
  

Abstract — In this paper we present a time-frequency 

plane tiling (splitting) approach for the local polynomial 

Fourier transform. Comparison of the proposed approach 

with the one based on the short-time Fourier transform is 

given. Advantages of the first order local polynomial Fourier 

transform in the localization and analysis of LFM signals are 

shown. Signals that can locally be approximated by the LFM 

signals are also considered. Theory is illustrated by several 

examples.  
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I. INTRODUCTION 

ANY  techniques and time-frequency (TF) tools 

have been developed during the past years in order 

to process signals with time-varying spectral content. The 

short-time Fourier transform (STFT), as a direct extension 

of the Fourier transform, is one of the basic TF 

representations. It is used in many applications due to its 

simplicity and linearity [1]-[4]. The instantaneous 

frequency is one of the central terms in the time-frequency 

signal analysis. For a general form of a signal, denoted by:  

 ( )( ) ( ) ,j t
x t A t e

φ
=  (1) 

with slow variations of amplitude, comparing to the phase 

variations, it is defined as the first derivative of signal's 

phase, i.e. ( ) '( )t tω φ= . The main STFT drawback is in its 

low concentration for signals with significant instanta-

neous frequency variations within a window [1]-[4]. 

In order to overcome this STFT disadvantage, numerous 

TF representations have been proposed. One of them is the 

local polynomial Fourier transform (LPFT). This 

transform is also a linear time-frequency representation 

with respect to the signal. Due to the additional parameters 

it can compensate signal variations and produce a highly 

concentrated representation for the signals which can be 

considered as polynomial phase signals within the analysis 

window [1], [4]-[9]. 

Time-frequency grid tiling by using various window 

forms in the STFT, including time-varying, frequency-

varying or time-frequency varying windows, is considered 

in time-frequency analysis in order to adjust the window 

form to the signal behavior, [1]-[4]. 

In this paper we present a time-frequency grid splitting 

by using time-varying window in the LPFT.  
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After introducing the basic theory concepts of the TF 

plane splitting for the STFT in Section 2, a discussion of 

this approach in the LPFT case is given in Section 3. 

Examples and conclusions are given in Sections 4 and 5. 

II. BASIC THEORY 

The basic idea behind the STFT is to apply the Fourier 

transform to a portion of the original signal, obtained by 

introducing a sliding window function ( )w t  which will 

localize, truncate (and weight) the analyzed signal ( )x t . 

The Fourier Transform is calculated for the localized part 

of the signal. It produces the spectral content of the portion 

of the analyzed signal within the time interval defined by 

the width of the window function [1]-[4]. The STFT is 

then obtained by sliding the window along the signal. 

Analytic formulation of the STFT is: 

 ( , ) ( ) ( )
j

STFT t x t w e d
τ

τ τ τ

∞

− Ω

−∞

Ω = +∫ . (2) 

Discrete formulation of this representation is given by: 

 
2/2
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N j mk
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m N
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π

−
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The STFT calculated by using equation (3) uses signal 

samples from the interval [ / 2, / 2 1]n N n N− + − , where 

N  denotes the window width. The window width may be 

constant or varying, for different time instants. In a matrix 

form, equation (3) can be written as [4]: 

 ( ) ( )
i i i

N i N N i
n n=S W x , (4) 

where a rectangular window of width 
i

N  is used for time 

instants 
i
n . In equation (4) ( )

i
N i

nS  represents a column 

vector of elements ( , )
i

N i
S n k , / 2,..., / 2 1

i i
k N N= − − , 

while ( )
i

N i
nx  is a column vector consisted of signal 

samples ( )
i

x n m+ , / 2,..., / 2 1
i i

m N N= − − . The 

notation
i

N
W  is used for a DFT matrix whose elements are 

exp( 2 / )
i

j mk Nπ− .  

 In the case of time-varying window, where the window 

width 
i

N  changes in time instants 
i
n , 0,1,...i K= , the 

non-overlapping STFT has a form [4]: 

 =S Wxɶ , (5) 

where Wɶ  is a matrix: 
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The vector [ (0), (1),..., ( 1)]Tx x x M= −x  includes all signal 

samples, and the column vector S  includes vectors 

( )
i

N i
nS  given by (4), for all i . One coefficient ( , )

i
N i

S n k  

in the vector ( )
i

N i
nS  is a block in the time frequency 

plane, which covers 
i

N  signal samples from the interval 

[ / 2, / 2 1]
i i i i
n N n N− + − , calculated by using a 

rectangular window centered at time instant 
i
n . In the 

frequency direction, block is positioned at 2 /
i

k Nπ , while 

it covers /
i

M N  DFT samples. Number of the 

representation's coefficients is the same as the number of 

the signal samples in this case. Relations (4) and (5) give a 

formal mathematical background for various time-

frequency plane splitting approaches by using the time-

varying windows [1]-[4].  

 For signals with a polynomial phase, the polynomial 

Fourier transform can be used in order to achieve a high 

concentration in the frequency domain [5]-[8]. If a 

nonstationary signal can be considered as a polynomial 

phase signal within the analysis window, the LPFT can be 

used in order to achieve a higher concentration [3],[5]-[8]. 

The LPFT can be considered as a higher-order 

generalization of the STFT. As in the STFT, the LPFT is a 

linear time-frequency representation which does not 

produce cross-terms when ( )x t  is a multicomponent 

signal. The M-th order LPFT is defined by [3],[5]-[8]: 

 ( , )
( , ; ) ( ) ( ) ,

j j
LPFT t x t w e e d
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τ τ τ

∞
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where, 
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is ( )M 1+ -th order polynomial with variable τ  and  

1 2
( , ,..., )

M
Ω = Ω Ω Ω

��

 is the polynomial coefficient vector. 

The number of coefficients in the exponent determines the 

order of the representation. The zero order LPFT is equal 

to the STFT. It is important to emphasize that in our 

analysis and examples, the LPFT of first order will be 

used. Its analytic form is: 

 

2

1
2

1
( , ; ) ( ) ( )

j
j

LPFT t x t e e d

τ

τ

τ ω τ τ

∞
− Ω

− Ω

−∞

Ω Ω = +∫ , (9) 

where 
1
Ω

 
represents a coefficient in modulation part of 

the representation. A discrete form of the M-th order LPFT 

is: 
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In order to calculate (10) by using the fast Fourier 

transform algorithms, this discrete form can be written as: 
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where [ ]DFT ⋅  is a Fourier transform operator.  

III. TIME-FREQUENCY PLANE SPLITTING FOR THE LPFT 

The first order LPFT calculation in the case of LFM 

signals can be considered as a demodulation of the signal, 

within the window, with 2

1
exp( / 2)j τ− Ω , and a Fourier 

transform calculation of the demodulated signal, in order 

to achieve a concentration of pure sinusoid. It is known 

that this demodulation is equivalent to a rotation in the 

time-frequency plane [3],[9]. The coefficient 
1
Ω  can be 

directly related with the rotation angle. In the STFT 

calculation, the rotation angle is zero giving a high 

concentration in the case of pure sinusoidal signals. It is 

not the case with LFM signals. The LPFT calculation of 

the LFM signal can be considered as a STFT calculation of 

a pure sinusoid, rotated by an appropriate angle. For an 

arbitrary LFM signal, the first order LPFT, given by (9), is 

capable of adjusting the parameters in the way that the 

concentration equivalent to a pure sinusoid in the STFT is 

achieved. 

In order to find the relation between the coefficient 
1
Ω  

and the rotation angle, both axes must have the same units. 

Discrete forms of the signal and the window, with 

corresponding STFT and LPFT, will be considered. For a 

window of length N , it is natural that both time and 

frequency axes are consisted of N discrete points. Then we 

observe the LFM signal and calculate how its 

instantaneous frequency changes within the interval 

covered by the window, and after that, the instantaneous 

frequency (which is discrete in the interval of 2π ) is 

scaled on a discrete interval of the length N . By 

observing changes of the instantaneous frequency, within 

the window, we came to the conclusion that the tangent of 

the angle is equal to the ratio of the normalized 

instantaneous frequency (indexed, because it is 

transformed on index of DFT) and the window length, i.e.: 

 1tan( )
2

N
α

π

Ω
=  (12)  

where 
1
Ω  is the coefficient of the first order LPFT, N  is 

the window length, andα  is the rotation angle. Optimal 

direction can be calculated using the signal moments 

[3],[9].  

The above considerations of the LPFT and the STFT 

calculations are used to present a generalization of the 

time-frequency plane splitting for the LPFT case. 

Theoretical consideration given for relations (4) and (5) 

can be applied to the LPFT in the same manner. This kind 

of analysis is equivalent to the windowed fractional 

Fourier transform approach presented in [9]. 

 



 

Fig. 1. The LPFT grid for the LFM signal 

 

Figure 1. gives an illustration for an LFM signal in a 

time-frequency grid of the first order LPFT (or windowed 

fractional Fourier transform). A rectangular window with 

fixed size 4N =  is used for the illustration. The angle 

given by (12) is the angle between the part of signal 

(coefficient) which has the most significant value, and the 

horizontal axis. It refers to a window, which has a 

rectangular shape just like in the case of the window in 

STFT. The only difference is in its possibility of rotation, 

which allows finding a perfect match with the signal, i.e. 

with the angle (12), which gives the best concentration. 

The coefficients in this example are calculated by 

 [ ]
20.6994( 2:1) / 2(2, ) 1,0,0,0 j

LPFT k DFT e
−

=  , (13) 

where 
{ 2, 1,0,1}.k∈ − −

 

IV. EXAMPLES 

Examples that illustrate the time-frequency plane 

splitting in the STFT and in the first order LPFT, in the 

case of LFM signals, are presented in this section. 

Differences between the STFT and the presented LPFT 

approach are emphasized. The signals used in these 

examples are synthetic. Their analytic form is: 

 [ ]
2

1
( / 2: / 2 1) /2(1), (2),..., ( )

j N N
x DFT x x x N e

Ω − −
=  , (14) 

where 
1
ω  represents modulation coefficient, and N  is the 

number of samples. 

Example 1. A signal of 128 samples, with five LFM 

parts appearing in different time intervals, is considered. 

The window lengths are 32, 16, 32, 16, and 32 

respectively. Different window sizes are chosen for 

different LFM parts of the signal. Two angles different 

from zero, which have the same values but different signs 

are obtained by using (12). They are applied for different 

window lengths and corresponding signal parts. The 

angles are given as the LPFT coefficients in Table 1.  

Two parts of the time-frequency grid where a narrower 

window of 16 samples is used to illustrate the advantage of 

the presented LPFT grid over the STFT grid, from the 

concentration point of view (number of significant values). 

These grids are shown in Fig. 2.1 and Fig 2.2. 

 

 

TABLE 1. LPFT COEFFICIENTS FROM EXAMPLE 1 

Signal Part 1 2 3 4 5 

Ω1 0 0.0062 0 -0.0062 0 

 

 
Fig. 2. The STFT grid for the signal from Example 1. 

 

 
 Fig 3. The LPFT grid for the signal from Example 1. 

 

Example 2. A signal of 48 samples is considered. The 

window lengths used for different time intervals are: 4, 4, 

4, 4, 16, 8, 8, respectively. The signal is consisted of three 

LFM parts (two of them with 
1
ω ≠ 0). Three different 

angles are obtained by using (12). The corresponding 

time-frequency grids are shown in Fig 3.1 and Fig. 3.2. 

Comparing two different grids, a smaller number of 

significant coefficients is obtained by using the LPFT 

approach. 

 
TABLE 2. LPFT COEFFICIENTS FROM EXAMPLE 2 

S. Part 1 2 3 4 5 6 7 

Ω1 4.83 4.1 -4.1 -4.83 0 -0.4354 0 

 

Example 3. Approximation of the time-frequency grid 

for a sinusoidaly modulated signal, by using the LFM 

signal coefficients is shown in Fig. 4.1 and 4.2. The 

sinusoidal FM signal is created by using nine different 

LFM signals. The resulting signal is consisted of 40 

samples.  

The window lengths are constant and their value is 8. 



 

Since there are ten LFM parts, ten different angles are 

used. It is obvious that the STFT can not handle with parts 

of signal which have LFM nature, as it can the LPFT. For 

the LFM parts the STFT produced a larger number of 

significant values than the LPFT. In those parts of signal 

where the signal's angle (linear modulation coefficient) has 

a zero value (pure sinusoid), both the STFT and the first 

order LPFT give the same result, as expected (since the 

LPFT is a generalisation of the STFT). The LPFT gives 

the same result (one significant value) for the LFM signals 

as in the case of pure sinusoids. The approach presented 

here may be further generalized for any instantaneous 

frequency law, as described in [10]. 

 
Fig. 4. The STFT grid for the signal from Example 2. 

 
TABLE 3. LPFT COEFFICIENTS FROM EXAMPLE 3 

S.P 1 2 3 4 5 6 7 8 9 

Ω1 -3.7 -2.1 0 2.1 3.7 3.7 2.1 0 -3.7 

 
Fig. 5. The LPFT grid for the signal from Example 2. 

V. CONCLUSION 

This paper extends the time-frequency varying tiling 

approach from the STFT to the first order LPFT (or 

windowed fractional Fourier transform) plane. The LPFT 

window angle is related with the modulation coefficient of 

a LFM signal, and the LPFT is calculated by using the 

STFT time-frequency grid tiling approach [1]-[4]. 

Presentation is supported by appropriate examples, 

comparing the STFT and the LPFT based results for 

different signals consisted of time-varying components. In 

terms of signals with the LFM components, the STFT 

gives a larger number of nonzero coefficients than the 

LPFT based analysis. This kind of presentation opens 

many possibilities for future research, including the 

analysis of sparse LFM signals, as a potential for the 

removal of redundant information from representations.  

 
Fig. 6. The STFT grid for Example 3. 

       
Fig. 7. The LPFT grid for Example 3. 
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