
  

Abstract — In the light of popular compressive sensing 

concept, this paper proposes a single-iteration reconstruction 

algorithm for recovering sparse signals from its incomplete 

set of observations. Compressive sensing assumes that a signal 

which is sparse in certain transform domain can be randomly 

sampled in another (dense) domain, taking lower number of 

samples than required by the sampling theorem. Then, using 

the optimization algorithms, the entire signal information can 

be recovered. In our case, instead of using 1� -based methods 

or approximate greedy solutions, we propose a simple 

algorithm based on the analysis of noisy-effects that appear in 

the sparsity domain as a consequence of missing samples. The 

theory is proven on the examples.         
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I. INTRODUCTION 

owadays, one of the most challenging topics and a 

key issue in various applications such as data 

compression, source separation, noise reduction, and more 

recently compressed sensing is finding a sparse linear 

decomposition of a given signal [1]-[3]. Many of the 

proposed algorithms provides good sparse approximations 

in polynomial time, but the general problem of finding the 

best m-term approximation is non-polynomial (NP-

Complete). When searching for the best sparse 

approximation, we can define two general and most 

popular approaches [4]-[7]. The first one is l1 minimization 

approach which is solved using convex optimization 

algorithms [4],[5]. On the other hand, there are much faster 

so called greedy algorithms, which are iterative procedure 

that decrease the approximation error by relaxing the 

sparsity constraint. The most commonly used among them 

is the Orthogonal Matching Pursuit (OMP) [6],[7], 

together with a number of its variations such as Gradient 

Pursuit (GP), CoSaMP, etc. Although they are faster and 

simpler than convex optimization algorithms, the greedy 

ones usually assume that the number of signal components 

that should be reconstructed is a priori known. Otherwise, 

the iterations stopping criterion should be based on mean 
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square error [8], which should be specified in advanced 

and estimated empirically in each application. Instead of 

this, we propose a single-iteration solution which is based 

on the analysis of effects caused by missing samples in the 

observation domain. We start from the assumption that the 

observed signals are sparse in the Fourier transform 

domain. The side effects caused by having an incomplete 

set of time observations instead of full data set are 

modeled as spectral noise characterized by a mean value 

and variance. As long as we are able to keep the noise 

effects below the signal components level in the Fourier 

domain, we can provide the single-iteration reconstruction 

algorithm. The proposed solution also defined an optimal 

number of available samples called measurements which is 

required for achieving the reconstruction with low 

probability of error. Here, it is important to emphasize that 

the proposed concept is not only applicable to the signal 

and its Fourier transform, but can be extended to the time-

frequency representations and distributions that have been 

crucial in various real applications including radars [9], 

biomedicine [10], multimedia [11],[12], hardware and 

instrumentation [13]-[15], etc. Namely, most of the 

existing time-frequency representations are obtained as the 

Fourier transform of windowed linear, bilinear, 

polynomial, or complex-lag auto-correlation function [16]-

[21]. In this case, the proposed concept should be applied 

to each windowed auto-correlation function segment.  

The paper is organized as follows. The theoretical 

background about the compressive sensing is given in 

Section II. The single iteration reconstruction algorithm is 

proposed in Section III. The experimental results are 

presented in Section IV, while the Concluding remarks are 

given in Section V. 

II. COMPRESSIVE SENSING 

 

When dealing with signal that, according to the sampling 

theorem, needs a high sampling rate, the acquisition of 

samples requires a high number of sensors, as well as large 

data storage and transmission capacities. In these 

circumstances it would be very feasible to explore the 

possibility of sampling at far lower rates and afterwards, or 

upon the occasion, to reconstruct the rest of the signal for 

the purpose of analysis, representation, etc. In order to 

achieve this goal, we usually need to sample randomly and 

to identify the domain of signal sparsity to allow signal 

reconstruction. The mathematical foundation of CS lies in 

the fact that it is possible to reconstruct a sparse signal 
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from an underdetermined linear system of equations and 

that this can be done in a computationally efficient manner 

via convex programming [5]. Consider a signal N
s ∈�  

that can be represented in certain basis { }
1

N

k =
= ΨΨ , using 

the weighting coefficients xk: 
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When observing in the vector form we can write: 
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where = Ψ Ψ Ψs = Ψx Ψ  is a full rank N×N 

matrix. One such example can be a finite length, discrete 

signal that can be represented using discrete sinusoids in a 

limited bandwidth. The matrix ΨΨΨΨ would then be the 

discrete Fourier transform (DFT) matrix. In compressive 

sensing one is particularly interested in any basis that 

allows a sparse representation of s, i.e., a basis ΨΨΨΨ such that 

most of the values within x are zero. In compressive 

sensing we assume that s is not available. Instead of the 

whole signal s we are actually dealing with a small set of 

M randomly sensed measurements, where M«N. A set of 

random measurements are selected from signal s, by using 

random measurement matrix Φ [1]-[3]: 

 y =Φs . (1) 

Accordingly, we may write: 

 y=ΦΨx=Θx . (2) 

In order to obtain the reconstructed signal version, we 

have to solve the underdetermined system of M linear 

equations with N unknowns. It is obvious that this system 

may have infinitely many solutions, but the idea is to 

search for the sparsest one. For this purpose, various 

optimization algorithms based on 0� - norm minimization 

have been used. However, due to the problem complexity, 

the 0� - norm minimization have been replaced in practical 

applications with the 1� - norm minimization, leading to a 

near-optimal solutions. The 1� -norm minimization problem 

in compressive sensing can be defined as follows [4]: 

 � �

1

min . .x s t y x=Θ
�

.  (3) 

The above minimization can be solved by using convex 

optimization algorithms such as Basis Pursuit algorithm, 

with some of the commonly used solvers such as simplex 

and interior point methods (e.g., primal-dual interior point 

method). However, the complexity of such realization are 

still are still quite high. Therefore, for a real-time 

processing the so called Greedy algorithms have been 

introduced, such as MP or OMP, which represents an 

iteratively approximate solution that inlcudes the best 

fitting component in each iteration [6]-[8]. They are much 

less complex than convex optimizers but are not 

guaranteed to converge to the optimal solution. 

III. SINGLE-ITERATION RECONSTRUCTION ALGORITHM 

(SIRA)  

 

In this Section we propose a singe-step (non-iterative) that 

is based on signal sparsity in the DFT domain. For that 

purpose we need to characterize the side-effects that 

appear as a consequence of having incomplete set of signal 

samples. Namely, the missing samples in the time domain 

(observation domain) will produce a certain kind of noise 

in the spectral domain (Fourier transform, i.e., domain of 

sparsity) which deteriorates signal representation. Larger 

number of missing samples produces larger noise variance, 

ruining the signal’s sparsity. Consequently, signal 

components detection becomes more difficult. Hence, to 

provide an automatic components detection and 

reconstruction when dealing with compressive sensed 

signal, we need to start from the expression which relates 

number of missing samples to the spectral noise variance.  

Let assume that signal s=s(n), n=1,…,N consists K 

sinusoidal frequency components defined by the 

amplitudes Ai and frequencies ki , i=1,...,K. The DFT of this 

signal is defined as: 
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From the previous relation we can observe the set of 

samples h defined as:  
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where 
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Furthermore, consider a set y of M available samples from 

h corresponding to the CS signal. The DFT over the 

available set of samples can be written as follows: 
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where at the positions of missing samples the noise can be 

modeled as ( ) ( )n h nν = . The mean value of F can be 

calculated as: 
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whereas the variance of DFT values at the non-signal and 

signal positions can be calculated according to [22]: 
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The DFT values at the non-signal positions (noise-alone 

positions) are Rayleigh distributed:  
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Since the DFT values of the i-th signal component is equal 

to MAi, then using the Rayleigh distribution, we can now 

define the probability that all noise-alone DFT values are 

below a certain DFT component MAi: 
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TABLE 1: THE PROPOSED ALGORITHM FOR SIGNAL RECONSTRUCTION 

  

Single-iteration reconstruction algorithm SIRA 

 

1. Set desired Pe Set high value for the probability P, e.g. P=10-2 

2. arg min{ }opt eM P≥  
Calculate optimal number of available samples using Ai=Amin (the lowest amplitude of 

components) 

 

3. X=DFT{y} 
Calculate the initial DFT vector X that corresponds to the set of Mopt available 

measurements 

4. { }2
arg log(1 )N

eX Pσ= > − −k  Find vector k of positions of DFT components higher than 
2

log(1 )N
ePσ− −  

 

5. X=(ΘΘΘΘ
*
ΘΘΘΘ)

-1
ΘΘΘΘ

*
y 

Exact DFT values at positions k are obtained.  CS matrix  ΘΘΘΘ is obtained from the DFT 

matrix using rows that correspond to the frequencies k and columns corresponding to M 

available measurements. The system is solved in the least square sense. 

 

 

The previous expression can be used as an approximate 

form of error probability Pe (probability of wrong 

detection of the i-th signal component), which will be a 

basis of signal reconstruction algorithm summarized 

below. Here, we may assume that K is negligible since 

K«N holds. 

IV. EXAMPLES 

 

Example 1: Let us observe a multicomponent signal given 

in the form: 
14

1

( ) exp( 2 / )i i
i

s n A j nf Nπ
=

=∑  

where the components amplitudes are given as follows: 

A1=3.5, A2=3, A3=2, A4=1.75, A5=4, A6=3, A7=2.5 A8=3.2, 

A9=3.75, A10=3.4, A11=2, A12=2.3, A13=3, A14=3.3,  

while the frequencies of the components are:  

f1=32, f2=38, f3=50, f4=128, f5=136, f6=140, f7=148, f8=256, 

f9=272, f10=280, f11=400, f12=415, f13=426, f14=435.   

The total number of samples is N=512, while the number 

of available samples is Mopt=230. The probability is set to 

Pe=0.01. Note that Mopt is calculated for the lowest signal 

amplitude A5=1.75, according to: arg min{ }opt eM P≥  for a 

fixed Pe=0.01=10
-2

 as illustrated in Fig. 1. The single-

iteration solution provided by Algorithm 1 is applied. The 

initial DFT vector X is shown in Fig. 2, while correctly 

reconstructed DFT signal components are shown in Fig. 3.  
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Fig. 1. Optimal number of available samples which assures Pe=10-2  
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Fig 2. Initial DFT: finding positions within DFT vector X with values 

higher than 2 log(1 )N
ePσ− −  (marked by horizontal line) 
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Fig. 3. Reconstructed DFT components 

 

Example 2: In this example we observe the application of 

the proposed SIRA reconstruction algorithm to the time-

frequency representation. For the sake of simplicity we 

observe the short-time Fourier transform case (STFT) 

applied to the signal in the form: 
32 60 1283 2.5 2j t j t j t

s e e e
π π π= + +  

The window width used in the STFT calculation is 128 

samples. Assuming that only 40% of samples are available 

within each window, we have calculated the STFT shown 

in Fig. 4. Note that due to the missing samples, the STFT 



 

has visible drawbacks reflecting as a noise in the time-

frequency plane. Therefore, we need to apply the proposed 

reconstruction algorithm separately to each windowed 

signal part in order to reconstruct the entire signal portion 

(as it is done in the case of DFT in previous example). The 

results of reconstruction are shown in Fig. 5. Note that the 

sinusoids are perfectly reconstructed. 
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Fig 4. The time-frequency representation obtained using the STFT 

based on the available set of samples 
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Fig 5. The Reconstructed STFT version using the proposed SIRA 

algorithm  

 

 

V. CONCLUSION 

The single-iteration algorithm for compressive sensing 

reconstruction is proposed. Unlike most of the previously 

designed algorithms, the proposed solution is able to detect 

and reconstruct all signal components at once. For that 

purpose, we need to calculate the optimal number of 

available measurements that will assure total signal 

reconstruction with desired low probability of error. The 

proposed method focuses to signals that are sparse in the 

DFT domain, but it has been shown that the proposed 

concept can be used even for time-frequency 

representations, where we might assume that the signal is 

sparse within the windowed segments.     
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