressed
as var[2Re X] = E[X? + X*2 + 2X X*], after some direct, but
lenghty, calculations, with w = ¢'(t) and A¢@(t,7) =0, for the
stationary point, we obtain

OF(t,
ar[ é @) 58[} = 202 AY (48U Vi Vi + 68 W, V2
w o
+68Wo VE —136W, Vi Vo +32Up VE + 16U, VE),  (25)
where
Wi=Y 3y (kD) wh(kT) (26)
Us= 3 3o (kD) wy (kT wy 2kT). @7
Finally, the estimator variance can be written as
2
VarAd = of ——— (12U Vo + 17T W, V2
A% 32[Va Vp — VI

+17Wo VE — 34W1 Vi Vo + 8U Vi +4UL V). (28)

The theoretical variance is checked against the statisti-
cally obtained one, within the example.

For a rectangular window wy(nT), a simple form of the
variance follows:

o2 9 5N+3 0z 45

A22T2 N(N+1)(N2-1) ~ A22T2N3'
In terms of the window length h = NT, the variance is
varAo = 22.50§ T/(A%h®). For the WD with the same rectan-
gular window, we have [8], var Adwp =~ 602T/(A*h3), mean-
ing that the presented estimator have a higher variance than
the WD, applied to the same signal. Note that the WD pro-
vides estimation at the central point of the considered lag
interval resulting in estimation delay of /2 with respect to
the current time-instant ¢. Time delay in the WD based esti-
mation can produce significant bias and increase total MSE.
Its value is MSEwp = (biasA®)?,, + (¢’ (1) — ¢/ (t — h/2))* +
602T/(A%h%). Thus, the proposed distribution will produce
better results, if the variation of the IF within the lag
window is such that (¢'(£) —¢'(t—h/2))*> > 16.502T/(A*h®).
For the SNR of 10dB, A?/6% =10 and quite small number
of samples (producing high estimation variance) h = 16,
T =1 and N =16 it follows that the proposed IF estimator
is still better if |<p’(t) —¢'(t— h/2)| > 0.006w,,, where wy, is
the maximal frequency. Increasing the number of samples
will additionally favor the proposed estimator. Thus, we

varAo =

(29)

may conclude if any time variation of the IF is expected
the proposed estimator will produce better estimate, at the
current time instant ¢, than the WD for any reasonable
window width.

It is also well known that all higher order approaches
require high values of SNR for successful estimation. In
order to illustrate this effect and propose a method for
its reduction, consider a very simplified case of a sinusoid
x(n) with a frequency kp. Assume that its FT is X(k) =
Ab(k — ko) + E16(k — k1) where E 6(k—kp) is a disturbing
term. Then, we will have the correct estimate of frequency
ko = arg{maxy | X (k)|} if the disturbing term is lower than
the desired signal A > max{E;}. Now consider a higher
order distribution, requiring the powers of x(n), for example
x?(n). Its FT is X(k) xi X(k) = A%6(k — 2ko) + E25(k — 2k) +
2AE16(k — ko — k1). It is clear that if A > max{E;} then
A? > max{E}}, ie., the first two terms in X(k) x; X(k),
representing the auto-terms of signal and disturbing term
in convolution, will not influence the estimation, in this
sense. However, the cross-term 2AE16(k — ko — k;) is in-
troduced, as well. For the correct estimation, here we
must have A > max{2E;}. It corresponds to the well known
6[dB] worsening with each higher order degree. Thus, our
idea will be to remove, or reduce the cross-terms, as
much as possible (in an ideal case to get Cross-Terms-
Reduced{X (k) = X(k)} = A%6(k — 2ko) + E25(k — 2k1)) and to
improve the estimation limit for low SNR, keeping higher
order representations property of improving concentration
for non-stationary signals.

IV. THE S-METHOD BASED REALIZATION

Based on (6) we can write
(30)

where y(¢) = x*(t-7/2) and STFT)(t,w) = STFTy(t,0) *4
STFT,(t,w) *, STFTy(t,w) *o STFTy(f,w). Let us now as-
sume that components in STFT) (t,w) are localized i.e. that
a component centered at any wy is spread in frequency, but
only over a region [wg—wr,wo+wr]. Then

STFTy(t,20) 4, STF Ty (t,20)

D(t,0) = x* () STFTx(t,0) #o STF Ty (1, 20)

= %f STFT(t,w+&STFTx(t,w—&)d¢

1 ree
=— STFTy(t,w+&STFTy(t,w—&)d¢

T —-wr,

@D

This may be considered as a windowed convolution, cor-
responding to the S-method, [9]. It will reduce all cross-
terms. The ross-terms between components being at least
2w apart will be completely removed.

Now we will present discrete form for the proposed
distribution (6) realization based on this method, that will
reduce the effect of high noise to the proposed distribution
and also provide possibility of its direct application to the
multicomponent signals.

Let us consider a single time instant ¢ and discrete
samples x;(n) of a continuous signal x(f—7) sampled along
7. We will assume that a rectangular window function w(n)
of length N is used.
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Step 1: Calculate a discrete signal y,(n) as samples of
x*(t—7/2). Its Fourier transform is STFT,(t, k) = FT[x;(n)]
for —-N/2<k<N/2-1.

Step 2: We will now calculate STFT5(t,k) = FT[y%(n)] by
convolution

STFTg(t,k):ZpSTFTl(t,p)STFTl(t,k—p) (32)

Let us assume that components in STFT;(t, k) are local-
ized i.e. that a component centered at any ky is spreaded
over the region [ky—L, ko + L]. It means that only frequency
range [k—L, k+ L] will be used for calculation of STFT5(¢t, k)
for all k since kj is not known.

The limits on p in (32) are ky—L<p<ko+L and kg—L <
k—p =< ko + L. Eliminating unknown ko we get

kl2—-L<sp<k/2+L (33)

Component in STFT(t, k), corresponding to ko, is lo-
cated in STFT5(¢, k) within the range [2ky —2L,2ko +2L].

Step 3: The second convolution is performed in the same
manner as in Step 2, to obtain

STFTy(t,k) = FTIx;(n)]
=) STFT:(t,p)STFTx(t,k—p).  (34)
p

Similar analysis, as in Step 2, leads to the summation limits
%—ZL <ps< ’§‘+2L. Note that component corresponding to
ko in STFT(t, k) is located in STFT4(t, k) within the range
[4kg —4L,4ko +4L]. The convolution STFT4(t, k) contains
4N -3 frequency samples in total.

Step 4: We will now calculate STFTy(¢t, k) = FT[x:(n)].
For component corresponding to ky in STFT(t, k) the
corresponding component in STFTy(¢, k) is located within
[-2kg —4L,—2ky + 4L]. It is obvious, since STFT;(t,w) =
FT(x*(t—1/2)] and STFTy(t,w) = FT[x(t+1)].

The final distribution, with local calculation, is

D(t,k):ZpSTFTx(t,k)STFT4(t,k—p) (35)

where limits for p are —k—-4L<p<-k+4L.

Note that we can calculate convolutions in different order
and obtain similar results. The signal dependent S-method
realization does require any distance between auto-terms.
It would here produce a cross-terms free form of the D-
distribution if the components do not overlap in the STFT.

Presented theory is illustrated by an example with a
noisy signal x(n) = exp(lennleZ) + e(n), where the SNR
is changed within —10 < SNR <20, N =256 and T =1. The
value of D(¢, k) is calculated by definition. Its reduced inter-
ference form is calculated by using the proposed procedure
with L=7. The IF is estimated, with additional fine tuning
using the interpolation and displacement technique. The
MSE is calculated in 1000 realizations. The same is done
for the WD. The MSE in WD is limited by a large bias,
being equal to the change of the IF within a half of the lag
interval. The proposed calculation procedure significantly
improves the estimation for low and moderate SNR. The
theoretically obtained MSE (29) for D(¢, k) is presented, as
well, Fig.1.

Wigner distribution

)]
D-distribution
= D—distribution

0 P Icul
10 roposed calculaton Direct calculation
> Theory\
10
- SNR [dB
= ‘ ‘ ‘ ‘ _ SR [dB]
-10 -5 0 5 10 15 20
Fig. 1. The estimation MSE, in frequency steps, for a noisy signal: (o)

the Wigner distribution, (+) the proposed D distribution, calculated by
definition, (-) the proposed D distribution, calculated by the proposed
procedure, (- -) theoretically obtained MSE values.

- —-500
-400
] _ [}
300 £
-200 <
-100
T T T T 14}
-100 -50 0 50 100
frequency

Fig. 2. Time-frequency representation of a two-component signal: The
Spectrogram (top), the Wigner distribution (middle) and the D-distribution
with proposed cross-terms free (reduced) realization (bottom). Vertical
dashed lines indicate true instantaneous frequencies, at the initial time
instant, for each component.
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Fig. 3.
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Time-frequency representation of a mono-component noisy signal: The spectrogram (left), the Wigner distribution (alias free realization),

(middle) and the D-distribution with proposed cross-terms free (reduced) realization (right). Signal to noise ratio is SNR=5 [dB].

The STFT can be realized in a recursive (on-line) manner,
[9]. Then, with a few multiplications and additions the
function D(t, k) is obtained, for each k, in a numerically
efficient way. It makes real time application of the pro-
posed distribution complete (with possible hardware, on-
line, implementation). In theory, the value of 2L should
be equal to the signal component width, but in practice
just a few samples around each frequency will signifi-
cantly improve the concentration. The method will work
well in time-frequency representation of multicomponent
signals, since the presented calculation procedure removes
(reduces) cross-terms.

A realization of the STFT, the WD and the proposed D-
distribution (by definition and by using the S-method based
calculation procedure) on a two-component signal

x(n) =exp(j2307(n/N) +j247r(n/N)2 —le(n/N)3)

+exp(—j2307(n/ N) — j20m(n/ N)?), (36)

with N =256 and on a mono-component noisy signal

x(n) = exp(j487r(n/N)2) +&(n), (37)
with SNR = 5[dB], L = 7 is presented in Fig.2 and in
Fig.3. Note that the IF representation in the D-distribution
corresponds to the current instant (last available instant in
calculation), while the IF in the WD is significantly delayed
with respect to this instant, Fig.2. In the spectrogram we
can see that the IE corresponding to the current instant, is
at the position of one of the ending frequencies in the wide
auto-term. In the Wigner distribution the IF is in the middle
of the STFT’s auto-term. In the noisy case, the proposed,
reduced interference realization (for noise, inspired by the
analysis in the last paragraph of Section 3) significantly
improves the D-distribution performance. However, it is
still a higher order distribution, sensitive to noise. In many
applications, when noise is not extremely high, this is the
price that is not significant, as compared to the benefit of
being able to accurately estimate the current IE It is not
delayed for a half of the lag of window, as in the case of
other time-frequency based estimators. The delay of N/2
in the IF estimation can be easily seen in Fig.3.

V. CONCLUSION

A distribution that inherently estimated the IF at the
last instant of a considered interval is proposed. This
distribution, along with a procedure for its reduced in-
terference realization, provides an efficient tool for the IF
estimation in real time, when a delay of the half of the lag
interval is not acceptable, like for example in radar signal
processing, for target localization and identification. The
obtained distribution, with the procedure for its calculation,
combines good properties of high concentration in higher
order distributions and low noise sensitivity of the STFT.
It can be directly applied to the multicomponent signals
analysis, as well.
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