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Abstract

The short-time Fourier transform and the corresponding periodogram give biased estimates of the instantaneous
frequency (IF) if the IF in question is a nonlinear function of time. In the case of noisy signals, the optimal choice of the
window length, based on asymptotic formulae for the variance and bias, can resolve the bias—variance trade-off usual for
nonparametric estimation. However, the practical value of such optimal estimator is not significant since the optimal
window length depends on the unknown smoothness of the IF. The main goal of this paper is to develop an adaptive,
periodogram-based IF estimator with a time-varying and data-driven window length which is able to provide the
accuracy close to the one that could be achieved if the smoothness of the IF were known in advance. The developed
algorithm uses only the estimates of the IF and the formula for the variance of these estimates. Simulation shows good
accuracy ability of the adaptive algorithm. ( 1998 Elsevier Science B.V. All rights reserved.

Zusammenfassung

Die Kurzzeit-Fouriertransformation und das entsprechende Periodogramm liefern biasbehaftete Schätzer der
Momentanfrequenz (IF), wenn diese eine nichtlineare Funktion der Zeit ist. Bei verrauschten Signalen kann eine
optimale Wahl der Fensterlänge, basierend auf einer asymptotischen Formulierung für Varianz und Bias, dem üblichen
Bias—Varianz Verlust bei nicht-parametrischen Schätzungen begegnen. Der praktische Wert eines solchen Optimalschät-
zers ist allerdings nicht signifikant, solange die optimale Fensterlänge von der unbekannten Glätte der Momentanfrequenz
(IF) abhängig ist. Ziel dieses Papiers ist es nun, einen adaptiven, auf Periodogrammen basierenden Schätzer für die
Momentanfrequenz zu entwickeln, wobei eine zeitvariierende und datenabhängige Fensterlänge betrachtet wird. Mit
diesem Schätzer ist man in der Lage, Aussagen über die Genauigkeit der Schätzung zu machen, und zwar in ähnlicher
Weise, wie es bei Kenntnis der Glätte der IF möglich wäre. Der hier entwickelte Algorithmus benutzt nur die
Schätzungen der IF und einen Ausdruck für die Varianz dieser Schätzungen. Simulationen zeigen die guten Eigenschaften
des adaptiven Algorithmus in Bezug auf die Schätzgenauigkeit. ( 1998 Elsevier Science B.V. All rights reserved.

Résumé

La transformation de Fourier à court terme et le périodogramme correspondant fournissent des estimées biaisées de la
fréquence instantanée (IF) si l’IF en question est une fonction nonlinéaire du temps. Dans le cas de signaux bruités le
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choix optimal de la longueur de feneL tre, basé sur des formulations asymptotiques de la variance et du biais, peut résoudre
le compromis biais—variance usuel de l’estimation non-paramétrique. Toutefois, la valeur pratique d’un tel estimateur
optimal n’est pas significative du fait que la longueur de feneL tre optimale dépend du lissage inconnu de l’IF. Le but
principal de cet article est de développer un estimateur de l’IF adaptatif basé sur le périodogramme, caractérisé par une
longueur de feneL tre variant dans le temps selon les données, et capable d’atteindre une précision proche de celle qui serait
obtenue si le lissage de l’IF était connue à l’avance. L’algorithme développé utilise seulement les estimées de l’IF et la
formule de la variance de ces estimées. Une simulation met en évidence la bonne précision atteignable par cet algorithme
adaptatif. ( 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

A complex-valued harmonic with the time-vary-
ing phase is a key-model of the instantaneous
frequency (IF) concept, as well as an important
model in the general theory of time—frequency
distributions. It has been utilized to study a wide
range of signals, including speech, music, acoustic,
biological, radar, sonar and geophysical ones [12].

An overview of the methods for the IF estimation,
as well as the interpretation of the IF concept itself,
is presented in [1]. Beside other efficient
time—frequency representation-based techniques for
the IF estimation, in particular the general Cohen
class of quadratic distributions and the Wigner
distribution [2,3,13,14], the short-time Fourier
transform (STFT) represents a very efficient and
commonly applied approach. Its advantage is based
on the linearity of the STFT with respect to obser-
vations, a quite clear interpretation, and very effi-
cient calculation tools using the fast Fourier
transform (FFT).

Here, we will focus our attention to the standard
STFT only and follow the nonparametric approach
developed in [7,8,10]. The key-point of this ap-
proach is an assumption that the IF is an arbitrary
nonparametric function of time, as well as that the
bias of estimation is comparable with the random
error. In particular, if the IF is time-invariant then
its estimation, using the periodogram is unbiased.
It is also unbiased for the liner in time IF, with an
asymptotically small window length. However, the
periodogram based estimates are biased for a gen-
eral nonlinear IF. In the case of noisy signals, the
periodogram based estimates are signal and noise
dependent. In terms of the nonparametric approach

we can, theoretically, find the optimal window
length in the periodogram and resolve the bias-
variance trade-off usual for nonparametric estima-
tion. However, the optimal window length depends
on the unknown smoothness of the IF, making this
approach practically useless.

The main goal of this paper is to develop an
adaptive estimator with a time-varying and data-
driven window length that is able to provide the
accuracy close to the one what could be achieved if
the smoothness of the IF was known in advance.
The idea of the approach developed in this paper
originated from [4], where it was proposed and
justified for the local polynomial fitting of regression.
For the time-varying IF estimation this approach
was used in [9] and [11], where the algorithm with
the time-varying and data-driven window length
was presented for the local polynomial periodogram
and the Wigner distribution estimators, respectively.
This approach uses only the formula for the variance
of the estimate, which does not require information
about the smoothness of the IF to be known in
advance. Simulations based on the discrete peri-
odogram, with several noisy signal examples, show
a good accuracy ability of the presented adaptive
algorithm, as well as an improvement in the peri-
odogram based time—frequency representation of
signals with the nonlinear IF.

The structure of the paper is as follows. The
periodogram as an IF estimator is considered in
Section 2. The asymptotic bias and variance of the
IF estimate, along with the optimal window length,
are presented in that section, as well. The adaptive
estimate of the IF with a time-varying and data-
driven window length is developed in Section 3.
The numerical implementation of the adaptive
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algorithm, along with simulation results, is discussed
in Section 4. A data-driven adjustment of the thre-
shold parameter of the adaptive algorithm is con-
sidered in Section 5.

2. Background theory

Consider the problem of IF estimation from the
discrete-time observations,

y(n¹)"m(n¹)#e(n¹), with m(t)"Ae+((t), (1)

where n is an integer, ¹ is a sampling interval and
e(n¹) is a complex-valued white Gaussian noise
with i.i.d real and imaginary parts. Thus, Re(e) and
Im(e) &N(0,p2e /2) and the total variance of the
noise is equal to p2e . The IF, by definition, is the first
derivative of the phase

u(t)"/@(t). (2)

In the considered nonparametric setting of the
problem, it is assumed that the IF, u(t), is an
arbitrary smooth differentiable function of time with
bounded derivatives Du(s)(t)D"D/(s`1)(t)D)M

s
(t).

The STFT, in the discrete-time domain, is defined
by

F
h
(u,t)"

=
+

n/~=

w
h
(n¹)y(t#n¹)e~+unT, (3)

where w
h
(n¹)"¹/h )w(n¹/h), with w(t) being a real-

valued symmetric window, w(t)"w(!t). The win-
dow w

h
(n¹), whose length is h'0, is used in Eq. (3)

for the nonparametric localization of the estimate.
It is also assumed that w(t) has a finite length, i.e.
w(t)"0, for DtD'1/2.

The IF estimator is a solution of the optimization
problem:

uL
h
(t)"argCmax

u|Qu

I
h
(u,t)D, (4)

where

I
h
(u,t)"DF

h
(u,t)D2 (5)

is the periodogram, with Qu"Mu : 0)DuD(p/2¹N
being the basic interval along the frequency axis. If
the IF may assume only nonnegative values, then
one may consider Qu"Mu : 0)u(p/2¹N.

Two different hypotheses about the IF are used:
(a) u(t) is a smooth infinitely differentiable function

of time with bounded derivatives

Du(s)(t)D(M(R, s"1,2,2 . (6)

(b) u(t) is a smooth differentiable function with
a uniformly bounded first derivative

sup
t

Du(1)(t)D)M
1
. (7)

Assumption (7) is not so restrictive as (6) because it
concerns only one, the first-order, derivative.

The estimation error, at a time-instant t, is defined
by

*uL
h
(t)"u(t)!uL

h
(t). (8)

The following proposition gives the asymptotic
formulae for the variance and bias of the IF estima-
tion (4).

Proposition. ¸et uL
h
(t) be a solution of Eq. (4)

when hP0, ¹P0 and h3/¹PR. ¹hen the vari-
ance of the IF estimate is given by

var(*uL
h
(t))"

p2e
2DAD2

¹

h3
E

F2
, (9)

while the estimate’s bias may be represented in the
following two forms, for the hypotheses (6) and
(7) respectively,

E(*uL
h
(t))"

=
+
s/1

h2sb
s
u(2s)(t), (10)

DE(*uL
h
(t))D)hbA

1
M

1
, (11)

provided that h2sDb
s
u(2s)(t)D for all s*1 and hbA

1
M

1
are small.

The following notation has been used in (9)—(11):

F"P
1@2

~1@2

w(t)t2dt,

E"P
1@2

~1@2

w2(t)t2dt,
(12)

b
s
"

!1

(2s#1)!FP
1@2

~1@2

w(t)t2s`2 dt,

bA
1
"

1

2FP
1@2

~1@2

Dw(t)D ) DtD3 dt.
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For the rectangular window we have F"E .
The formulae of the proposition are special cases
of the more general Proposition presented in
[10] for the accuracy analysis of the higher order
local polynomial periodogram with the rectangular
window.

Comments
1. Formulae (9)—(12) give, in a clear analytical form,

a dependence of the variance and the bias on the
sampling interval ¹, the window w(t) form, the
signal amplitude A and the derivatives of the IF.
While formula (11) presents the upper bound of
the bias, formula (10) is accurate for the estima-
tion bias. Error-coefficients b

s
determine a con-

tribution of the derivatives u(2s)(t) to the bias.
2. The main assumption for formulae (9)—(11) is

that the variance and the bias are small. If the
window is rectangular and hP0, ¹P0,
h3/¹PR, then the following explicit formulae
can be given for the variance and the error-
coefficients:

var(*uL
h
(t))"

6p2e
DAD2

¹

h3
, E"F"1/12,

b
s
"

!3

(2s#1)!(2s#3)22s
, bA

1
"3/16. (13)

The values of F, E, b
s

and bA
1

may be easily
obtained for others than the rectangular window
type (e.g. Table 1).

3. Let us consider the mean square error (MSE) of
the estimation, provided that hypotheses (6)
holds. It follows from Eqs. (10) and (13) that, for
a small h, the main term of the MSE can be given
in the form

E(*uL
h
(t))2"

6p2e
DAD2

¹

h3
#A

1

40
h2u(2)(t)B

2
. (14)

Table 1
Variance and bias coefficients

Window type F E b
1

bA
1

Rectangular 0.0833 0.0833 !0.0250 0.1875
Hanning 0.0163 0.0075 !0.0131 0.1324
Triangular 0.0208 0.0083 !0.0167 0.1500
Hamming 0.0217 0.0093 !0.0168 0.1493

It is clear from Eq. (14) that decreasing the
window length h results in decreasing of the bias
and in increasing of the variance. Consequently,
an increase of the window length h increases the
bias and decreases the variance.

Optimization on h in Eq. (14), minimizing the
MSE, results in

h
015

(t)"C
7200p2e¹

DAD2(u(2)(t))2D
1@7

. (15)

The optimal window length h
015

(t) gives an
optimal bias—variance trade-off, usual for
nonparametric estimations. It depends on the
signal-to-noise ratio A/pe, the sampling interval
¹ and the second IF derivative u(2)(t). Thus the
optimal, or even reasonable choice of length h,
depends on the IF second derivative u(2)(t),
which is naturally unknown because the IF itself
is to be estimated. At this moment, it is important
to emphasize that if the second derivative u(2)(t)
is quite different for different t then the optimiza-
tion of the estimation accuracy requires a time-
varying window length h(t). The accuracy im-
provement from this time-varying h(t) can be
significant as compared with any time-invariant
length h.

In a similar way, for hypotheses (7), we obtain
from Eqs. (11) and (13) that

E(*uL
h
(t))2)

6p2e
DAD2

¹

h3
#A

3

16
hM

1B
2

(16)

and

h
015

(t)"C
256p2e¹
DAD2M2

1
D

1@5
, (17)

with the optimal window length depending on
the upper bound M

1
for the first derivative of

the IF.
Thus, the optimization results highly depend

on the hypotheses about the IF to be estimated.
In this paper, we propose a data-driven choice of
the time-varying window length that uses only
the formula for the variance and does not need
information about the unknown derivatives of
the IF determining the bias. As a matter of fact,
this choice of the window length is based on
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quite a specific statistic that has been used in
order to compare the variance of the estimate
versus its bias.

4. Let the MSE be represented in two forms, cor-
responding to the hypotheses (6) and (7), respec-
tively,

E(*uL
h
(t))2"var(*uL

h
(t))#(h2b

s
u(2)(t))2, (18)

or

E(*uL
h
(t))2)var(*uL

h
(t))#(hbA

1
u(1)(t))2, (19)

and h
015

(t) be the optimal window length minim-
izing the MSE (18) or (19). It is easy to see that
the corresponding optimal values of the MSE
are of the form

E(*uL
h015

(t))2"var(*uL
h015

(t)) ) (1#3/4),

where

DE(*uL
h015

(t))D"Jvar(*uL
h015

(t)) )J3/2 (20)

or

E(*uL
h015

(t))2)var(*uL
h015

(t)) ) (1#3/2), (21)

where

DE(*uL
h015

(t))D)Jvar(*uL
h015

(t)) )J3/2.

Thus the optimal MSE and its upper bound
are proportional to the estimation variance with
the coefficient equal to (1#3/4) and (1#3/2)
according to two hypotheses for the IF.

Note also that for the optimal window length
the ratio of the bias to the standard deviation of
the estimate is a constant independent on t and
all other parameters of the periodogram. Values
of this ratio follow from Eq. (20)

DE(*uL
h015

(t))D
var(*uL

h015
(t))

"J3/2 (22)

and from Eq. (21)

DE(*uL
h015

(t))D
var(*uL

h015
(t))

)J3/2, (23)

respectively.

3. Algorithm of data-driven window length choice

3.1. Basic idea

The basic idea follows from the accuracy analysis
given in the Proposition. Namely, at least for the
asymptotic case, the estimation error can be repre-
sented as a sum of the deterministic (bias) and
random component, with the variance given by
Eq. (9). The estimation error can be written as

Du(t)!uL
h
(t)D)Dbias (t,h)D#ip(h), (24)

with p2(h)"p2e E/(2DAD2h3F2). Inequality (24) holds
with probability P(i), where i is the corresponding
quantile of the standard Gaussian distribution
N(0,1). The usual choice i"2 gives P(i)"0.95.

It follows from Eqs. (10) and (11) that
Dbias(t,h)DP0 as hP0. Now, let h"h

s
be so small

that

Dbias(t,h
s
)D)ip(h

s
), (25)

then

Du(t)!uL
hs
(t)D)2ip(h

s
). (26)

It is obvious that, for a set of such small h
s
, all of the

segments

D
s
"[uL

hs
(t)!2ip(h

s
),uL

hs
(t)#2ip(h

s
)], (27)

have a point in common, namely u(t).
Consider an increasing sequence of h

s
,

h
1
(h

2
(2. Let h

s`
be the largest of those h

s
for

which the segments D
s~1

and D
s

have a point in
common. Let us call this window length h

s`
‘optimal’

and determine the IF estimates with data-driven
optimal window length as uL

h
s
`
(t).

The basic idea behind this choice is as follows.
If the segments D

s~1
and D

s
do not have a point in

common it means that at least one of the inequalities
(26) does not hold, i.e. the bias is too large as
compared with the standard deviation in Eq. (25).
Thus, the statistical hypotheses to be tested for the
bias is given in the form of the sequence of inequali-
ties (26) and the largest length h

s
for which these

inequalities have a point in common is considered
as a bias-variance compromise, when the bias
and variance are of the same order (see Eqs. (22)
and (23)).
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3.2. Algorithm

Let us initially assume that the amplitude A and
the standard deviation pe of the noise are known.
Let H be an increasing sequence of the window
length values

H"Mh
s
D h

1
(h

2
(h

3
(2(h

J
N. (28)

In general, any reasonable choice of H is acceptable.
In particular, the lengths with dyadic numbers
N

s
"2N

s~1
of observations within the window

length, until the largest h
J

is reached, will be as-
sumed. This scheme corresponds to the radix-2
FFT algorithms. Note that the relation between the
window length and the number of observation
within that length is h

s
"N

s
¹.

The following steps are generated for each t.
1. The periodogram is calculated for all of h

s
3H.

Thus, we obtain a set of periodograms for a fixed
time instant t

MI
hs
(u,t)N, h

s
3H.

The IF estimates are found as

uL
hs
(t)"argCmax

u|Qu

I
hs
(u,t)D. (29)

2. The upper and lower bounds of the confidence
intervals D

s
in Eq. (27) are built as follows:

º
s
(t)"uL

hs
(t)#2ip(h

s
),

¸
s
(t)"uL

hs
(t)!2ip(h

s
).

(30)

3. The optimal window length h
s`

is determined as
the largest s (s"1, 2, 2, J) when

¸
s
(t))º

s~1
(t) and º

s
(t)*¸

s~1
(t), (31)

i.e.,

DuL
hs~1

(t)!uL
hs
(t)D)2i(p(h

s~1
)#p(h

s
))

is still satisfied. Here ¸
s
(t) and º

s
(t) are deter-

mined by Eq. (30).
Then this s` is the largest of those s for which

the segments D
s~1

and D
s
, s)J, have a point

in common. The optimal window length is

chosen as

hK (t)"h
s`

(t) (32)

and uL
hK (t)

(t) is the adaptive IF estimator with the
data driven window for a given instant t.

4. The periodogram with the optimal window
length is

I`(u,t)"I
hK (t)

(u,t). (33)

Steps 1—4 are repeated for each considered time-
instant t.

Comments on the algorithm
(a) Provided that ¹ is small the following esti-

mates of DAD and p2e can be used:

DAK D2#pL 2e"
1

N

N
+
n/1

Dy(n¹)D2, (34)

where the sum is calculated over all N observations
and N is assumed to be large. The variance is
estimated by

pL er"
1

0.6745J2
Mmedian(Dy

r
(n¹)

!y
r
((n!1)¹)D:n"2;2,N)N, (35)

pL ei"
1

0.6745J2
Mmedian(Dy

i
(n¹)

!y
i
((n!1)¹)D:n"2;2,N)N, (36)

pL 2e"pL 2e3#pL 2e* , (37)

where y
3
(n¹) and y

*
(n¹) are the real and imaginary

part of y(n¹), repectively, as well as ¹ is sufficiently
small. The average 1

N
+N

n/1
Dy(n¹)!y((n!1)¹)D2

could also be used as an estimate of p2e . However,
we prefer a median in Eq. (37) as a robust estimate.

(b) We wish to emphasize that the intersection of
the segments D

s
is quite a specific statistic for

examining the bias. The point is that the segment’s
shift, defined by the IF estimate uL

hK (t)
(t), which

determine the intersection (and as a result the
s` value) is quite sensitive with respect to the
estimation bias. It increases when the window size
is increased. Thus, s` gives a desirable bias—variance
compromise.

Originally the intersection of the confidence in-
tervals D

s
as a statistic for window length selection
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has been proposed in [4] (see also [5]), where it was
done for the local polynomial fitting of regression.
The algorithm given in [4] is different from the one
described above because it is based on the intersec-
tion of all of the segments D

s
starting from s"1 up

to the largest s` when all of those segments have
a point in common. The strong convergence of
results, given in [4], proves that the estimator with
the proposed time-varying and data-driven window
length is able to provide a nearly optimal quality,
close to the one what could be achieved if the
smoothness of the IF was known in advance.

In contrast to [4], in our algorithm we apply the
sliding pair-wise intersections (31) of the pairs of
segments D

s
and D

s~1
for s"2,3,2,J. The simula-

tion shows that the results for the IF estimation in
this way are quite accurate and prospective.

(c) The confidence interval, in form (27), corres-
ponds to the bias—variance compromise determined
by inequality (25). This sort of compromise results
in the product by a factor of 2 for ip(h

s
) in Eqs. (26)

and (27). It is clear that this compromise can be
quite different from those which appears in the
MSE optimization (20)—(21).

Note also that as a matter of fact the product 2i,
where the quantile i depends on the probability P,
is a special threshold parameter of the algorithm.
Let us denote this parameter C"2i. A selection of
the value of C can significantly influence the accu-
racy of estimation. The constant value of C will be
assumed in Section 4, while the data-drive selection
of this parameter is discussed in Section 5.

4. Numerical implementation and examples

The discrete-time STFT, given by Eq. (3), is
discretized over frequency and calculated as

F
h
(k,l)"

N@2~1
+

n/~N@2

w
h
(n¹)y(l¹#n¹)e~+2pkn@N, (38)

where N is a number of samples determined by the
sampling interval ¹ (i.e. signal’s maximal expected
frequency u

m
"p/¹) and the window length

h"N¹.
For the dyadic window length h

s
"N

s
¹, h

s
3H,

we have the corresponding number of samples
N

s
3N

H
"MN

s
DN

s
"2N

s~1
N. Starting with a narrow

window, for example N
1
"4, we calculate F

h
(k,l)

for all N
s
3M4,8,16,32,64,128N up to the widest win-

dow (in this case N
J
"128). For a given instant l¹,

the IF is estimated as

uL (l¹,N
s
)"

n
N

s
¹

) argCmax
k|Qk

I
hs
(k,l)D , (39)

where Q
k
"Mk : 0)k(N/2N for nonnegative-only

IF values. In order to reduce the FFT quantization
error, in the cases of small N

s
, as well as to have

distributions of the same length for different N
s
, the

sequence y(l¹#n¹) is zero-padded up to the length
N

J
, i.e. F

h
(k,l) is interpolated in the frequency do-

main up to N
J
samples within the period. Then, the

discrete STFT, given by Eq. (38), is calculated using
the standard FFT routines. Having in mind the
interpolation, the IF estimation is given by

uL (l¹,N
s
)"

n
N

J
¹

) argCmax
k|Qk

I
hs
(k,l)D. (40)

The quantization error has the variance
1
12

(p/(N
J
¹))2"p2/(12h2

J
). This quantization error

variance can be large as compared with the variance
(9) of the IF estimate. In order to reduce the
quantization error, we may additionally interpolate
distribution F

h
(k,l). In the numerical realizations we

have done the interpolation with factor of 2.
After h

s`
, i.e. N

s`
, is found, according to the IF

estimate (40) and algorithms (30)—(31), the calcu-
lation for the time-instant t"l¹ can be stopped in
order to save computational time. Note also that
for each next (twice wider) window length we just
replace N

s~1
"N

s
/2 zero values (added by zero

padding) by the values of y(l¹#n¹). Therefore,
the computations with various window lengths are
not completely independent. This may be a source
of an additional computational time saving.

The algorithm has been tested on several exam-
ples. For each of them we have plotted the adaptive
time-varying window length N

s
"hK (n¹)/¹, as

a function of time instant n and have presented
the IF estimates for various time-invariant and the
adaptive, time-varying, window lengths. Also,
the mean absolute errors have been given for all
of the considered cases. In all examples we have
assumed signal of the form

y(n¹)"A exp(j/(n¹))#e(n¹),
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Fig. 1. Instantaneous frequency estimation using the periodogram with: (a) N
s
"4, (b) N

s
"8, (c) N

s
"128, (d) adaptive window length.

with the given IF u(n¹) and the phase /(n¹)"
¹ )+n

i/0
u(i¹). It has been assumed that A"1 and

20 log(A/pe)"15[dB], (A/pe"5.62) and the estima-
tion time interval 0)n¹)1.

The value 1.75 of parameter i, slightly less than
i"2, has turned out to be a good choice for the
practical realizations. This value of i corresponds
to probability 0.93 of the inequality (24) for the
Gaussian estimation error.

Example 1. The step-wise IF

u(n¹)"64p#32p sgn(n¹!0.5), (41)

with a step in the IF at the instant n¹"0.5 is
considered first.

The estimates uL
h
(n¹) of the IF with N

s
"4,

N
s
"8 and the widest window length N

s
"128 are

presented in Fig. 1(a)—Fig. 1(c), respectively. The IF
estimate uL

h`(t)
(t) with the adaptive, time-varying,

window length is given in Fig. 1(d). The adaptive
window length N`(n¹)"h

s`
(n¹)/¹, as a function

of time instant n, is presented in Fig. 2(b). We may
conclude that at the instants which are comparat-
ively far from the jump-point t"0.5, the adaptive
window definitely shows a tendency to be as wide

as possible. However, at and around the jump-point
t"0.5 the adaptive window is narrowed up to the
smallest length value. Thus, it demonstrates that
the data-driven window length is really quite sensi-
tive with respect to the fast IF variations.

This is in a complete agreement with Eq. (15).
When the IF is fast varying then the bias is dominant
and the narrowest window is selected by the
algorithm.

The mean absolute error for the estimate uL
h`(t)

(t)
and for the estimates with the time-invariant win-
dow lengths N

s
"[4,8,16,32,64,128], normalized

with the frequency step n/(N
J
¹), are given in

Table 2. Fig. 1(d) shows that the IF estimate uL
h`(t)

(t)
gives a quite accurate IF estimation for all time
instants n"t/¹. Fig. 1(c), corresponding to
N

s
"128, demonstrates the estimate curve that

looks to be close to the one presented in Fig. 1(d).
But, the figures in Table 2 show that the accuracy
of the adaptive estimator is much higher.

The time—frequency signal representation using
the periodogram with the constant window lengths
N

s
"8, N

s
"128 and the adaptive window length,

is shown in Fig. 2(a), 2(c) and 2(d), respectively. We
may see that, in the case of the window with adaptive
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Table 2
Normalized mean absolute error for the stepwise constant IF

N
s
"4 N

s
"8 N

s
"16 N

s
"32 N

s
"64 N

s
"128 Adaptive N

s

1.4883 0.5078 0.3750 0.8398 1.7266 3.2344 0.1250

Fig. 2. (a) Periodogram with N
s
"4, (b) adaptive window length, (c) periodogram with N

s
"128, (d) periodogram with adaptive

window length.

length, the periodogram is highly concentrated
along the instantaneous frequency within the entire
time interval considered.

Example 2. The piecewise linear frequency
modulated signal with a step in the IF’s first deriva-
tive,

u(n¹)"128pDn¹!0.5D#32p, (42)

is considered in this example. The results of the IF
estimation are shown in Fig. 3 and Table 3.

Here, the explanations are similar to those in
Example 1.

Note that in these two examples we have assumed
that the IF values are mainly placed on the discrete

time—frequency grid (after the described interpola-
tion up to the largest window length, and then
additionally with a factor of 2). It significantly
decreases the quantization errors and sometimes
gives zero-error estimates. The periodograms (with
parameters as those in Fig. 2), along with the adap-
tive window lengths, are presented in Fig. 4.

Example 3. Consider now a nonlinear frequency
modulated signal:

u(n¹)"10p asinh(100(n¹!0.5))#64p. (43)

The IF estimates and accuracy results are presented
in Fig. 5 and Table 4. The effects, similar to those
in Figs. 1—3, appear in this example, although not
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Fig. 3. Instantaneous frequency estimation using the periodogram with (a) N
s
"4, (b) N

s
"8, (c) N

s
"128, (d) adaptive window length.

Table 3
Normalized mean absolute error for the piecewise linear IF

N
s
"4 N

s
"8 N

s
"16 N

s
"32 N

s
"64 N

s
"128 Adaptive N

s

1.6484 0.5234 0.1719 0.0430 0.1953 0.5859 0.0352

Fig. 4. (a) Periodogram with N
s
"4, (b) adaptive window length, (c) periodogram with N

s
"128, (d) periodogram with adaptive

window length.
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Fig. 5. Instantaneous frequency estimation using the periodogram with (a) N
s
"4, (b) N

s
"8, (c) N

s
"128, (d) Adaptive window

length.

Table 4
Normalized mean absolute error for the nonlinear IF

N
s
"4 N

s
"8 N

s
"16 N

s
"32 N

s
"64 N

s
"128 Adaptive N

s

1.5311 0.5444 0.2451 0.3220 0.7532 2.2509 0.2009

in such a pure form as there. Note that the nor-
malized minimal mean absolute error is here greater
than in the previous two examples. The reason is
that the quantization errors appeared in a full scale,
what was not a case in Examples 1 and 2, due to the
discrete values of the IF assumed in these examples.
The quantization error may be further decreased by
the additional interpolation.

The periodograms for N
s
"4, N

s
"128 and

adaptive window length are shown in Figs. 6 (a), 6 (c)
and 6 (d), along with the adaptive window length,
Fig. 6(b).

Table 2 shows that the adaptive window im-
proves the estimation accuracy in 0.3750/0.1250"
3.0 and in 3.2344/0.1250"25. 875 times as com-
pared with the best and the worst time-invariant
window length for the stepwise constant IF. The

similar results for the linear and nonlinear IF in
Tables 3 and 4 show that the accuracy improvement
produced by the adaptive window length is given
by the figures 0.0430/0.0352"1.2216 and 0.2451/
0.2009"1.22, and by the figures 1.6484/0.0352"
46. 83 and 1.5311/0.2009"7. 62, respectively, for
the best and the worst choices of the time-invariant
windows. Keeping in mind that the best window
length is unknown in advance we can conclude that
the adaptive window can really improve the accu-
racy in a valuable way.

5. Algorithm with the adaptive threshold C

The simulation results discussed above show that
the standard value of iK2 and the corresponding
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Fig. 6. (a) Periodogram with N
s
"4, (b) adaptive window length, (c) periodogram with N

s
"128, (d) periodogram with adaptive

window length.

value of the threshold CK2 ) 2"4 results in quite
a good accuracy of IF estimation. However, further
accuracy improvement can be achieved by an ap-
propriate adjustment of the value of the threshold.

The point is that a proper correction of the value
of C in confidence intervals (27) gives:
1. A desirable proportion between the variance

and bias for the minimal MSE value. It is differ-
ent from the one determined by a factor of 2, as
we have used in the formula C"2i.

2. Probability P(i) used in the inequalities (24).
A theoretical analysis of the link between the thre-
shold C and the corresponding MSE value is a diffi-
cult problem, in particular because the optimal
window length h

s`
in the algorithm is random, and

it is determined by the sequential statistical rule
given by Eq. (31). Nevertheless, a quite efficient
algorithm has been proposed and tested here for
a data-driven choice of the adaptive C-value. This
algorithm uses the cross-validation approach based
on the quality-of-fit statistics, to be optimized with
respect to C.

Let uL *l+
h`(lT)

(l¹) be the adaptive estimate of the IF
at a time-instant t"l¹ given by algorithms
(29)—(32), provided that the observation y(l¹) is

omitted from the set used for the estimation. For
the sake of simplicity we will use, for this IF estimate,
a notation

uL *l+"uL *l+
h`(lT)

(l¹). (44)

The corresponding complex-valued amplitude,
given by the DFT, is determined by the following
formula:

AK *l+"
={
+

n/~=, nEl

w
h
(n¹)y(t#n¹)e~+unTDu/uL *l+ . (45)

The quality-of-fit cross-validation statistic is of the
form

I
CV

"

1

NK

+
l|K

Dy(l¹)!AK *l+D2, (46)

where K is a set of observations used in this statistic.
In particular, it can include all of the observations
or exclude edge points. NK is a size of the
set K.

The optimal choice of C is determined as a solu-
tion of the problem

CK "argmin
C|H

I
CV

, (47)
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Table 5
Normalized mean absolute error of IF estimation and distribution of the random CK given by the algorithm (47)

C 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Mean abs error 2.774 0.4452 0.1066 0.0947 0.0955 0.0997 1.0207
Frequency (%) 0 1 26 24 49 0 0

where H"MC
r
N is a set of considered C-values. It is

assumed that I
CV

is calculated for all C
r
3H. After-

wards, the final estimate of the IF is determined by
the algorithm (29)—(32), using C"CK .

Now let us explain a nature of statistic (46). The
STFT, given by Eq. (3), may be understood as
a fitting of the signal y by a complex exponent,
determined by the loss function

J"
=
+

n/~=

w
h
(n¹)Dy(t#n¹)!Ce~+unTD2. (48)

A minimization of Eq. (48) with respect to C gives
CK "F

h
(u,t), where F

h
(u,t) is given by Eq. (3). In

order to make clear what is estimated by C consider
the case without noise and rewrite J as follows:

J"
=
+

n/~=

w
h
(n¹)DA exp( j/(t)) ) exp(/(t#n¹)

!/(t))!Ce~+unTD2

"

=
+

n/~=

w
h
(n¹)DA exp( j/(t)) ) exp(/@(t)n¹

#d/(t,n))!Ce~+unTD2.

Let us also assume that d/(t,n), which is an error
of approximation of /(t#n¹)!/(t) by /@(t)n¹, is
negligible within the considered window. Then, it is
clear that u is an estimate of the IF (given by /@(t))
and that C is an estimate of the product A exp( j/(t)).
It can also be seen that Ce+unT is an estimate of
m(t#n¹) with the corresponding n. The last con-
clusion means that C without the exponent e+unT is
a fitting m(t).

It is important to emphasize that in the local
approximation the parameter C gives an estimate
of the signal m(t) rather than its amplitude A only.
This fact explains that the differences between the
observations y(l¹) and AK *l+, used in Eq. (46), are
residuals of the fitting y(l¹) by its complex-valued
approximation AK *l+. Formulae (44)—(47) present the
idea and procedure of the cross-validation.

Some more notes about the cross-validation method
The basic motivation is in a simple splitting the

data into two parts. One part is used for estimation
and then the second for the goodness judging, by
matching the estimates with the rest of the data.
Hence the name ‘cross-validation’. The method
described above is usually referred to as a ‘simple
leave-one-out cross-validation’.

The residuals in Eq. (46) can be interpreted as
predictive errors between the signal m(l¹) and
its estimate using all data but y(l¹). The leave-
one-out idea is of importance in the cross-validation
because if we use all data in the estimate of the
IF, the statistic (46) will give the minimum value
from H for CK . More details about the cross-
validation and related methods can be found in
[6,15,16].

Let us show how efficient can be the adaptive
choice of i. Let the set H consists of six values of
C, H"M1.0,3.0,4.0,5.0,6.0,7.0N. Table 5 demon-
strates how the cross-validation statistic I

CV
,

Eq. (46), works. The results are obtained from 100
independent runs of the algorithm with the adaptive
C for the estimation of the IF from Example 1. The
second row of the table presents the mean absolute
error of the IF estimation, averaged over the 100
simulation runs, provided that C has a correspond-
ing value shown in the first row.

A distribution of the random CK , chosen accord-
ing to rule (47), is presented in the third row of
Table 5. The figures in this row give a number of
events from 100 independent trails (simulation
runs) when CK takes the corresponding value. The
high distribution concentration in the area of the
minimum values of the mean absolute error is
obvious. It demonstrate clearly that the cross-
validation statistic I

CV
(46) works reasonably well

and determines the effective rule in choosing the
optimal, or close to the optimal, values of the
threshold C.
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6. Conclusions

The periodogram with a data-driven and time-
varying window length is developed as an adaptive
estimator of the IF. The choice of the window
length is based on the intersection of the confidence
intervals of the IF estimates, with increasing window
lengths. The developed algorithm uses only the
formula for the asymptotic variance of the IF
estimates. The formula for the estimate variance is
derived under the condition of relatively high signal-
to-noise ratio and white Gaussian noise. Note that
the assumption that the noise is white is not crucial.
As far as the correlation of the noise is known, the
formula for the standard deviation of the estimate
can be derived and used in the presented algorithm.
Simulations show good accuracy ability of the
adaptive algorithm.

The theory and examples, in this paper, are
presented for the monocomponent signals. In the
cases of multicomponent signals we may distinguish
two cases. One case is when the number of signal
components is known in advance, and their corres-
ponding IFs are well separated. In this case we can
directly apply the presented algorithm, by finding
corresponding number of the periodogram’s maxi-
ma for each time instant. The correct amplitude of
each signal component has to be used in the formula
for the estimate variance. It may be obtained by an
inversion of the short time Fourier transform, using
its values around the detected maximum for that
component, only. Note that here a frequency-varying
window length, corresponding to each component,
will be obtained. Other case is when we do not know
the number of components, as well as cannot assume
that they are well separated in the time—frequency
plane. In this case, in our opinion, it is better to
apply a version of the algorithm presented here to
the preriodogram as a whole, rather than to the
periodogram as an IF estimator. We are conducting
the research in this direction using the Wigner
distribution, as a time—frequency representation tool.
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