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Adaptive Variable Step Algorithm for Missing
Samples Recovery in Sparse Signals

Ljubiša Stanković, Miloš Daković, Stefan Vujović

Abstract—Recovery of arbitrarily positioned samples
that are missing in sparse signals recently attracted
significant research interest. Sparse signals with heavily
corrupted arbitrary positioned samples could be analyzed
in the same way as compressive sensed signals by omitting
the corrupted samples and considering them as unavail-
able during the recovery process. The reconstruction
of missing samples is done by using one of the well
known reconstruction algorithms. In this paper we will
propose a very simple and efficient adaptive variable step
algorithm, applied directly to the concentration measures,
without reformulating the reconstruction problem within
the standard linear programming form. Direct application
of the gradient approach to the nondifferentiable forms
of measures lead us to introduce a variable step size
algorithm. A criterion for changing adaptive algorithm
parameters is presented. The results are illustrated on
the examples with sparse signals, including approximately
sparse signals and noisy sparse signals.

Keywords— Sparse signals, Compressive sensing, Robust
signal processing, Concentration measure, Signal recon-
struction, L-estimation

I. INTRODUCTION

In many signal processing applications a signal that
spans over the whole time domain is located within
much smaller regions in a transformation domain. If we
consider a discrete time-limited signal, it could contain
much smaller number of nonzero samples (coefficients)
in an arbitrary transformation domain (Fourier domain,
Discrete cosine domain, Discrete Wavelet domain,...). It
is said that this signal is sparse in this transformation
domain. Remaining transformation coefficients of the
signal are assumed to be equal to zero or could be
approximated by zero without making significant error.
If this condition is satisfied we can reconstruct the
signal without using the whole data set required by
the Shannon-Nyquist sampling theorem. Processing of
sparse signal with a large number of missing/unavailable
samples attracted significant interest in recent years.
This research area interacts with many other research
areas like signal processing, statistics, machine learning,
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coding. Compressive sensing/sampling (CS) is a field
which refers to a sparse approximation [1], [2]. The
crucial parameter in the approximation is the number
of available samples/measurements used in the recon-
struction. It is directly related to the number of non-zero
sparse coefficients [1], [2], [3].

Signal samples may be missing due to their physical
or measurements unavailability. Also, if some arbitrary
positioned samples of signal are so heavily corrupted by
disturbance, it was shown that it is better to omit them in
the analysis or processing (by L-estimation, for example
[4], [5], [6]). Both of these situations corresponds to the
CS approximation problems if the signal to be analyzed
is sparse and could be considered within the framework
of missing samples. Under the conditions defined within
the CS framework, the processing of a signal could be
performed with the remaining samples almost as in the
case if all missing/unavailable samples were available.

Several approaches to reconstruct these kind of signals
are introduced [7]-[27]. One group of them is based
on the gradient [27] and the other is based on the
matching pursuit approaches [25]. A common approach
to this problem is based on redefining it within the linear
programming (LP) as the bound constrained quadratic
program (BCQP). A measure of signal sparsity is used as
a minimization function in the sparse signal reconstruc-
tion. This measure is related to the number of nonzero
transformation coefficients. This kind of measure was
also used, especially in time-frequency analysis, for
measuring the concentration of a signal representation.
Since, the sparsity of a signal in a transformation do-
main is related to the number of nonzero samples, a
natural mathematical form to measure the number of
nonzero (significant) samples in a signal transform is
the norm-zero (l0 norm). This norm is sum of the signal
transformation absolute values raised to a zeroth power.
Since this power produces value one for any nonzero
transformation coefficient, the norm just counts the num-
ber of nonzero coefficients. However, this norm is very
sensitive to any kind of disturbance that can make zero
transformation values to be small but different from zero.
Thus more robust norms are used. The norm that may
be used for measuring the transformation concentration,
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being also less sensitive to disturbances, is the norm-
one (l1 norm). Since the norm-one is not differentiable
around the optimal point, the CS algorithms reformulate
problem under the norm-two (l2 norm) conditions before
the optimization is done.

In this paper we will present a gradient based al-
gorithm for reconstruction of sparse signals. Presented
algorithm uses an arbitrarily concentration measure in a
direct way, without redefining the problem to a quadratic
form and using liner programming tools. Since the signal
reconstruction is required in the time domain, the pro-
posed algorithm performs a search over the time domain
coefficients. The presented algorithm can reconstruct a
large number of missing samples in computationally
efficient way. The proposed method belongs to the class
of gradient based CS algorithms [10]. However, common
adaptive signal processing and the CS algorithms avoid
direct use of the measure based on the norm-one (or
similar norms between norm-zero and norm-one) since
it is not differentiable. The value of gradient cannot
be used as an indicator of the proximity of iteration
values to the algorithm solution. When the iterations
are close to the optimal point, gradient value remains
the same in norm-one and oscillate around the true
value. Taking sufficiently small step over the whole range
would not be a solution, due to extremely large number
of iterations over a very large set of variable. Here, the
adaptive gradient based approach is directly applied to
an appropriately chosen concentration measure. Since for
commonly used norm-one (or any other norm between
norm-zero and norm-one) based concentration measure
the derivatives are not continuous functions around the
minimum, a variable and self-adaptive step in the algo-
rithm is introduced. The presented algorithm, with this
adaptive step, reconstructs a large number of missing
samples in a simple and computationally efficient way
with arbitrary (computer defined) precision of the results.

The paper is organized as follows. After the introduc-
tion, a review and analysis of concentration measures
in the processing of sparse signals is done. A gradient
based algorithm, with its modifications is presented and
illustrated. The presented algorithm efficiency is demon-
strated on several examples with large number of missing
samples, including the samples missing in blocks and
the noisy signals. The basic idea for this algorithm was
presented in [28].

II. MEASURES AND DIRECT RECONSTRUCTION

Concentration measures of signal transforms were in-
tensively studied and used in the area of time-frequency
signal analysis and processing. They are used to find an
optimal, best concentrated time-frequency representation

of a signal. The most common and the oldest measure
introduced to measure concentration of time-frequency
representations is defined by Jones, Parks, Baraniuk,
Flandrin, Williams, et al. Concentration of a signal
transform X(k) is measured by

M(4/2)[X(k)] =

∑
k |X(k)|4(∑
k |X(k)|2

)2 . (1)

In general, it has been shown that any other ratio of
norms lp =

∑
k |X(k)|p and lq =

∑
k |X(k)|q, p >

q > 1, can also be used for measuring the concentration.
This kind of concentration measures were inspired by the
kurtosis as a measure of distribution peakedness. Similar
forms are obtained by using the Rényi measures.

Another direction to measure time-frequency represen-
tation concentration comes from a classical definition of
the time-limited signal duration, rather than measuring
signal peakedness. It was used in time-frequency analysis
in [24]. If a signal x(n) is time-limited, x(n) 6= 0
only for n ∈ [n1, n2 − 1], then the duration of x(n)
is d = n2 − n1. It can be written as

d = lim
p→∞

∑
n
|x(n)|1/p = ‖x(n)‖0 , (2)

where ‖x(n)‖0 denotes the norm-zero l0 of signal. In
reality, there is no sharp edge between x(n) 6= 0 and
x(n) = 0, so the value of d in (2) could, for very large
p (close to norm-zero), be sensitive to small values of
|x(n)|. The robustness may be achieved by using lower-
order forms, with 1 ≤ p <∞ (norms from l1 to l0).

Therefore, the concentration of a signal transform
X(k) = T [x(n)] can be measured with the function of
the form

Mp[T [x(n)]] =
1

N

∑
k
|X(k)|1/p , (3)

with 1 ≤ p < ∞, where N is total number of samples
in signal transform X(k). A lower value of (3) indicates
better concentrated distribution. For p = 1, it is the norm-
one form

M1[T [x(n)]] =
1

N

∑
k
|X(k)| = 1

N
‖X(k)‖1 .

Minimization of the norm-one of the short-time Fourier
transform (norm 1/2 of the spectrogram) is used in
[24] to optimize the window width and to produce the
best concentrated signal representation. The norm-one
is also the most commonly used in the CS algorithms
for measuring signal sparsity/concentration [1], [2], [17],
[18]. Here we will illustrate the influence of measure
parameter p on the results, including explanation why the
norms greater than one (p < 1, including l2 case) cannot
be used for measuring concentration. These norms could
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be used in the ratio forms (1) only, but not as the
stand-alone transformation measures, like in the case of
1 ≤ p <∞.

The simplest reconstruction algorithm will be based
on a direct search over all unavailable/missing sam-
ples values, by minimizing the concentration mea-
sure. If we consider a complete set of signal sam-
ples {x(1), x(2), ..., x(N − 1)} and M samples x(m1),
x(m2),...,x(mM ) are missing then the simplest algorithm
will be to search over all possible values of missing sam-
ples and find solution that minimizes the concentration
measure

min
x(m1),x(m2),...,x(mM )

{Mp[T [x(n)]]} .

From the remaining samples we can estimate the range
limits for the missing samples, |x(mk)| ≤ A. In the
direct search approach we can vary each missing sample
value from −A to A with a step 2A/(L − 1) where L
is the number of considered values within the selected
range. It is obvious that the reconstruction error is limited
by the step 2A/(L−1) used in the direct search. Number
of analyzed values for M coefficients is LM . Obviously,
the direct search can be used only for a small number
of missing samples, since for any reasonable accuracy
value of L is large.

One possible approach to reduce the number of oper-
ations in the direct search is to use a large step (small
L) in the first (rough) estimation, then to reduce the
step around the rough estimate of unavailable/missing
values x(m1), x(m2),..., x(mM ). This can be repeated
several times, until the desired accuracy is achieved. For
example, for A = 1 the accuracy of 0.001 is achieved
in one iteration if L = 2001. With, for example, 7
missing samples that would mean unacceptable number
of 20017 ∼ 1023 measure calculations. However, if the
first search is done with, for example L = 5, the rough
optimal values are found, and the procedure is repeated
with L = 5 values within the range determined by
the rough optimal in the first step. Repeating the same
procedure six more times, the accuracy better than 0.001
is reached with 7 × 57 ∼ 105 measure calculations. In
this way, we have been able to analyze (on an ordinary
PC, within a reasonable calculation time), signals with
up to 10 missing samples.

Although, computationally not efficient, the direct
search method is very important and helpful in the
analysis of various concentration measures with different
p, since all more advanced and efficient methods from
literature produce results with nice values of p only (for
example, p = 1, p = 1/2, or p = 2). The direct method
can be used with any p. Also, the probability that we find
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Fig. 1. Measure as a function of two missing sample values for
various norms. True values of missing samples are presented with
black lines

and stay in a local minimum is lower in the direct method
than when using other algorithms. Thus, we will use the
direct search to illustrate how the solution depends on
the chose norm (concentration measure form).

Example: Consider a discrete signal

x(n) = 2.5 sin(20πn/N) (4)

for n = 0, 1, . . . , N−1, and N = 256 is number of signal
samples. The case of two missing samples is presented
first, as the one appropriate for graphical illustration.
Direct search is performed over range [−5, 5] with step
0.01. The measure (3) is calculated for various values of
parameter p. Results are shown in Fig. 1. The measure
minimum is located on the true sample values for p ≥ 1
(norms l1 and lower). The measure minimum for p < 1
(including norm-two, l2, for p = 1/2) is not located at
the true signal values. Important case with two missing
samples and p = 1 is presented in Fig. 2.

In order to illustrate the measure influence on the mean
absolute error (MAE) the direct search is also performed
on the signal

x(n) = 3 sin(10πn/N) + 2 cos(30πn/N). (5)

Signal is composed of N = 256 samples while the cases
with 4 and 7 missing samples are analyzed. The results
with 10 and 15 iterations (to reduce the step size) are
presented in Fig. 3. We can see that:

1) p ≥ 1 (norms lq with q = 1/p ≤ 1, including
l1) produces accurate results with the MAE depending
on the direct search step only. The MAE can be further
reduced to the computer precision by reducing the step
size with more iterations.
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Fig. 3. Mean absolute error (MAE) in the coefficients estimation as a function of the norm l order for 4 missing samples (left) and 7
missing samples (right). The MAE is normalized with the number of missing samples.
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Fig. 2. Measure for p = 1 (norm l1) as a function of the missing
sample values

2) For p < 1 (norms lq with q > 1, including l2)
the bias dominate over the number of iterations, so the
results are almost independent from number of iterations.

Almost the same results are obtained for 4 and 7
missing samples cases.

Minimization Using l2 Norm: For p = 0.5 this
measure is equivalent with the well-known l2 norm used
in definitions of standard signal transforms [6]. For the
norm-two (l2 norm with p = 1/2) the MAE is of the
signal samples order, as shown in Fig. 3. The measure
with l2 norm has a minimum when the missing signal
samples values are set to zero.

This result was expected and can be proven for any
number of missing samples for signals and its trans-
forms satisfying the Parseval’s theorem. The Parserval’s
theorem states that the energy of a signal in the time
domain is the same as the energy of the Fourier transform
in the frequency domain. We know that signal has
the lowest energy when its missing samples are zero-
valued. Adding any other value of missing samples than
zero will increase the energy. The same holds in the
frequency domain since the energy in the frequency
domain equals the energy in the time domain, for this
norm. The minimization solution with the l2 norm is
therefore trivial. With this norm, we attempt to minimize

‖X‖l2 =

N−1∑
k=0

|X(k)|2 .

According to Parseval’s theorem we have ‖X‖l2 =

N
∑N−1

n=0 |x(n)|2. Since any value other than x(n) = 0
for the unavailable/missing signal samples, would in-
crease ‖X‖2, then the solution for the non-available
sample values, with respect to the l2 norm, are all zero
values. This was the reason why this norm was not used
as a concentration measure. This is also the reason why
this norm can not be used in the CS based algorithms
for the missing samples recovery.

III. ADAPTIVE GRADIENT BASED ALGORITHM

Due to a high computational complexity the direct
search could be used only if the number of missing sam-
ples M is small enough. It is the reason why many other,
more sophisticated, CS algorithms have been proposed.
Here, we will present one very simple and efficient
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algorithm, based on the direct use of the concentration
measure gradient. This algorithm is inspired by the
adaptive signal processing methods with a variable step
size. This algorithm is the form of gradient descent
algorithm where missing samples are estimated as the
ones producing best concentration measure of the signal
transformation in the sparse domain.

The norms that produce unbiased missing samples
values (like for example norms with p ≥ 1) are not
differentiable around the optimal point. It means that
the gradient method, if directly applied to the measure
based on, for example, the l1 norm (or any other norm
with p ≥ 1), will have a problem when approaching
the optimal point. Since the gradient amplitude in the
vicinity of the optimal point is almost constant for p = 1
(with a changing sign), the algorithm will not improve
the accuracy to a level lower than the accuracy defined by
the step in the gradient algorithm. This is the reason why
this approach has not been used and why appropriate
reformulation of this problem is done in literature. These
reformulations are done within the linear programming
by using the well known and available norm-two based
solutions. Here, we will not try to reformulate the
problem based on the l1 norm (or any other norm with
p ≥ 1) within the linear programming l2 framework,
but to use the gradient based adaptive algorithm, with
the step being appropriately adjusted (in a simple way)
around the optimal point. The algorithm presented here
will be a simple (and efficient) direct application of the
gradient based adaptive approach to the measures based
on norms that are not differentiable around the optimal
point, like the l1 norm.

As we can see from Fig. 2 measure with p = 1
is differentiable and convex everywhere except around
the point of minimum (the optimization solution point).
Therefore any algorithm applied directly to the measure
based on p = 1 will oscillate around the solution with
an amplitude defined by the step and measure form (this
will be illustrated within examples). If we take a very
small step for each of a large number of missing samples,
it will result in an unacceptable and large number of
iterations. Thus, when the steady oscillatory state (steady
state in mean absolute error) is detected we should
reduce the algorithm step, as we presented in the direct
search. In this way, the results with a high accuracy,
within an acceptable number of iterations, are achieved
with a variable self-adaptive step. This simple method is
able to produce the results with an error of the computer
precision level. Finally, in addition to the step variation,
this kind of algorithms enables that the parameter p
(the norm form itself) is changed to improve the initial
convergence of the algorithm.

A. Algorithm

Consider a discrete signal x(n) with some samples
that are not available. Assume that signal is sparse in a
transformation domain T [x(n)]. The algorithm for miss-
ing samples reconstruction is implemented as follows:
Step 0: Form the initial signal y(0)(n), where (0) means
that it is first iteration of algorithm, as:

y(0)(n) =

{
x(n) for available samples
0 for missing samples

Step 1: For each missing sample at ni we form two
signals y1(n) and y2(n) in each next iteration as

y
(k)
1 (n) =

{
y(k)(n) + ∆ for n = ni
y(k)(n) for n 6= ni

y
(k)
2 (n) =

{
y(k)(n)−∆ for n = ni
y(k)(n) for n 6= ni

where k is the iteration number. Constant ∆ is used to
determine whether the considered signal sample should
be decreased or increased.
Step 2: Estimate the differential of the signal transform
measure as

g(ni) =
Mp

[
T [y

(k)
1 (n)]

]
−Mp

[
T [y

(k)
2 (n)]

]
2∆

, (6)

whereMp is defined by (3). The differential of measure
is proportional to the error (y(k)(n)− x(n)).
Step 3: Form a gradient vector G with the same length
as signal x(n). At positions of available samples, this
vector has value G(n) = 0. At the positions of missing
samples it has values are g(ni) calculated by (6).
Step 4: Correct the values of signal y(n) iteratively by

y(k+1)(n) = y(k)(n)− µG(n)

where µ is a constant that affect performances of algo-
rithm (error and speed of convergence).

Repeating the presented iterative procedure, the miss-
ing values are going to converge to the true signal
values that produce minimal concentration measure in
the transformation domain. The algorithm performance
depend on parameters µ and ∆. Here we will use
measure that are close to norm-one based measure.

B. Varying and Adaptive Step Size

Since we use a difference of the measures to estimate
the gradient, when we approach to the optimal point, the
gradient with norm l1 will be constant and we will not be
able to approach the solution with a precision higher than
the step µ, multiplied by constant (gradient dependent
value). If we try to reduce the oscillations around the
true value by using smaller step from the beginning, then
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we will face with an unacceptable number of iterations.
However, this problem may be solved, by reducing the
step size, when we approach the stationary oscillations
zone. The best solution is to use an adaptive step size
in the algorithm. A large step size should be used when
the concentration measure is not close to its minimum
(in the starting iterations). The step is reduced as we
approach the concentration measure minimum. Next we
will present a method for adaptive parameters adjustment
that could be applied to the proposed algorithm in order
to reduce the error and to increase accuracy.

When the algorithm with constant parameters is close
to the optimal point the concentration measure tends
to have constant value in a few consecutive iterations.
This behavior will be detected by checking the dif-
ference between two consecutive measure calculations
M(k−1)

p −M(k)
p , where M(k)

p =Mp

[
T [y(k)(n)]

]
is the

sparsity measure of the reconstructed signal in the k-
th iteration. When it is smaller than, for example one
percent of the highest previously calculated measure
difference,

M(k−1)
p −M(k)

p ≤ P max
m=1,2,...,k−1

∣∣∣M(m−1)
p −M(m)

p

∣∣∣ ,
(7)

where P = 0.01, the algorithm parameters ∆ and µ
should be reduced, for example 10 times.

IV. NUMERICAL EXAMPLES

Example 1: Consider the signal

x(n) =3 sin(20πn/N) + 2 cos(60πn/N)

+ 0.5 sin(110πn/N). (8)

The total number of signal samples is N = 256. We
assume that 200 samples are missing or are not available.
Two cases will be considered. One when missing sam-
ples are randomly positioned and other when samples
are missing in randomly positioned blocks. We know
their positions, as well as that the signal is sparse in
the Fourier domain. Here we will perform the signal re-
construction with constant algorithm parameters ∆ = 2,
µ = 3, and p = 1.

The reconstruction results are shown in Fig. 4 and
Fig. 5. Since the constant algorithm parameters are used
the achieved error is small but still notable, Fig. 4(d),
Fig. 5(d). The residual error value is determined by the
algorithm parameters. Next we will analyze influence of
parameters ∆, µ, p on the number of iterations and mean
absolute error (MAE). The MAE calculated as

MAE(k) =
1

N

∑
n

|x(n)− y(k)(n)|

is shown in Fig. 6 for various algorithm setups. It can be
concluded that for constant algorithm parameters MAE
cannot be improved by increasing number of iterations
below some limit. Smaller values of ∆ and µ produce
lower MAE but with an increased number of iterations,
as presented in Fig. 6(a) and (b). The results obtained
for varying ∆ and µ are presented in Fig. 6(c). Here,
the parameters are changed at iterations k = 100 and
k = 200. We can see that with the same number of
iterations a smaller MAE is achieved. Therefore, the pa-
rameters ∆ and µ should be adaptive, resulting in MAE
presented in Fig. 6(d). Here we detect that after some
number of iterations the gradient algorithm does not
further improve sparsity of the reconstructed signal and
then we use smaller values of ∆ and µ for next iterations,
as described in the previous section. In the Fig. 6(e)
and (f) the absolute errors in two signal samples, during
iteration process, are shown for all previous cases of the
algorithm setup. It can be seen that this absolute errors
behave in a similar manner as the MAE in the above
subplots, with difference that they oscillate around the
steady value, due to nondifferentiable measure around
the solution. It is expected, as previously explained.

Example 2: From the previous example and theoretical
considerations we have concluded that adaptive algo-
rithm parameters should be used. The results obtained
by the proposed method for self-adaptive parameter
adjustment are presented in Fig. 7. The criterion (7)
for adaptive step size is applied on signal (8), with 150
randomly positioned missing signal samples. The starting
parameters for the adaptive algorithm were ∆ = 20 and
µ = 20. The graphics in Fig. 7(a) illustrates the MAE as
a function of the iteration number. Each color on these
graph matches one set of the parameters ∆ and µ. The
parameters were divided by 10 (and color in graph is
changed) when condition (7) is met.

The dashed color lines represent the MAE when the
algorithm with constant parameters is run from the same
initial point. The solid red line is for the MAE when
constant ∆ = 20 and µ = 20 are used. The solid green
line is for the MAE when ∆ = 20 and µ = 20 are used
at the beginning, while the algorithm has changed the
parameters to ∆ = 2 and µ = 2 when condition (7) is
met. The dashed green line represents the MAE if ∆ = 2
and µ = 2 are used from the first iteration. The solid blue
line is for the MAE when the algorithm parameters at
the beginning were ∆ = 20 and µ = 20, then changed to
∆ = 2 and µ = 2, and finally changed to ∆ = 0.2 and
µ = 0.2. The dashed blue line represents the MAE if
∆ = 0.2 and µ = 0.2 were used from the first iteration.
This process continues in the same way two more times
for Fig. 7(a) and 12 more times for Fig. 7(b).
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Fig. 4. Reconstruction example for signal with 200 missing samples at random positions. (a) original signal; (b) signal with missing samples
set to 0 and used as an input to the reconstruction algorithm; (c) reconstructed signal; (d) reconstruction error.
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Fig. 5. Reconstruction example for a signal with 200 missing samples grouped into three blocks. (a) original signal; (b) signal with missing
samples set to 0 and used as an input to the reconstruction algorithm; (c) reconstructed signal; (d) reconstruction error.
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Fig. 6. Mean absolute error (MAE) for constant algorithm parameters ∆ and µ (a) and (b); variable parameters and adaptive parameters
(c) and (d); absolute errors for two randomly chosen missing signal samples (e) and (f) for constant algorithm parameters (green and blue
line), variable (red line), and adaptive parameters (bright blue).
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Fig. 7. MAE for adaptive parameters using the measure-based criterion. Each color on graphics a) presents one set of parameters ∆ and
µ. Gray line presents the MAE with adaptive parameters. In b) the MAE is presented for the case when the algorithm parameters adaptation
is done up to the computer precision.

Note that from the behavior of dashed lines (constant
parameters) we can conclude that they achieved their
stationary state in 10 times more iterations than by using
the previous larger parameters. The green dashed line
achieved stationary MAE in about 50 iterations, blue in
about 500 iterations. So we can expect that the dashed
gray line will achieve its stationary MAE in about 5000
iterations, and so on.

We may conclude that the MAE would achieve 10−15

(what is the standard computer double precision error)
in about 1014 iterations with corresponding constant
parameters. Of course this is not acceptable in practical
calculations. As we can see, the same order of MAE
is achieved by the presented adaptive algorithm in a
relatively small number of iterations (about 350).

Reconstruction of Approximately Sparse Signals: Con-
sider a signal:

x(n) =3 sin(11.2πn/N) + 5 sin(50.6πn/N)

+ 3 cos(160.8πn/N). (9)

whose frequencies do not match frequency grid in the
DFT. By definition this signal is not sparse in the
common DFT domain. We will apply the presented
gradient algorithm with ∆ = 3 and µ = 4 on this
signal, when 70 signal samples are missing. Although the
analyzed signal is not sparse in a strict sense, satisfactory
reconstruction results are obtained. Fig. 8(a), (b) and (c)
present the original signal, the available signal samples,
and the reconstructed signal, respectively. In Fig. 8(d),
(e) and (f) the DFT coefficients of the original signal,
the available samples, and the reconstructed signal are
shown, respectively. As we can see, although the original

signal is not sparse (its frequencies do not match to the
frequency grid), the reconstruction is good.

Noisy Signals: The proposed algorithm is used for
analysis of a noisy signal. It has been assumed that a
sparse signal is corrupted by an additive Gaussian noise.
From the reconstruction based on a limited number
of samples we can come to a conclusion that in the
case of sparse noisy signals certain improvement can
be achieved if a number of signal samples are purposely
omitted and the reconstruction is performed. Reconstruc-
tion for 200 omitted samples is presented in Fig. 9.

From Fig. 10 we can see that the SNR improvement
higher than 2dB is achieved if we randomly omit 150 out
of 256 signal samples and perform the reconstruction.
Improvement could be significantly higher if we were
able to selectively remove the most damaged samples
[5].

Varying Concentration Measure: The number of iter-
ations for required accuracy can be further improved by
varying measure parameter p. Measures for p < 1 are
more suitable to gradient based reconstruction. However
measures for p < 1 do not converge to the true values of
missing samples. A possible solution is to use measures
with p slightly lower than 1 at the beginning of iterative
algorithm and to switch to p = 1 afterwards. Figure 11
illustrate the case when p = 0.9, ∆ = 1 and µ = 10 is
used for iterations 1 to 12, p = 0.95, ∆ = 2 and µ = 4
is used for iterations 13 to 22 and finally p = 1, ∆ = 1
and µ = 2 is used for iterations form 23 to 100. The
case with constant parameters p = 1, ∆ = 1 and µ = 2
is presented in the same figure.
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Fig. 8. Reconstruction of an approximately sparse signal whose frequencies do not match the frequency grid. a) original signal, b) available
signal, c) reconstructed signal, d) DFT of the original signal, e) DFT of the available signal, f) DFT of the reconstructed signal.

V. CONCLUSION

In this paper we have presented an algorithm for
unavailable/missing samples reconstruction in the sparse
signals. The algorithm is based on the concentration
measures used to quantify the signal sparsity. Since the
commonly used measures are not differentiable around
the optimal point, a criterion for variable algorithm
parameters is introduced. The presented, gradient-based,
adaptive step size algorithm is able to achieve the com-
puter precision accuracy in a simple and numerically
efficient way. The algorithm is applied to sparse sig-
nals, including the signals that are only approximately

sparse. An example with a noisy signal is considered,
demonstrating that some improvements in SNR may
be achieved by omitting a number of samples. This
algorithm can be applied on any concentration/sparsity
measure form. A simple example on this topic is also
presented.
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