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Analysis of Noise in Time-Frequency Distributions
LJubiša Stanković, Senior Member, IEEE

Abstract—Exact expressions for the quadratic distributions’
variance of signals corrupted with white stationary, white non-
stationary, and colored stationary noise are derived. It has been
shown that the signal-dependent part of variance is closely related
to the nonnoisy distribution values.
Index Terms—Eigenvalues and eigenfunctions, noise, signal rep-

resentations, spectral analysis, time-frequency analysis, Wigner
distribution.

I. INTRODUCTION

I NFLUENCE OF NOISE on time-frequency distributionsis studied in [1]–[3]. Spectral estimators of time-varying
processes have been considered in [4]–[6]. The mean variance
values for noisy signals are derived in [1], [3]. An algorithm
for optimization of parameters in the Wigner distribution
(WD) and in other quadratic distributions of noisy signals has
been proposed [8]. In this letter, the exact expressions for the
variance of quadratic distributions in the cases of stationary
and nonstationary white noise and colored stationary noise are
derived. It has been shown that the signal-dependent part of
variance is equal to a new quadratic distribution of nonnoisy
signals.

II. NOISE IN QUADRATIC TIME-FREQUENCY DISTRIBUTIONS

Discrete-time form of the Cohen class of distributions (CD)
of noise is defined by

(1)

where is the kernel in time-lag domain [1], [7], [9]. All
summation limits are from to , unless indicated other-
wise.
Variance of the CD, for a complex Gaussian noise with inde-

pendent identically distributed real and imaginary part (i.i.d.), is
[1], [3]

(2)

Manuscript received March 16, 2001; revised June 4, 2002. This work was
supported by Volkswagen Stiftung, Federal Republic of Germany. The associate
editor coordinating the review of this manuscript and approving it for publica-
tion was Prof. Akbar Sayeed.
The author is with the Elektrotehnicki Fakultet, University of Montenegro,

81000 Podgorica, Montenegro (e-mail: l.stankovic@ieee.org).
Digital Object Identifier 10.1109/LSP.2002.803409.

where is the noise autocorrelation function and
.

For a nonstationary complex white noise, whose autocorrela-
tion function is , , we get

(3)

The stationary case follows with .
If the noise is complex colored stationary

, then its Fourier transform is a white
nonstationary noise, with the autocorrelation function in fre-
quency domain . (From

, with , we get

.) Thus, a form that is dual to (3) holds
in this case

(4)

where is the kernel in Doppler-frequency domain. Re-
lation (4) can also be obtained by using the fact that (2), for
stationary noise, can be written as

where denotes a two-dimensional (2-D) convolution. By
applying 2-D Parseval’s theorem we get (4). It is important to
note that the transforms in (4) are periodic in and , with period
2 [3], [12]. Special cases, e.g., analytic noise, easily follow
from (4) (see [3]).

III. NOISY SIGNALS

For deterministic signals corrupted by noise
, the distribution variance consists of two parts [1],

[3]:

(5)

The first part has already been studied in Section II and in [1]
and [3], and the mean value of the second part is derived in [1]

1070-9908/02$17.00 © 2002 IEEE
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and [3]. In order to get the exact value of , we will use
the inner product form of the CD [9], [10]:

(6)

where . Calculation of
is described within the numerical example. For a real

and symmetric and complex (i.i.d.) noise we get

(7)

General form of the new kernel is

(8)

Note: The signal-dependent part of variance is
equal to a new quadratic distribution of the signal with
the kernel .

A. Special Cases
1) White Stationary Complex Noise: White stationary com-

plex noise produces

(9)

For finite limits, this is a matrix multiplication form,
, since for time-frequency kernels
holds. The boldface letters, without

arguments, are used to denote matrices. For example, is a
matrix with elements . Thus,

(10)

Some interesting conclusions that can be drawn from (9) and
(10) are presented in the Appendix.

a) Eigenvalue decomposition: Assume that both the sum-
mation limits and the values of are finite. It is true when
the kernel is calculated from the well-defined kernel
in a finite Doppler-lag domain using
a finite number of samples. The signal-dependent part of vari-
ance can be calculated, like other distributions from

the Cohen class, by using eigenvalue decomposition of [9],
[10]. The distribution (6) of nonnoisy signal is

(11)

where and are the eigenvalues and eigenvectors of ,
and

is the spectrogram of , with playing the role of
window. Since , its eigenvalues and eigenvectors
are and . Thus, we have

(12)

b) Relation between the original kernel and variance
kernel: According to (11), we can conclude that the

original kernel in Doppler-lag domain can be decomposed as
, where are orthonormal

two-dimensional basis functions (ambiguity functions of the
eigenvectors ). The kernel of in (12)
is . A detailed analysis of
distributions, with respect to their eigenvalue properties, is
presented in [9]. In that sense, the signal-dependent variance is
just “an energetic map of the time-frequency distribution” of
the original signal [9].
2) Nonstationary White Noise: For nonstationary white

noise, we have

(13)

i.e., , where is a diagonal matrix, with the ele-
ments . For the quasi-stationary case,

, we have , with all other
parameters as in (12).
3) Colored Stationary Noise: In the case of colored sta-

tionary noise, a relation dual to (13) holds [see (3) and (4)].
4) Numerical Example: Consider the signal

(14)

within the interval [0, 1], sampled at . The Han-
ning window of the width is used. A high stationary
complex white noise, with variance , is assumed.
The WD, spectrogram, S-method [3], [4], and Choi–Williams
distribution (CWD) are presented in Fig. 1(a)–(d), respec-
tively. Sampling in the WD is . The CWD kernel
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Fig. 1. Time-frequency representations of a nonnoisy signal and variances of the noisy signal. (a) Spectrogram. (b) S-method with . (c) Choi–Williams
distribution. (d) Pseudo-Wigner distribution. (e) Variance in the spectrogram. (f) Variance in the S-method. (g) Variance in the Choi–Williams distribution. (h)
Variance in the pseudo-Wigner distribution. Variances are statistically obtained by averaging over 2000 realizations. They almost coincide with the values obtained
by evaluating the derived expressions (3) and (12). Normalized values are presented.

within ,
, and 128 samples along each axis is used.

Elements of matrix are calculated based on as

Normalized eigenvalues of the CWD kernel are
and

. In the spectrogram, the
whole signal-dependent part of variance is “located” just on the
signal components, and it is proportional to the spectrogram
values [Fig. 1(e)]. Variance in the S-method is proportional to
the sum of several frequency-shifted spectrograms [Fig. 1(f)].
Obviously, the variance in the CWD is a sum of
few spectrograms with positive weighting coefficients and
windows [Fig. 1(g)]. In the WD, the variance is “spread”
over the entire time-frequency plane [Fig. 1(h)].

IV. CONCLUSION

We study the influence of additive noise on time-frequency
analysis. The variance has two parts. The signal-dependent
one is equal to a new quadratic time-frequency distribution,
whose kernel can be calculated based on the original distri-
bution kernel. For the spectrogram, this part of variance is
proportional to the spectrogram of the original signal without
noise. In the Wigner distribution, both the signal-dependent
and noise-only-dependent parts of the variance are uniformly
spread over the entire time-frequency plane. For reduced
interference distributions, the signal-dependent part of variance

is distributed at and around the autoterms, meaning that it can
dominantly influence time-frequency-based analysis, even for
very low input signal-to-noise ratio.

APPENDIX

Any two distributions whose kernels satisfy relation
and have the

same variance (10), since

A. Corollary
A distribution with product kernel and the distribution

with its dual kernel have the same
variance.

B. Example
1) The WD has the kernel , i.e.,

. According to the corollary, the WD has the
same variance as its dual kernel counterpart, with kernel

, i.e., . The last
kernel corresponds to the signal energy
[see (6)].

2) The pseudo-WD and the
mean value of spectrogram over frequency

have the same variance.
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3) The same holds for the smoothed spectrogram and
for the S-method, whose kernels are

and ,
respectively [3], [4]. Their variance is

SPEC for
, and 0 else-

where [Fig. 1(e) and (f)] [11].
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