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Abstract—This paper presents a method for extraction of
frequency hopping signals, for the case of variable number
of transmitters with aperiodic frequency hops. The mixture
of signals generated by different transmitters are represented
in the time-frequency domain, by time-frequency distributions
belonging to the Quadratic class. Different components are
extracted from the time-frequency distribution of the mixture,
and classified among the various transmitting sources, using
the information on the instantaneous number of components,
hopping instants, and the total number of components estimated
by using different orders of the time-frequency Rényi entropy.
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I. INTRODUCTION

Frequency hopping signals (FHS) belong to a class of
signals widely used in wireless communications, and they
are obtained by switching the frequency of an exponential
tone ej2πfkt at hopping instants, generated by the transmitter,
according to a hopping pattern known only by the trans-
mitter and the receiver [1]. These nonstationary signals are
characterized by several parameters such as the instantaneous
frequency fk between two hopping instants, the number of
hopping instants, the total number of transmitters, etc... In the
case of unknown hopping patterns (signal interception pur-
poses, or initial synchronization) the estimation of the hopping
moments is key for the identification of the different signal
components whose identification and separation is the goal
in many applications [1]–[4]. The characteristic features of
FHS are well emphasized by their representation in the time-
frequency plane. Time-frequency representations (summarized
in Section II) allow to recover information on the local and
total number of components that are present in a signal by
the application of the Short-term Rényi entropy [5]. Section
III presents a method for identification of the hopping instants
in the case of aperiodic hop timing and variable number of
transmitters, based on the application of different orders of the
Short-term Rényi entropy on the time-frequency distributions
(TFDs) of the signal mixture. Using this information, different
components are extracted and classified with the algorithm
presented in Section IV. Conclusion is given in Section V.

II. THEORY OF QUADRATIC CLASS OF TIME-FREQUENCY
DISTRIBUTIONS

TFDs are two variable functions, Cs(t, f), defined over the
two-dimensional (t, f) space [6]. A monocomponent signal is
defined in its analytic form as [7]:

s(t) = a(t)ejφ(t), (1)

where a(t) is the instantaneous signal amplitude, and the
signal instantaneous frequency (IF) is defined as the time
derivative of its instantaneous phase φ(t) [7]

fi(t) =
φ′(t)
2π

. (2)

For a single tone signal s(t) with frequency f0, the ideal
TFD represents a series of Dirac functions in the (t, f) plane,
tracking the signal IF [7]:

Is(t, f) = δ(f − f0).

Such an ideal representation is achieved by the Wigner-Ville
distribution (WVD) defined as

Ws(t, f) = Fτ→f{s(t +
τ

2
)s∗(t− τ

2
)}

=
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τ

2
)s∗(t− τ

2
)e−j2πfτdτ. (3)

However, due to the nonlinearity of Ws(t, f), cross-terms
appear between any pair of signal points in the (t, f) plane.
Also, nonlinear IF causes unwanted artifacts [8]. Both effects
result in degraded representation quality.
To avoid this limitation of the WVD, a class of Quadratic dis-
tributions has been introduced that filters out the interferences
generated in the WVD in both time and frequency direction
[7]:

Cs(t, f) = γ(t, f) ∗t ∗fWs(t, f), (4)

where γ(t, f) is called the time-frequency kernel filter, and
the double asterisk denotes a double convolution in t and f .
Quadratic distributions with separable time-frequency kernel
are particularly efficient in the task of reducing interfer-
ences, maintaining at the same time an acceptable auto-terms
concentration [7]. The Smoothed-Pseudo WVD (SPWVD) is
formulated with a simple kernel, being the product of the time



and lag window functions [9], which in the time-frequency
domain takes the form

γ(t, f) = g(t) H(f). (5)

In this paper signals are represented in the (t, f) plane by the
SPWVD with time and lag hamming windows.

III. RÉNYI ENTROPY BASED ESTIMATION OF THE NUMBER
OF COMPONENTS, TRANSMITTERS, AND HOPPING

INSTANTS

The generalized Rényi entropy of order α

Hα(Cs) :=
1

1− α
log2

∫ ∞

−∞

∫ ∞

−∞
Cα

s (t, f) dt df, (6)

widely used as measure of signal complexity, exhibits a
counting property, but only in the case of signals with multiple
components of equal time-frequency supports and equal am-
plitudes [10]. Another limitation of the Rényi entropy counting
property is that one of the signal components must be available
to the user as a reference for the estimation.
Recently, the Short-term Rényi entropy [5] has been intro-
duced in order to overcome the limitations of the global
Rényi entropy as an estimator of the local number of signal
components.
The number of components that are present around an instant
t0 will be obtained by comparing the Rényi entropy of the
TFD Cst0

(t, f), inside a short time interval around the instant
t0, with the Rényi entropy of a TFD of an arbitrarily chosen
reference cosine signal within the same time interval. The local
number of components will thus be [5]:

nα(t0) = 2Hα(Cst0
(t,f))−Hα(Creft0

(t,f)). (7)

By computing Eq. (7) for each time instant t0, a continuous
function representing the local number of components is
obtained.
It has been shown that spectrum smearing caused by the
frequency hopping in FHS leads to local entropy increase [2].
However, variation of the value of the parameter α allows to
control the effect of the spectral smearing of the Short-term
Rényi entropy. In fact, smaller values of α will emphasize the
entropy contribution of the smeared fading/rising component
(since smaller values of α enhance the entropy sensitivity
to low energy components), while larger values of α will
minimize it.
By using the algorithm presented in [5], a FHS embedded
in moderate additive white Gaussian noise (AWGN, i.e. a
generally accepted model of noise in communication channels
[1], with SNR = 10 dB) has been analyzed. Three sources
are involved in the transmission: the first transmission starts
at the time instant t = 1 s, has frequency hops at the time
instants t = 30 s, t = 130 s, and t = 180 s, and ending at
t = 220 s. The second transmitter is activated at t = 60 s, it
has one frequency hop at t = 90 s, ending at t = 300 s. At
the time instant t = 260 s, a third source transmits a short
impulse, lasting 20 s. Meanwhile, in the case of interception
or synchronization phase, these parameters are unknown.

Fig. 1(a) shows the SPWVD (with normalized frequency, and
time and lag windows of duration N/10 s, where N is the
duration of the signal) of the described signal. Fig. 1(b) shows
the Short-term Rényi entropy of the 10-th order. It can be
noticed that the high value of the parameter α makes the
entropy based estimated number of components insensitive to
the frequency hops. By counting the rising edges of the local
number of components n10(t), the total number of transmitters
in the signal is obtained. On the other hand, by decreasing
the value of the parameter α to 1, the estimated number of
components n1(t) will present a pronounced sensitivity to
frequency hops (Fig. 1(c)). By counting the rising edges of
n1(t) the total number of components present in the signal is
obtained. The function detecting the occurrence of a frequency
hop (Fig. 1(d)) is thus obtained as

nhop(t) = n1(t)− n10(t). (8)

IV. ALGORITHMS FOR COMPONENT EXTRACTION AND
CLASSIFICATION

A. Component extraction algorithm
After obtaining the local and total number of components,

and time locations of frequency hops, by the combination of
different orders of Short-term Rényi entropy estimates, the
extraction of individual components can be performed. Since
the total and local number of components (generated by one
or more sources), is available from the functions n1(t) and
n10(t), the algorithm allocates memory dynamically. The
total allocated memory is determined by the rising edges of
n1(t), while the momentarily used memory block is addressed
according to the value of n10(t).
This dynamic strategy of memory usage avoids blind
allocation, thus decreasing the algorithm execution time and
preventing memory overflow. If dynamic allocation is not
used and the number of components is not available, the
result may be an incomplete extraction (whenever the number
of existing components is larger than the arbitrarily predicted
one [3]).

Algorithm steps
• Step 1: If n1(t) > 0, the TFD maximum is located at

(t, f0), or else the next instant t is considered
• Step 2: The neighbouring bandwidth of the located

maximum is extracted from the TFD and stored in one
of the allocated memory blocks according to the counter
of extracted components.

• Step 3: If a new component is found, according to
n1(t), the counter of extracted components is increased
by one, until the counter is equal to the total number of
components calculated from n1(t).

• Step 4: The above steps are repeated n1(t) times in
order to extract all components at an instant t. Next, t
is increased by one.

Fig. 2 shows the extracted components of the signal analyzed
in Fig. 1.



Fig. 1. TFD (SPWVD) of a multiple source FH signal (a), estimated
number of components n10(t) (b), estimated number of components n1(t)
(c), estimated hopping instants nhop(t).

B. Transmitter based component classification

Different orders of the Short-term Rényi entropy estimates
n1(t), and n10(t), give enough information to classify the
components according to their source. The classification is
performed as follows:

Algorithm steps
• Step 1: Find the time instant of the rising edge of the

function nhop(t) = n1(t)− n10(t).
• Step 2: For that time instant locate the starting component

as the one that wasn’t already stored in one of the
allocated memory blocks.

• Step 3: Of all other components at that time instant,
according to n1(t), find the one with the instantaneous
lowest maximum (meaning, the component is ending).

• Step 4: Add the components found in Step 2 and Step 3.

Fig. 2. Extracted components from the TFD of the mixture.



Fig. 3. Components classified with respect to different sources.

• Step 5: Repeat the steps for each rising edge of the
function nhop(t) = n1(t)− n10(t).

Fig. 3 shows the components of the signal in Fig.1, classified
with respect to different sources.

V. CONCLUSION

This paper presents a blind source separation technique
applicable on FHSs. FHSs are represented using the Quadratic
class of TFDs (SPWVD), and information on the local and
global number of components are obtained by the calculation
of different orders of the Short-term Rényi entropy. Based
on these data, different components can be separated from
the mixture, by a sequential peak extraction algorithm. Since
the peak of each time slice of the TFD represents the IF of
the component, this information can be used as a parameter
for signal reconstruction. Also, relying on the information of
frequency hopping occurrence, the components generated by
the same source can be recovered.
The reported results, showing robustness of the algorithm in

moderate noise conditions, are encouraging for further testing
on different classes of wireless signals.
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