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Abstract—In the L-estimation and compressive sensing some
arbitrarily positioned samples of the signal are either so heavily
corrupted by disturbances that it is better to omit them in the
analysis or they are unavailable. If the considered signal with
missing samples is sparse then we are still able to reconstruct
these samples by using the well know reconstruction algorithms.
In this paper we will illustrate different measures for the signal
concentration and propose a simple adaptive algorithm, applied
on these measures, without reformulating the reconstruction
problem within the standard linear programming form. Direct
application of the gradient on nondifferentiable forms of measures
lead to an efficient variable step size algorithm. The results are
illustrated on the examples.
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I. INTRODUCTION

In many signal processing applications a signal that spans
over the whole time domain is located within much smaller
regions in a transformation domain. Then it is said that this
signal is sparse in this transformation domain. The most
common case of such a signal is a sum of discrete time
sinusoidal signals, when the number of sinusoids is much
smaller than the number of signal samples in the time domain.
For this kind of signals we do not need all samples in the time
domain to reconstruct much smaller number of samples in the
frequency domain. Of course, the Fourier domain is just one
of possible domains to transform a signal. The samples could
be missed due to their physical or measurements unavailability
(like in compressive sensing). In applications it could happen
that some arbitrarily positioned samples of the signal are so
heavily corrupted by disturbances that it is better to omit them
in the analysis (for example, using the L-estimation). In both
cases the signals could be considered within the framework of
missing samples. If the considered signal is sparse then we will
still be able to reconstruct the missing/omitted samples. Thus,
under some conditions, the processing could be performed with
the remaining samples almost as in the case if missing samples
were available. Of course, a priori information about the nature
of the analyzed signal, its sparsity in a known domain, is used.

Several approaches to the analysis of this kind of signals
(based on gradient, homotopy, norm-one (/; magic), itera-
tive thresholding, matching pursuit,...) are introduced [1]-[17].
Sparsity of a signal in a transformation domain is related to
the number of nonzero samples in that domain. A natural
mathematical tool to measure the number of nonzero (sig-
nificant) samples in a signal transform is the so called zero-
norm. However, the zero-norm is very sensitive to any kind of
disturbance, more robust norms are used.

In this paper we will first analyze common concentration
measures with respect to their possible applications to the
processing of sparse signals with missing/omitted samples.
Then, a gradient based algorithm for the determination of
a large number of unavailable samples is presented. The
proposed method belongs to the class of gradient based CS
algorithms [5]. However, here the minimization problems
is not reformulated within the standard linear programming
framework based on the norm-two (l3) forms. The common
adaptive signal processing and the CS algorithms avoid direct
use of the measure based on the norm-one, since it is not
differentiable and the value of gradient can not be used as
measure of the proximity of the algorithm solution. When
the iterations are close to the optimal point, gradient value
remains the same and oscillate around the true value. Taking
sufficiently small step over the whole range would not be a
solution, due to extremely large number of iterations over a
very large set of variable. This method would not be more
efficient than the direct search based one. Here, we present a
simple algorithm, applied directly to the appropriately chosen
concentration measure. In examples we used norm-one based
measure. Since the derivatives are not continuous functions
around the minimum, in this algorithm, a variable and self-
adaptive step is introduced. The algorithm applied on the
measure based on norm-one, with adaptive step, reconstructs a
large number of missing samples in a computationally efficient
way with arbitrary (computer defined) precision of the results.

The paper is organized as follows. After the introduction,
a review and analysis of concentration measures in the pro-
cessing of sparse signals is done. A gradient based algorithm,
with its modifications is presented and illustrated.

II. MEASURES

Concentration measures of signal transforms were inten-
sively studied in the area of time-frequency analysis. They are
used to find an optimal, best concentrated signal representation.
Two of these concentration measures will be shortly reviewed
before we proceed with the analysis of measure concentration
form to reconstruction of missing signal samples.

The most common and the oldest measure introduced to
measure concentration of time-frequency representations was
in the form of the ratio of the fourth to the second-order
norms of the short-time Fourier transforms (defined and used
by Jones, Parks, Baraniuk, Flandrin, Williams, et al.). In terms
of the DFT it reads
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In general, it has been shown that any other ratio of norms
l, = >4 |X (k)" /N and g, p > ¢ > 1, can also be used
for measuring the concentration. This kind of concentration
measures were inspired by the kurtosis as a measure of dis-
tribution peakedness. Similar forms are obtained by using the
Rényi measures. When there are two or more components of
approximately equal energies, whose concentrations are very
different, this norm-based measures will favor the distribution
with a “peaky” component, due to raising of distribution
values to a high power. It means that if one component is
extremely highly concentrated, and all the others are very
poorly concentrated, then the measure will not look for a trade-
off, when all components are well concentrated. In order to
deal with this kind of problems, common in signal analysis,
this kind of concentration measures are later defined and
applied to smaller, local transformation regions.

Another direction to measure time-frequency representation
concentration comes from a classical definition of the time-
limited signal duration, rather than measuring signal peaked-
ness. It was used in time-frequency analysis in [21]. If a
signal z(n), is time-limited to the interval [ny,ng — 1], that is,
x(n) # 0 only for n € [ny,ne — 1], then the duration of x(n)
is d = ny — ny. It can be written as

d=lm 37l = [z(lly. @

where ||z(n)||, denotes the norm-zero [y of signal. In reality,
there is no sharp edge between z(n) # 0 and x(n) = 0, so
the value of d in (2) could, for very large p, be sensitive to
small values of |z(n)|. The robustness may be achieved by
using lower-order forms, with p > 1.

The concentration of a signal transform X (k) = T'[x(n)]
can be measured with the function of the form
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with p > 1, where N is total number of samples in signal
transform X (k). A lower value of (3) indicates better con-
centrated distribution. For p = 1/2 measure M /5[T[z(n)]]
reduces to norm 2. For p = 1, it is the norm-one form

MTla(m)] = 5 32 1XE) = 51X,

In the next section we will illustrate the influence of measure
parameter p on the results.

III. DIRECT RECONSTRUCTION AND MEASURES
PERFORMANCE

The simplest reconstruction algorithm will be based on a
direct search over all missing samples values. If we consider
the complete set of signal samples

{z(1),2(2),...,2(N - 1)}

and M samples xz(my), z(mz),...,x(mps) are missing then
the simplest algorithm will be to search over all possible
values of missing samples and find solution that minimize used
concentration measure

M,[Tlz(n)]]} -

min
z(mq),z(mz2),...,x(mur)

From the remaining samples we can estimate range for missing
samples |z(my)| < A. In the direct search approach we can
vary each missing sample value from —A to A with step
2A/(L — 1) where L is number of considered values within
selected range. It is obvious that the reconstruction error is
limited with the step used in direct search. Number of analyzed
values is LM, Obviously, this can be used for a small number
of missing samples only.

One possible approach to reduce the number of operations
in the direct search is to use a large step in the first, rough,
estimation, then to reduce the step around the rough estimate
of x(my), x(ms2),..., x(myps). This can be repeated few times,
until the desired accuracy is achieved. For example, for A = 1
the accuracy of 0.001 achieved with L = 2001. With 7
missing samples that would mean unacceptable number of
20017 ~ 128 x 102! measure calculations. However, if the
first search is done with L = 5, the rough optimal is found,
and the procedure is repeated with L = 5 values within
range determined by rough optimal and previously used step.
Repeating the same procedure six more times, the accuracy
better than 0.001 is reached with 7 x 57 ~ 6 x 10° measure
calculations. In this way, we were able to analyze (on an
ordinary PC, within a reasonable calculation time), signals with
up to 10 missing samples.

Although, computationally not efficient, the direct method
is very important and helpful in the analysis of various con-
centration measures with different p, since all more efficient
methods produce results with nice values of p only (for
example, p = 1, p = 1/2, or p = 2). The direct method
can be used with any p. Also, the probability that we find a
local minimum is lower in the direct method than when using,
for example, the gradient based algorithms.

Example: Consider a discrete signal
x(n) = 2.5sin(20mn/N) 4)

forn =0,1,...,N — 1, and N = 256 is number of signal
samples. The cases with one and two missing samples are
analyzed. Direct search is performed over range [—5, 5] with
step 0.01. We calculated measure (3) for various values of
parameter p. Results are shown in Fig. 1 for one, and Fig. 2
for two missing samples. The measure minimum is located
on the true sample values for p > 1. Case with two missing
samples and p = 1 is presented in Fig. 3.

In order to illustrate the measure influence on the mean
absolute error (MAE) the direct search is performed on the
signal

x(n) =3sin(20mn/N) + 2 cos(60mn/N)
+0.5sin(1107n/N). )

Signal is composed of N = 256 samples while the cases of 4
and 7 missing samples are analyzed. The results with 10 and
15 iterations are presented in Fig. 4. We can see that the error
for p > 1 (norms I, with ¢ < 1) produce accurate results with
MAE depending only on the direct search step. For p < 1
(norms [, with g > 1) the bias dominate over the number of
iterations, so the results are almost independent from number
of iterations. We see that almost same results are obtained for
4 and 7 missing samples cases.



o -norm /2 o -norm /3/2
3 3
& 0.5 & 05
(0] (0]
= p=0. = p=0.66
0 0
-5 0 5 -5 0 5
Sample value Sample value
1 1
© -norm I1 © norm 11/4
3 3
& 05 & 05
(0] (0]
> p=1.00 > p=4.00
0 0
-5 0 5 -5 0 5

Sample value Sample value

Fig. 1. Measure as function of missing sample value for various p. True value
of missing sample is presented with vertical line while measure minimum is
denoted by circle. Measure values are normalized.
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Fig. 2. Measure as function of missing sample values for various p. True

values of missing samples are presented with black lines
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Fig. 3. Measure for p = 1 as function of missing sample values

For p = 0.5 this measure is equivalent with well-known
l2 norm. For the norm-two (l2 norm with p = 1/2) the MAE
is of the signal samples order. As shown in Fig. 1 and Fig. 2
this measure has minimum when the missing signal samples
values are set to zero. This result was expected because of the
Parserval’s theorem stating that the energy of a signal in the
time domain is same as the energy in the frequency domain.
We know that signal has the lowest energy when its samples
are zero-valued. The same holds in the frequency domain. The
minimization solution with the l» norm is trivial. With this
norm, we attempt to minimize

N-1

2
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According to Parseval’s theorem || X[, = NZT]:/:_OI lz(n)]?.
Since any value other than z(n) = O for the non-available
(missing) signal samples, would increase |X||,, then the
solution for the non-available sample values, with respect to
the [ norm, is 0. This was the reason why this norm was not
used as a concentration measure.

IV. ADAPTIVE GRADIENT BASED ALGORITHM

Due to high computational complexity the direct search
could be used only if number of missing samples M is small
enough. Alternative approach based on concentration measure
gradient is presented. Algorithm is form of gradient descent
algorithm where missing samples are estimated as the ones
producing best concentration in sparse domain. Note that the
norms that produce unbiased missing samples values (like for
example norm p = 1) are not differentiable around the optimal
point.

It means that the gradient method directly applied to the
measure based on /; norm will be able to approach the optimal
point, but since the gradient amplitude in the vicinity of the
optimal point is almost constant (with changing sign), the
algorithm will not improve the accuracy to a level lower than
the one defined by the step in the gradient algorithm. This
is the reason why appropriate reformulation of the norm-one
problem is done within linear programming by using well
known and widely used norm-two solutions. Here, we will
present an algorithm that is directly applied to the norm-one
based measures. As we can see from Fig. 3 measure with p = 1
is differentiable and convex everywhere except around the
point of minimum (the optimization solution point). Therefore
any algorithm applied directly to the measure based on p =1
will oscillate around the solution with amplitude defined by
the step and measure form. If we take a very small step for
each of a large number of missing samples, it will result in
an unacceptable and large number of iterations. Thus, when
the steady oscillatory state (steady state in mean) is detected
we should reduce the algorithm step, as in the direct search.
In order to produce results with a high accuracy, within an
acceptable number of iterations, we will present a variable step
version of the algorithm, with a possibility of a self-adaptive
step. This method will produce the results with an error of
the computer precision level. Finally, in addition to the step
variation the parameter p (the norm itself) can be changed to
improve the initial convergence of the algorithm.
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Fig. 4. Mean absolute error in the coefficients estimation as function of
concentration measure parameter (various norms [) for 4 missing samples
(dashed line) and for 7 missing samples (solid line). MAE is normalized with
number of missing samples.

Consider discrete signal x(n) where some samples are
unavailable. Assume that signal is sparse in transformation
domain 7. Algorithm for missing samples reconstruction is
implemented as follows:

Step 0: Form signal 3(°)(n), where (0) means that it is first
iteration of algorithm, as:

O () = x(n)  for available samples
vom=10 for missing samples

Step 1: For each missing sample n; we form two signals y; (n)
and yo(n) as

(k) — n
(k) y\V(n)+ A for n =n;
yi(n) = { y(k)(n) for n # n;
(k) _ — n

&, ~ | y¥(n)-A for n =n;
Yys ' (n) { y(k)(n) for n # n;

where k is iteration number. Constant A is used to determine
whether sample could be decreased or increased.

Step 2: Estimate differential of measure as

My [TlyP 0] = My, [ T18” ()]

g(ni) = 9A )

where M, is defined by (3). Differential of measure is
proportional to the error (y¥)(n) — x(n)).

Step 3: Form a gradient vector G with same length as signal
z(n). At positions of available samples this vector has value
G(n) = 0. At the positions of missing samples it has values
calculated by (6).

Step 4: Correct the values of signal y(n) iteratively by
y " (n) = y®(n) - pG(n)

where p is constant that affect performances of algorithm
(error and speed of convergence).
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Fig. 5. Reconstruction example for signal with 200 missing samples. (a)
original signal; (b) signal with missing samples set to O used as input to
reconstruction algorithm; (c) reconstructed signal.

Repeating presented iterative procedure, missing values
are going to converge to real values. Algorithm performance
depend on parameters 4 and A. Here we use p = 1.

Varying and Adaptive Step Size: Since we use a difference
of measures to estimate the gradient, when we approach to the
optimal point the gradient with norm [; will be constant and we
will not be able to approach the solution with precision higher
than the step p multiplied by constant, gradient dependent
value. If we try to reduce this bias by using smaller step,
then we will face with an unacceptable number of iterations.
However, this problem may be solved, by reducing the step
size, when we approach the stationary bias zone. By defining
self adaptive procedure for reducing the step size, we may
achieve error of computer precision order, within a small
number of iterations. One possible approach is that for each
iteration we calculate Dy, as a mean absolute value of uG(n)
and reduce p**t1) = ;%) /5 and A+ = AR) /5 whenever
small change, |Dy — Dy_1| < 0.025|Dj_1], is detected.

Example: Consider the signal (5). Signal is composed of
N = 256 samples while 200 samples are missing or not
available. We know their positions, as well as that the signal
is sparse in the Fourier domain. Reconstruction is done by the
presented algorithm. The reconstruction results are shown in
Fig. 5.

Let us now analyze parameters A, p, p and number of
iterations in the proposed algorithm for considered example.
Mean absolute error calculated as

MAE(k) = % > lx(n) —y™ (n)]

is shown in Fig. 6 for various algorithm setups. It can be
concluded that for constant algorithm parameters MAE can-
not be improved below some limit by increasing number of
iterations. Smaller values of A and p produce lower MAE
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Fig. 6. Mean absolute reconstruction error for constant algorithm parameters A and p (a) and (b); variable parameters and adaptive parameters (c) and (d);
absolute errors for two random missing signal samples (e) and (f) for constant algorithm parameters (green and blue line), variable (red line), and adaptive
parameters (bright blue).
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Fig. 7. Reconstruction mean absolute error for constant and varying algorithm
parameters.

but with an increased number of iterations, as presented in
Fig. 6(a) and (b). The results obtained for varying A and p
are presented in Fig. 6(c). Here, the parameters are changed at
iterations £ = 100 and k£ = 200. We can see that with the same
number of iterations a smaller MAE is achieved. Parameters
A and p can be adaptive, resulting in MAE presented in
Fig. 6(d). Here we detect that after some number of iterations
the gradient algorithm does not further improve sparsity of the
reconstructed signal and then we use smaller values of A and
v for next iterations. In the Fig. 6(e) and (f) the absolute errors
in two signal samples, during iteration process, are shown for
all previous cases of the algorithm setup. It can be seen that
this absolute errors behave in a similar manner as the MAE in
the above subplots, with difference that they oscillate around
the steady value, due to nondifferentiable measure around the
solution (as expected and earlier explained).

Number of iterations for required accuracy can be further
improved by varying measure parameter p. Measures for p < 1
are more suitable to gradient based reconstruction. However
measures for p < 1 do not converge to the true values of
missing samples. A possible solution is to use measures with
p < 1 at the beginning of iterative algorithm and to switch to
p = 1 afterwards. Figure 7 illustrate the case when p = 0.9,
A =1 and p = 10 is used for iterations 1 to 12, p = 0.95,
A =2 and p = 4 is used for iterations 13 to 22 and finally
p=1, A =1and y = 2 is used for iterations form 23 to 100.
The case with constant parameters p = 1, A =1 and p = 2
is presented in the same figure. It is notable that the algorithm
with varying parameters converges faster.

V. CONCLUSION

In this paper we have analyzed the signal concentration
measures application to missing samples reconstruction prob-
lem. It has been shown that the measures close to norm-one
can be efficiently used. In addition to the analysis of direct
search, an algorithm for the signal reconstruction is presented
and analyzed. Various setups of the algorithm parameters
are considered including: constant, varying and self-adaptive
parameter selection. It has been shown that the algorithm
convergence can be significantly improved by using varying
measure order.
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