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Abstract—An image watermarking scheme that combines Hermitegfunctions expansion and
space/spatial-frequency analysis is proposed. In ¢hfirst step, the Hermite functions expansion is
employed to select busy regions for watermark embelihg. In the second step, the space/spatial-
frequency representation and Hermite functions expasion are combined to design the
imperceptible watermark, using the host local freqency content. The Hermite expansion has been
done by using the fast Hermite projection method. Bcursive realization of Hermite functions
significantly speeds up the algorithms for regionselection and watermark design. The watermark
detection is performed within the space/spatial-frguency domain. The detection performance is
increased due to the high information redundancy irthat domain in comparison with the space or
frequency domains, respectively. The performance ofthe proposed procedure has been tested

experimentally for different watermark strengths i.e. for different values of the Peak Signal to



Noise Ratio (PSNR). The proposed approach providdsgh detection performance even for high
PSNR values. It offers a good compromise between tdetion performance (including the

robustness to a wide variety of common attacks) anidnperceptibility.

Index Terms— Digital image watermarking, space/spatial-frequeny image analysis, Hermite

functions, Hermite expansion coefficients.

I. INTRODUCTION

The rapid development of digital technology brigseed to protect multimedia content from
unauthorized usage. One of the common solutionknmvn as digital watermarking with
applications ranging from digital rights managemienintegrity protection. It refers to specific
information hiding based on embedding a secretasigmno the multimedia data, under the
constraints of imperceptibility, security and rotmess to attacks [1]-[3]. The owner of the
protected content should be able to detect the rmark in order to prove ownership. An
efficient digital watermarking procedure provideg@d compromise between the watermark
invisibility (which will preserve the host signalglity) and its robustness against common
attacks (aiming to make the watermark undetectable)

Most of the existing image watermarking technigo@s be categorized into spatial domain
transform domain algorithms [2]-[18]. Watermark esdding in transform domains.g.
frequency domainghrough the Discrete Cosine Transform (DCT), DeserFourier Transform
(DFT), Discrete Wavelet Transform (DWT), etc.), gaally increases the robustness to attacks

[4]-[9] compared to the spatial domain. Howevere fihequency domain embedding usually



causes an uncontrolled spread of the watermarkapessibly large spatial region. It means that
the watermark embedded in some components in omaidowill be spread over all components
in other domain. In this sense, special maskingralgns are required to preserve the watermark
imperceptibility. In order to exploit the advantage using both domains simultaneously, the
joint space/spatial-frequency based watermarking Hmeeen considered [10]-[14]. The
space/spatial-frequency analysis provides a laegjuiency content estimation and analysis for
each individual image pixel. Hence, the watermapatial location and its frequency
characteristics are controlled simultaneously. lamnore, the space/spatial-frequency based
procedure provides a high robustness to attackgyaad detection performance. For each pixel
in the spatial domain, we produce a block of spuaial-frequency coefficients whose size
depends on the window used for the calculation pafce/spatial-frequency representation. It
means that the number of coefficients used in tietecs significantly increased comparing to
the number of watermarked pixels: for each pixet, ave approximately 200 space/spatial-
frequency coefficients for correlation (50% of @@x20 blocks used in our case). Consequently,
a successful detection in space/spatial-frequermyath usually requires smaller number of
watermarked pixels than the procedures in DCT av@l@lomain.

This work represents a modified and improved versb the space/spatial-frequency based
image watermarking procedure [14]. Prior to watekr@mbedding, a set of suitable pixels is
determined. Generally, the imperceptibility-robeste compromise is significantly improved by
embedding the watermark within the busy image regidccording to the masking effects of the
human visual system (HVS), the busy or high cohiraage areas can mask any distortion better
than smooth areas, and thus, can support highesrmwatk signal without visibility problem

[19]-[21]. The HVS frequency sensitivity and magkiare closely related, such that both effects



suggest that we are less sensitive to noise in fiegfuencies producing the busy parts of the
image [21],[22]. The similar design [14] uses tinergy of local space/spatial-frequency content
to determine the occupancy and busyness of therreg@his requires exhaustive procedure for
setting the thresholds, since the energy within rggon is not exactly a natural and precise
measure to characterize region busyness. Therefergropose a simple and efficient method to
detect busy (high-variance) regions that is basedroincomplete Hermite functions expansion
[26]. Each image region is firstly reconstructedusyng a few low-order Hermite functions, and
the mean square error (MSE) between the original @tonstructed region is used as a
distinguishability criterion. The low-order functis are related to the low-frequency content,
while the higher order functions have more higlgrency components [23], [24], [26],[28].
Hence, when using a few low-order functions for teeonstruction, the MSE for busy regions
will be pretty high, since these regions are chtaraed by high-frequency content [25]. More
details the regions have, more functions are reguwor proper reconstruction.

The selected busy regions are used for watermagigi@nd embedding. In order to identify
space/spatial-frequency components that are, fra@rperceptual point of view, appropriate for
watermark embedding, the Hermite projection metisodpplied in the space/spatial-frequency
domain, as well. The most significant componentsn(f the perceptual point of view) are
omitted to avoid image quality degradation, and wetermark is designed according to the
remaining components. The space/spatial-frequeantent of the watermark changes for each
selected pixel according to its local space/spétejuency content. This further means that the
space/spatial-frequency content of the watermanioisuniform across the image, as it is the case

in [14], where the watermark is fixed to the middiequency ring. Comparing to [14], the



proposed pixels selection and watermark modelinchrtiggues improves the quality of
watermarked image, which has been measured bpthePSNR.

The watermark detection is performed in the spaedia-frequency domain, since it provides
a large number of elements available for the cati@mt based detection. In this case, the
information about watermark will be spread over asigé number of coefficients in the
space/spatial-frequency domain, even when a sraalber of pixels is used. In other words, the
detection is flexible regarding the number of cdesed pixels, because even for a small number
of pixels there is still large number of elememsorrelation. The proposed procedure is tested
on various images in the presence of different comynused attacks.

The paper is organized as follows. The procedurddisy regions selection is given in Section
Il. The watermarking procedure that includes watkndesign, embedding and detection is
proposed in Section lll. The efficiency of the pospd procedure is tested experimentally in

Section IV, while the concluding remarks are giuesection V.

. SELECTION OFWATERMARKING REGIONS

A. Hermite Projection Method

The Hermite projection method has been introducedarious image and speech processing
applications [26]-[28]. The Hermite functions aresed as the basis functions due to their
favorable properties (orthogonality and good laaion property [26], [29]), providing a unique
representation of different signals. They provia¢tdr computational localization in both signal
and transform domains in comparison with the tragoetric functions. Also, as it will be shown
later, the coefficients of expansion are easily goted, especially having in mind the recursive

procedure for Hermite functions calculation. Furthere, by using the Hermite expansion, the



signal energy is approximated by the numericalgrateof the Gauss-Hermite type and converges
more rapidly than the rectangle rule involved ia BICT computation [27].

The Hermite functions have been defined as:

(_1)pe)(2/2 dp(e—x2) .

X)= 1

Ly (1)
To speed up the calculation procedure, they catebeed recursively as follows [28]:

(2)

Wp(x)= X p—1(X) ,/ p—2(>9 Oe2.

For the purpose of image analysis, the expansimnHermite functions can be applied to image
rows, columns or both. For the sake of simpliciiyg consider the Hermite expansion of image
rows (one row at a time). Therefore, an image wasented by using a given numliperof

Hermite functions as follows [28]:
K-1
(X, ¥)= % cpp(X), for fixed y, (3)
p=0

wherel(x,y) denotes an image of siZ&xQ (or a given region), while€, are coefficients of
Hermite expansion. Note that, prior to the Hermexpansion, removing the baseline froéfxy)

is required, sincg/,(x) - 0,|¥ -« for all p. The baseline is defined as:
1(x,Q)—1(x,0
B, (¥)= |(X,0)+%[Y- @

A complete image reconstruction can be achievedwine number of Hermite functions is equal

to P. However, it has been shown that the image casubeessfully reconstructed even by using



a smaller numberK<P) of Hermite functions. Additional savings can lshiaved by applying
the Hermite projection method over both coordinaiése Hermite expansion coefficients can be

calculated by using the Gauss-Hermite quadratsréglews:

1P wp(xm)
Cp== > ———— (X, (5)
P P et (Wpa (X)) d

where x,, are zeros of the Hermite polynomials, whilgm) is 1(Xmy) for a fixedy.

B. A procedure for busy regions selection based orHtrenite Projection Method

Image analysis is usually based on texture feautection methods, and the most significant
among them are the auto-correlation, edge frequeprayitive-length, Law’s method and co-
occurrence matrices [30],[31]. Each of these methodes different features for texture
classification, while their performance dependstonquality of feature and amount of training
data. The standard texture classification methoglsrainly based on matching algorithms with a
predefined texture patterns, patches or primit[8€$, [32]. The classification is then performed
by determining the well-known co-occurrence masiteatures [33] (directionality, coarseness,
granularity, etc.), which are compared betweerotieerved image regions and patterns. The first
limitation that we face with in our applicationtisat it is hard to define a pattern or patch for
busy regions in natural images, due to their diters-urthermore, the statistical measures
extracted from co-occurrence matrices need to Imeboted to provide regions classification,
while the thresholds associated with each measerea standardized and they are subject of
exhaustive experimentation.

In watermarking application we are interested itedaining busy regions with large variations
and without fine structures, or busy regions witkfierent texture elements intersect. Moreover,

we should also analyze the amount of variationkiwithe region to decide whether it is suitable



for watermarking. If we consider histogram analyischaracterize the variations within the
region, we lack the information about the spatiatrtbution of different values. When observing
the histograms of different regions (as shown late3ection IV), we may say that the histogram
does not provide such obvious classification fesgtumMoreover, we would need to perform
detailed histogram analysis and certainly to defneompletely new procedure for region
classification.

The proposed approach provides a simple and relipidcedure that identifies the regions
with fast variations and irregular structures, l®ng image independent threshold. The MSE
between the original region and its reconstrucedion provides a natural, simple and efficient
measure of region complexity. More complex and misced region produces higher MSE.
Moreover, it has been shown that the gap betwegr(ffat and moderately flat) and busy (busy
and moderately busy) regions is significant. imgportant to note that the proposed classification
method has not been used so far, although the kepnojection method has been applied in
texture classification, but with a full set of fuilmns and combined with additional procedures.

An image can be decomposed into a set of regimtbR (x,y) of sizePxQ. Each region can
be separately decomposed into Hermite functionseWMihe region is uniform/flat, it can be
reconstructed by using much fewer functions thanttie busy regions. Hence, when the same
number of Hermite functions is used for all imaggions, the mean square error between the
original and reconstructed region will be smalfeghe region is more uniform. This property can
be used as a criterion for an efficient busy regelection. The mean square error between the

original and reconstructed region is given by:

2
K-1
MSH R( x»=§322{ ROy g )% , (6)
Xy p=0



whereK is the number of Hermite functions used for retucsion. Generally, the region size is
firstly chosen approximately to correspond to tiee sised in texture features characterization
(e.g., between 15x15 and 30x30). Then, based omnaber of experiments, the optimal
performance of the proposed procedure is achieyagsing the regions 20x20. The valueKof
are determined experimentally by using a set df iteages. Namely, for the observed 20x20
regions we use a fixed number of five Hermite fiort and coefficients, which is 25% of
number of pixels per line. This value l§fis enough to reconstruct flat regions with smaibe
and insufficient to reconstruct busy regions. Agpdly, when working with such regions the
classification performance does not vary signiftafor different images.

The considered regions are classified as follows:

MSE R x } >== R ,x)yJ busyregit Ko
MSE R x }<== R .x)yO flatregiol

where = is some predetermined threshold value (which Wwél discussed in Section V).
Generally, the pixels from busy regions are moitable for watermarking, since the changes in
these regions are more difficult to perceive tharthie flat regions. Consequently, watermark
embedded in the busy regions can be stronger, taisdmore likely to be robust to different
attacks. In the proposed approach, for watermarkeelting we use only the pixels from the

busy regions.

[ll. WATERMARKING PROCEDURE

A block diagram of the proposed watermarking pdoece is shown in Fig 1.a. The image is
divided into regions processed by using the Herrakpansion method to select busy image
regions. The selected regions are used as inpiltetgpace/spatial-frequency processing block

together with the original image to perform waterknaodeling and embedding. When choosing



the size of image regions, two important issues canesidered: 1. small image regions are
difficult for characterization in both spatial afréquency domain; 2. large regions can not be
associated with local frequency content of pixelgnaore. Hence, as discussed in the previous
section, the optimal size is set to 20x20.

The space/spatial-frequency processing block isvehno Fig 1.b. It is important to emphasize
that the block scheme given in Fig. 1, includes magor steps from the calculation standpoint:
1. Hermite expansion method, 2. space/spatial-&equ transform and its inverse. The fast
Hermite projection method [26], suitable for hardevaealization, has been used for Hermite
expansion. Although, the Hermite functions can &lewdated recursively, we can even store and
load functions from registers since we use onlyst few Hermite functions. Concerning the
space/spatial-frequency transform and its invatgs,important to emphasize that the real-time
hardware implementation for space/spatial-frequemogge analysis (including the space-
varying filtering) has been already done in [34][3Additional operations required by the
proposed procedure are image decomposition into2@0Oxlocks and additive watermark

embedding, with almost negligible computational ptewity.

A. Watermark design and embedding

After the pixels that belong to the busy imageaeg are selected, the watermark embedding
procedure is performed in the space/spatial-frequetomain. As a suitable space/spatial-
frequency representation, the two-dimensional (2Brt-time Fourier transform (STFT) is
considered. By using the 2D STFT, a region of @xeaptured by the window around the central

one, will be mapped into the 2D frequency repres@n. Hence, to provide a certain model for

10



watermark characteristics, for each pixel we usBDarepresentation of its local frequency
content. The watermark embedding will be done engpace/spatial-frequency domain, as well.

The 2D form of the STFT for an imagfg,y) is defined as follows:

STFT(n@) =X (B (- &7, ()
where h is a sliding window NxN). The following notation is used:n=(n,n,),
k={(k. k)| ke, ko O[- N/ 2, N/ 2- 1}, (n+K)=(n+k, n+ k), ak=(aiky+awsky) .

The STFT is calculated for a region around eactelpihat was previously selected for
watermarking. Thus, the windowed part of signahteeed at the selected pixel, is transformed

into the frequency domain. The local frequency ennhtis further used to provide a suitable

mask, which will shape the watermark, as it is dbsd below.
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Image eque -cy transform Image
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Hermite Busy regions
Expansion selection
Image blocks/regions
(20x20)
a)
o Space/spatial- Hermite
Original Frequency . Support
—_— —> Expansion > ;
image Represent. 2020 function L
20x20
J
20x20 blocks
Space/spatial- |
Frequency
watermark Represent. \Xj 0
20x20

b)
Fig 1. a) Block scheme of the watermarking procedu, b) Space/spatial-frequency
processing block

Firstly, we should select a suitable part of thace/spatial-frequency content. It is usually
recommendable to avoid watermarking of the highrggnand low-frequency content, since it
may degrade image quality. In that sense, we shautild the high-energy space/spatial-
frequency image content. For this purpose, the Hermxpansion is employed within the
space/spatial-frequency domain. By using a smathber K, of Hermite functions, we may

characterize the high energy spectral content. Tihememaining space/spatial-frequency content

is obtained as follows:
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ISTFTX B, B,01,@,)° =

) Kq—l . ] (9)
=|STFT(R, B.aw) - gq(@), for fixedo,
g=0

After the high energy components are removed, s$pace/spatial-frequency content

STFTX hw) ® is used to create a space/spatial-frequency mask:

L2
1, ‘STFT)( r;a;)( >0

Ly ()= (10)
0, otherwise
Then, the space/spatial-frequency characteristiasnatermark are modeled as follows:
STFT(nw)= L,( nw) STF( jw), (11)

ie. wh=3y L, (n@) STFT,( nw),

where STFT,(nw) denotes the STFT of the starting watermark created 2D pseudo-random
sequence. In this way, the watermark will be sdphradapted to the space/spatial-frequency
content of each image region. In other words, @agion has its own support function which is
used to distribute watermark over the region inoedance with region components. This

watermark design procedure should result in betsgermark imperceptibility.

5
10
15
20
5 10 15 20 5 10 15 20
a) b)
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Fig 2. a) An example of 2D space/spatial-frequenayask, b) watermark modelled using

space/spatial-frequency mask

An illustration of the space/spatial-frequency maaikd the corresponding space/spatial-
frequency characteristics of the watermark are shiowig. 2, for one pixel from the busy image
region (region with majority of busy pixels).

Additive watermark embedding procedure is perfatnmethe space/spatial frequency domain,

as follows:

STFT, (nw)= STFN mw)+a STET( ,w), (12)

where STFT andSTFT, are the STFT of the original and watermarked imaggpectively and

allows to tune the watermark strength. The valuexnadepends on the initial amplitude of
pseudo-random sequenge Since the amplitude of pseudo-random sequendeemdes the
PSNR, alpha is set experimentally to achieve PEBIRIB for a high quality of watermarked
images.

Note that in order to retrieve the signal from sfgace/spatial-frequency representation, the
concept of space-varying filtering is applied. Ttashnique has been introduced for the purpose
of space-varying filtering of 2D signals [36], [37]he input of the space-varying filterd$FT,,,

while the support function is defined as:

_J1if |STFT (@.@) >0
L(aw, = | . 13
(@), @) { 0, otherwise (13)

Finally, the watermarked image is obtained as ¥adlo

14



1(1)=3 STFT,(n®) I n0). (14)

B. Watermark detection

The watermark detection is performed, within thacggspatial-frequency domain, by using the

space/spatial-frequency domain correlation as4i [1
Det=z[z STFY,, () STFVT(,H»)}:

nLe . (15)

=Z{ZSTFrW(*mZ»){ k(7o) STﬁr(",E»}}
nLw

Note that the two-dimensional space/spatial-fraqueregion is centered on each selected
pixel. Instead of a single pixel in the spatial dom we use a STFT matrix with a certain number
of elements that depends on the window size. Therattual number of components used in the

detection is much larger, providing a significamtettion improvement. However, note that
STFT)'(nw) depends on the support functitg(n,w), which is specific for each pixel. Thus, in

order to use (15), we would need to store the 2E2mzark for each watermarked pixel. In other
words, the 2D support function should be availdbiecach pixel as side information. Hence, to
provide a blind detection and to avoid large sigf®rimation, which is usually undesirable in
watermarking, we use the modified detector form tiwees not need any knowledge about the 2D
support functions. The introduced modification does affect significantly the detection results.
Hence, the detector form includes only the STFTthaf starting watermark, created as a 2D

pseudo-random sequence, which is the same foixallsp

Det=z{z STFT, (1) STW“,H))]

15



and does not require knowledge about the suppodtifan. The detection performance is tested

by using the following measure of detection qud&§], [39]:

D = D8t ~ Dely, 16y

2 2
o,to,

where Det and o2

represent the mean value and the variance ofdtexitr responses; andz
indicate watermarks (right keys or trials) and vgdnals, respectively. The probability of error
Perr can be easily calculated by using the meallibg(given by (16)), as follows:

1 MD
Perr =§ erfC(—Z)

5 17)
The normal distribution of detector’s responseasisumed. Recall that the watermark is created
from a pseudo-random sequence and for such watesrttaa correlation based detector form can
be safely assumed to be sufficiently independésit ccording to the central limit theorem nif
random variables distributed according to any pdlg density function (pdf) are combined,
then their sum will have pdf which tends to a Gars$or sufficiently largen [45], which is the

case we have. Probability of detection is obtaiasdPs=1-P¢;. By increasing the value of

measureViD the probability of detection error decreases.

V. EXPERIMENTAL RESULTS

The performance of the proposed procedure is testpdrimentally using various standard
test images, all of size 256x256. According to tpeactice in the literature (e.g.,
[4],[15],[47],[48]) we have tested the proposedgadure to a certain categories of test images.
Since the watermarking procedure aims to protetirabimages, we have selected some specific
and commonly used examples (most of them are sthrMatlab test images) such as portraits

(e.g. Lena, Elaine, Barbara), Landscapes (e.g.t, Ba&e, Bridge, Autumn), images with plenty

16



of details or repeating shapes (e.g., Baboon, TiBeppers, Pears), images with dominant
brightness (F16).

Numerous realizations with different watermarkglftikeys) and wrong trials have been done.
The STFT is calculated by using the regions of 8@€0. The pixels belonging to busy image
regions are selected by using the proposed proedshsed on the Hermite projection method.

The regions classification is done by using paramet=40. Note that the classification

performance is not so sensitive to the selectioa oNamely, the experiments have shown that
the MSE (given by (6)) for flat and busy regionwdaignificantly different values, and thus we

can set parameter easily and flexibly for all tested images. In Fsgwe illustrate four different

types of regions classified according to the vaiuBISE:

- Strictly flat regions have very low MSE (mostl§®),

- Moderately flat regions may contain certain peeifal changes and thus slightly higher MSE,

- Moderately busy regions contain quite noticealyieamics (MSE>100),

- Busy regions contain significant dynamics (MSESRO

Note that there is a large difference between tI®EMT moderately flat and moderately busy

regions, which facilitates setting of the threshaddlie = .

Additionally, we may observe that it would be difflt to conclude anything about regions
dynamics on the basis of their histograms, sinay tHo not have any visible dominant

characteristics for a certain region category (B)g.
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Fig. 3. a) flat regions, b) moderately flat, c) moerately busy, d) busy
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Fig. 4. The pixels from the busy regions that areetected for watermarking

The proposed method for pixel selection providesandidates for watermark embedding, but
the embedding procedure can be done in any sepoints, wherax<m. Hence, we may fix the
number of watermarked pixels for both low and hrgkolution images. The selected pixels
(black points) for some sample images are giveRkign4. The watermark has been modeled
according to (11) and embedded in the selectedspixighin busy image regions.

The watermarking procedure has been performed foeramin number of watermarks (right
keys) and wrong trials (wrong keys). In Fig. 5, present the values of measit® obtained for
40 right keys and 400 wrong trials. Note that thedodetection is used, i.e. the original image is
not required in the detection process. The origamal watermarked images Lena and Elaine are

shown in Fig. 6.
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Fig 5. An illustration of detector responses for 4@vatermark (red) and 400 wrong trials

(blue)

Fig. 6. Lena: a) original, b) watermarked; Elaine:c) original, d) watermarked
Furthermore, the procedure is tested in the presehearious attacks with different strengths.
The watermark embedding is done with a PSNR rangirty-50 dB. As an additional measure
of image quality, we have calculated the StructBahilarity Measure (SSIM) [40], [41]

between the original and watermarked images, am@chieved value for different test images is

20



>0.99 (out of 1), which means almost negligible etéince between the watermarked and
original image.

The procedure is tested under JPEG compressionvaribus quality factors (lower quality
factor (QF) corresponds to higher compression),uisg noise with different values of density
parameter (0.0025, 0.005, 0.01, 0.05), Gaussiasenwith different values of variance (0.001,
0.005, 0.01, 0.02). For example, the robustne&atgssian noise is achievable for variance up to
0.02 (the reference value for noise variance isalysp.01 [42]-[44]). Further increasing of
variance introduces serious image quality degradatiand makes an image unreadable and
unusable. Furthermore, the robustness is test#akipresence of mixed Gaussian and impulse
noise, median filtering, combined noise and filigriattacks, image darkening and lightening,
cropping of rows and columns, image resizing witteipolation to the nearest neighbour, and a
few combined attacks.

The proposed approach provides low probabilitiesrmr for most of the tested attacks. On
the other hand, it is worth to say that the prodgsecedure preserves high image quality and
provides high PSNR (approximately 50 dB), whichlasger than in the other robust image
watermarking algorithms [8], [9], [46],[47]. Nevbkdless, the image quality will be compared

later with the similar approach in terms of thedloguality measure.
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TABLE |. AVERAGE PROBABILITY OF DETECTION ERROR IN THE PRESENE OF ATTACKS

PSNR
Type of Attack Watermarked — MD Perr
Attacked

No attacks - 7.8 10"
JPEG QF=80 34dB 7.4 10°
JPEG QF=60 32dB 7 107
JPEG QF=40 29dB 5.8 10
JPEG QF=20 25dB 3.6 1d
Impulse noise 0.0025 31dB 7 10
Impulse noise 0.005 28dB 6.2 10°
Impulse noise 0.01 25dB 5.7 10
Impulse noise 0.05 18dB 2.5 10
Gaussian noise 0.001 30dB 6.3 10°
Gaussian noise 0.005 23dB 55 1¢
Gaussian noise 0.01 20dB 4 10°
Gaussian noise 0.02 17dB 2.6 10
Mixed Gaussian 0.005 and 240B 4.7 16
impulse noise 0.01
Median filter (+impulse 25 dB 3.6 1d¢
noise)
Darkening 40% 14 dB 7.6 16*
Lightening 40% 15 dB 7.6 16*
Crop (first 20 rows+first 20 21dB 7.4 10*
columns replaced by zeros)
Scaling+interpolation 25dB 4 10°
Combined attack: Gaussian 24dB 35 1d
noise and JPEG witQF=60
Combined attack Gaussian 30dB 5.8 10
noise and crop
Combined attack Gaussian 24dB 3.2 1d
noise and image resize with
interpolation

Note that the proposed approach provides robustoes®pping of image rows and columns,
as well as robustness to certain scaling (17%) iatetpolation, with still low probability of
error. However, the procedure is not robust to ienegjation. This would require combination

with certain templates that would be invariantdtation.
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TABLE Il. COMPARISON WITH OTHER METHODS IN THE PRESENCE OF AATKS (IN TERMS OF

PROBABILITY OF DETECTION ERROR

Proposed Iiﬂrg;/ri]%lés Standard DCT DWT domai'n DWT domai'n

Type of Attack ~ Method in SSE procedure procedure with procedure with

in SSF domain domain GGF detector Cauchy detector
No attacks 10" 10" 10°® 107 10°
JPEG QF=80 10 10" 107 10° 107
JPEG QF=60 10** 10% 10° 10° 10°
JPEG QF=40 10° 107 10° 10° 10°
Impulse noise 0.01 10° 10% 10° 10° 10°
Gaussian noise 0.008  10” 10" 10° 10° 10°
Darkening 40% 10" 10™ 107 10° 107
Lightening 40% 10" 10™ 107 10° 10°

A. Comparison results

The proposed procedure is compared with the prevepace/spatial-frequency (SSF) based
approach given in [14], with the standard DCT basedermark embedding procedure, and
DWT approaches based on the Generalized GausstiCanchy pdf model. The results are
reported in Table 2. The watermark is embedded thighsame PSNEOdB in all cases. Some
details for these procedures are given in the $eque

1) The method given in [14] assumes different negselection and watermark embedding
regions compared to the proposed approach. Thétgese given in the Table 2'{Zolumn).
Although, some of the results achieved by the pgedanethod are quite similar to the results in
[14], the proposed method is also robust to sonwmmgéric attacks unlike [14]. Additional
advantages over the method [14] will be discussesiiction IV.B.

2) The DCT based image watermarking procedure issidered as follows. According to

[15],[16] all low-to-middle frequency DCT coeffiois are used for watermarking (22050
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coefficients for images of size 28856, which is approximately four times the numbér o
watermarked pixels in the case of the proposedegoiare). The detection is performed by using
the traditional correlation detector. The resutesgiven in the Table 2™column.

3) Finally, we consider the standard DWT domainenatrking. The watermark detection in the
DWT subbands is performed by using detectors basethe Generalized Gaussian or Cauchy
pdf [17],[18], since in this case they provide betperformance compared to the standard
correlator. Namely, it is commonly assumed that thatermarked coefficients’ pdf may
correspond either to Generalized Gaussian or Cafugtgtion, and thus detection is performed
by using one of the mentioned models [17]. A nunddet000 DWT coefficients has been used.
Further increasing of the coefficients number witht influence significantly the detection
measure. The results are given in Table"™2aBd ' column).

Note that the detection results achieved by thegsed procedure outperform the DCT and
DWT based procedure. Furthermore, we provide a eoisyn with [14] in terms of the

perceptual quality.

B. Comparison with the previous space/spatial-freqyeaqproach [14]:

1) Improved imperceptibility: Comparing to the previous space/spatial-frequeasgth image
watermarking, the proposed approach provides betéermark imperceptibility, measured by
the local PSNR (LPSNR). The time-frequency maskaioled by using Hermite functions
expansion allows us to create a watermark thatwdl into the corresponding space/spatial-

frequency content of the local image region. Ineotivords the watermark is better suited to the
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host signal content than in the case when the anhstiddle frequency content defined by the
circular ring: D, ={(w;, w,): P, < wy,w, < p 3 is used, as in [14].

In order to prove the above considerations, weeheaiculated the local PSNR for each
watermarked region, in the case of the proposedtitaagrevious approach [14]. Note that this
local metrics provides much reliable descriptionnoge quality than the global PSNR.

For a fair comparison, in these experiments we hased the same watermark for both
approaches, providing the same detection perforesadso, the same image regions have been
used for watermarking. Then, the LPSNR is calcdlaed compared for watermarked image
regions. The results have shown that the propopedoach provides higher local PSNR for
approximately 90% of watermarked pixels/regions. Table 3, we have illustrated the
space/spatial-frequency content for a few randoselgcted pixels. The values of LPSNR are
reported as well, for the proposed approach andapipeoach in [14]. The pixels within 2P0
region are used to obtain local space/spatial-Beqy content of the central pixel (the
surrounding pixels have similar space/spatial-feggpy representation). Similar results are
obtained for other pixels/regions.

2) Robustness to Sensing: Unlike in [14], where the watermark is fixed teetiddle frequency
ring, in the proposed approach the space/spagglincy content of the watermark changes over
different regions and adapts to the local spaca&dgeequency content of host region. It means
that watermark estimation as an attempt to rembygensing attack), is practically impossible

without knowing the parameteiksandKq in (6) and (9), which are used as security keys.

25



TABLE lll. ILLUSTRATION OF SPACESPATIAL-FREQUENCY CONTENT ANDLPSNR

PROROSED SSF
PROCEDURE

PREVIOUS SSF
PROCEDURE

5
10
15

20

Tl
) 10 15 20

LPSNR=63db

LPSNR=88

LPSNR=83dB

3) Robustness to some geometrical distortions: Although for the standard types of attacks (Table
2), the proposed method provides similar results §$4], it also provides certain robustness in
the presence of geometrical attacks, such as irmaggping and scaling with interpolation (the

last two rows in Table 1), which is not achievedha previous approach.

4) Security: The watermark is shaped and added directly tadmeponents in the space/spatial-

frequency domain, and thus, it is hard to remowveiihout the key (which is assumed to be
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private). In other words, supposing that the imggality is important for the application, any
attempt to remove the watermark will produce sigaift quality degradation. Furthermore, the
method for pixel selection provides the candidébesvatermark embedding that are equal from
the perceptual point of view. Hence, generally, wlaermark embedding can be done in any set
of n points, wheren<m (m is the number of candidates). Thespixels could be chosen by a

random key, which provides the additional secwoftthe procedure.

CONCLUSION

An image watermarking procedure for ownership poid@ that combines space/spatial-
frequency analysis and Hermite projection method been proposed. This approach offers
several advantages regarding imperceptibility aslilistness constraints, such as high global
PSNR, higher local PSNR comparing to other spaaéfdgrequency approaches and still low
probability of error in the presence of attacksudhit enhances the quality of watermarked
image, providing better watermark imperceptibillach image region has its own space-spatial-
frequency support which defines the watermark dttarstics within the region, but the
watermark detection is blind and does not need itfiermation about support function.
Furthermore, although the Hermite expansion has lagplied in both domains: spatial (for
regions classification) and space/spatial-frequedoynain (to create space/spatial-frequency
mask), the complexity of the algorithm is not irased due to the existence of the fast Hermite

projection method and fast recursive realizatiorlefmite functions.
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