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Abstract—A method for accurate and efficient parameters
estimation and decomposition of sinusoidally modulated signals
is presented. This kind of signals is of special interest in
radars and communications. The proposed method is based
on the inverse Radon transform property to transform a two-
dimensional sinusoidal pattern into a single point in a two-
dimensional plane. Theory is illustrated on signals with one
and more components, including noise and disturbances, as well
as time-frequency patterns that deviate from sinusoidal form,
including the cases when some samples are not available.
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I. INTRODUCTION

Sinusoidally modulated signals appear in many applica-
tions, like in radars and communications. In radar signal
processing fast rotating, vibrating or oscillating parts reflect a
signal causing micro-Doppler effect in a form of sinusoidally
modulated signal. In practice it is very important to extract,
decompose, and estimate parameters of this kind of signals,
since they are easily related to the physical dimensions and
other properties of moving objects. Most of the techniques used
for the detection, extraction and parameters estimation of these
signals are based on two approaches. One is the parametric ap-
proach when the form of signal, we are looking for, is assumed
and we try to extract a desired component by matching its
parameters [1],[2]. Other approach is based on the L-statistics
and time-frequency analysis to extract non-stationary features
from the time-frequency representation of a composite signal.
This method just separate stationary and non-stationary parts,
but it does not separate non-stationary components within the
signal [3],[4]. Here we will present a method for analysis
of sinusoidally modulated components based on the inverse
Radon transform of signal’s time-frequency representation.
The Radon transform, widely used in computer imaging appli-
cations, is also used in time-frequency for projecting Wigner
distribution in order to detect linear frequency modulated
signals [5]-[9]. Here, we will use the inverse Radon transform
rather than the Radon transform. Note, that the behavior of
the direct and inverse Radon transform is completely different,
in contrast, for example, to the Fourier transform [10]. Since
the Radon transform of a two dimensional signal containing
a two-dimensional delta function is a sinusoidal pattern with
amplitude corresponding to the distance of the point from
the origin and the initial phase corresponding to the phase of
the point position, then it is obvious that a sinusoidal pattern
in the time-frequency plane (produced by a time-frequency
representation of sinusoidally modulated signal) will project
to a two-dimensional delta in the inverse Radon transform.

This is obviously an optimal transform for a two-dimensional
sinusoidal pattern, since all signal energy from the time-
frequency domain will be projected in a single point in inverse
Radon transform domain. The method will be introduced on
monocomponent sinusoidally modulated signal. Then it will be
extended to noisy and multicomponent signals that include one
or more sinusoidal patterns. Finally the method will be applied
to periodic and non-periodic patterns that are not produced by
a sinusoidally modulated signals at all. The examples illustrate
the efficiency of the presented method.

The paper is organized as follows. The inverse Radon
transform is reviewed in Section II. A method for estimation
of the sinusoidally modulated signal parameters is the topic of
Section III.

II. RADON AND INVERSE RADON TRANSFORM

A projection of a two-dimensional function f(x, y) onto
the x-axis is

Rf (x) =

∞∫
−∞

f(x, y)dy. (1)

A rotated version of a two-dimensional signal may be de-
scribed in a rotated coordinate system, by a coordinate rotation
transform. For an angle α, it reads[

ξ
ζ

]
=

[
cos(α) sin(α)
− sin(α) cos(α)

] [
x
y

]
.

The projection of a function f(x, y) onto ξ, with a varying
rotation angle α, is the Radon transform of the signal f(x, y)

Rf (ξ, α) =

∞∫
−∞

f(ξ, ζ)dζ =

∞∫
−∞

∞∫
−∞

f(λ, ζ)δ(λ− ξ)dλdζ. (2)

Let us consider simple setup where the analyzed image is two-
dimensional delta function located at the point f(x, y) = δ(x−
x0)δ(y−y0) in x, y domain. Projection of f(x, y) onto x axis
is

Rf (x, 0) =

∞∫
−∞

f(x, y)dy = δ(x− x0).

For an arbitrary direction ξ0 = x0 cos(α)+y0 sin(α), ζ0 =
−x0 sin(α)+y0 cos(α), the function f(ξ, ζ) = δ(ξ−ξ0)δ(ζ−



ζ0) results in the Radon transform

Rf (ξ, α) =

∞∫
−∞

f(ξ, ζ)dζ = δ(ξ − ξ0)

= δ(ξ − (x0 cos(α) + y0 sin(α))). (3)

Note that this is a sinusoidal pattern in a two-dimensional
(ξ, α) domain, with the amplitude

√
x20 + y20 and the phase

ψ = arctan(y0/x0). Of course, the Radon transform is peri-
odic in α with 2π. Projections for 0 ≤ α < π are sufficient to
calculate all transform values. By knowing all the projections,
for 0 ≤ α < π, we can calculate the two-dimensional Fourier
transform of f(x, y). It means that we can reconstruct a two-
dimensional function f(x, y) from its projections or integrals
(basic theorem for computed tomography). The inverse Radon
transform may be calculated in the Fourier domain or by
projecting back the Radon transform (back-projection method).
Thus, a point in the (x, y) domain transforms to a sinusoidal
pattern in Radon transform domain. It means that a sinusoidal
pattern will be transformed into a point by using the inverse
Radon transform (IRT). When all energy is concentrated into a
point, then its parameters estimation is very robust and reliable.

III. PARAMETERS ESTIMATION

Let us now consider sinusoidally frequency modulated
signal

x(t) = Ax exp

(
j
Am

fm
sin(2πfmt+ θm)

)
. (4)

It is known that a time-frequency representation T (t, ω) of
a given signal concentrate the signal energy along the signal
instantaneous frequency

ωi(t) = 2πAm cos(2πfmt+ θm)

i.e. this signal in (t, ω) plane is presented as sinusoidal pattern
image (with more or less deviations depending on the time-
frequency representation used to transform the signal into time-
frequency domain). If we change time coordinate with ϕ =
2πfmt then, from the previous section we can conclude that the
IRT of the obtained image T (ϕ/(2πfm), ω) reduces to single
point where distance form origin correspond to modulation
parameter Am and the angle of the point is equal to θm. In
this way we can accurately estimate modulation parameters
Am and θm.

Modulation parameter fm can be estimated in the following
way. Let us introduce coordinate change from t to ϕ as ϕ = αt
where α is parameter. Now we can vary parameter α within
some range of possible values and search for the value α̂ that
produces single point IRT. In that case we know that α̂ =
2πfm and we can estimate modulation parameter fm. In this
procedure it is needed to find the value of α when the IRT
reduces to a single point within the considered domain. This
mean that the IRT is ideally concentrated and the concentration
measures [7] can be used to detect that we reached α̂. Range
for α should be wide enough to include 2πfm . Its limits could
be determined as the minimal and the maximal expected 2πfm
in the considered case.

The estimation algorithm is summarized as:

Step 1. Start from a frequency modulated signal x(t) with
unknown modulation parameters. Assume that modulation
frequency satisfies fmin ≤ fm ≤ fmax, where fmin and fmax

are constants.

Step 2. Calculate time-frequency representation T (t, ω) of
x(t). Here we can use any time-frequency representation
[11] concentrating the signal energy along the instantaneous
frequency in the time-frequency plane. The result of this step
is a two-dimensional time-frequency image of the considered
signal.

Step 3. Consider a set of possible α as M equally spaced
values between 2πfmin and 2πfmax.

Step 4. For each a within considered set introduce coordinate
change ϕ = αt and calculate the IRT of the image T (ϕ/α, ω).

Step 5. Calculate the concentration measure µ of the obtained
IRT for each α and find α̂ that provide the highest concentra-
tion.

Step 6. Estimate modulation frequency as f̂m = α̂/(2π).

Step 7. Find position of IRT maximum calculated with α̂, i.e.
IRT of T (ϕ/α̂, ω). Denote the detected coordinates as xm and
ym.

Step 8. Estimate the modulation amplitude as

Âm =
√
x2m + y2m.

Step 9. Estimate the modulation phase as θ̂m = arctan ym
xm
.

In the case of non-sinusoidally modulated signals, produc-
ing non-sinusoidal patterns in the time-frequency plane, the
presented approach will produce the closest sinusoidal pattern
form, as it will be shown in examples.

A. Method Implementation

We use the spectrogram and the S-method as time-
frequency representations in the algorithm Step 2. The spectro-
gram is defined as a squared modulus of the short-time Fourier
transform. In the discrete time domain it reads

SPEC(n, k) = |STFT (n, k)|2

STFT (n, k) =

Nw∑
m=0

w(m)x(n+m)e−j
2π
Nw

mk,

where w(n) is the analysis window of the length Nw. Along
with the spectrogram, we will use the S-method as a time
frequency representation. The discrete S-method is of the form

SM(n, k) = |STFT (n, k)|2

+ 2 Re

[
L∑

p=1

STFT (n, k + p)STFT ∗(n, k − p)

]
,

where beside the time-domain window, used in the STFT
calculation, we have a parameter L that corresponds to the
number of spectrogram correcting terms [11]. It is known that
the S-method can produce highly concentrated time-frequency
representation of a given signal. The S-method is numerically
very efficient since there is no need for signal oversampling.



Two special cases of the S-method are the spectrogram (with
L = 0) and the pseudo Wigner distribution (with L = Nw/2).

The concentration measure is needed in the algorithm, Step
5. Here we use the normalized measure

µ =
M1

1

M1/2
1/2

where Mp
p is defined in [7] as

Mp
p =

(∑
n

∑
k

|T (n, k)|1/p
)p

and T (n, k) are the discrete samples of a non-negative part of
the IRT.

Example 1: Consider N = 129 samples of noise free
FM signal (4) sampled with t = n∆t, ∆t = 1/128,
n = 0, 1, . . . N − 1. The signal parameters are Ax = 1,
fm = 1.4, Am = 50 and θm = 30◦ The spectrogram
and the S-method of the considered signal are presented in
Fig. 1(a) and (b). The spectrogram is calculated with a 17-
point Hann window, while the S-method is calculated with a
55 point Hann window and L = 8. In both cases the time-
frequency representation is calculated at each available time
instant (i.e., with overlapping). Parameter α is varied from
0.2 to 15 with step 0.2. For each α the IRT, along with
the corresponding concentration measure, is calculated. The
concentration measure µ(α) is presented in Fig. 1(c) and (d),
where the minimum of this measure (i.e. highest concentration)
is depicted by a circle.

Fig. 1(e) and (f) presents the IRT obtained for α̂ = 8.8.
Maximum position in the IRT is determined and the modula-
tion parameters are estimated in the spectrogram case as

f̂m =
8.8

2π
≈ 1.4, Âm = 49.1, θ̂m = 31.4◦

and in the S-method case as

f̂m =
8.8

2π
≈ 1.4, Âm = 48.1, θ̂m = 32.2◦

As we can see in both cases modulation parameters are very
close to true values. It means that the method will not be too
sensitive with respect to the time-frequency representation.

The IRT for α = 7 (in the spectrogram case) and α = 10
(in the S-method case) are given in Fig. 1(g) and (h). These
subplots illustrate that the IRT for optimal α (subplots (c) and
(d)) is better concentrated than the IRT with another α.

Example 2: The estimation procedure is applied to a noisy
signal s(n∆t) = x(n∆t) + ε(n), where the noise ε(n) is
a complex white Gaussian noise with SNR = 0 dB. The
results are presented in Fig. 2(a) and (b). The spectrogram
of s(n) is presented in Fig. 2(a), while the concentration
measure of the IRT, for various α, is given in Fig. 2(b). In
the spectrogram calculation the number of frequency points
is 101, i.e. windowed signal is zero-padded prior to the DFT
calculation. Based on the IRT obtained for optimal α (denoted
by circle in Fig. 2(b)) the modulation parameters are estimated
as

f̂m =
8.8

2π
≈ 1.4, Âm = 49.1, θ̂m = 30.2◦
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Fig. 1. Modulation parameters estimation for mono-component non-noisy
sinusoidally FM signal. Time frequency representation (a), (b); concentration
measure (c), (d); inverse Radon transform with highest concentration (e), (f)
and inverse radon transform when parameter α is not optimally chosen (g),
(h).

and the resulting sinusoidal modulation is plotted over the
spectrogram with a black line Fig. 2(a). The estimated pa-
rameters are very close to the parameters estimated for noisy
free case.

A multicomponent signal composed from a sinusoidally
FM component (the same as in Example 1), a linear FM
component, and a constant frequency component,

s(t) = x(t) + 0.6 exp
(
j40π(t− 0.8)2

)
+ 0.6 exp(j50πt)

is considered. The results obtained with the proposed proce-
dure are presented in Fig. 2(c) and (d). Estimated parameters
are

f̂m =
8.8

2π
≈ 1.4, Âm = 49.1, θ̂m = 30.2◦.
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Fig. 2. Parameter estimation of noisy signal with SNR = 0dB (a), (b) and
multicomponent signal (c), (d). Estimated modulation is plotted with black
line over spectrogram image.

From this example we see that the proposed method is robust
to the noise and some other possible interferences.

B. Multicomponent Signal Analysis

This approach may be generalized to a multicomponent
signal

x(t) =

K∑
k=1

A(k)
x exp

(
j
A

(k)
m

f
(k)
m

sin(2πf (k)m t+ θ(k)m )

)
+ ε(t),

(5)
where ε(t) denotes disturbing components and noise. Two
scenarios are possible. One is that in the application of the
previous algorithm, in Step 5, the concentration measure µ of
the obtained IRT produces at once several or all K values
of α with visible and distinguishable concentration measure
peaks. Then, these values are associated to the corresponding
signal parameters, as in Steps 6-9. However, due to different
amplitudes and different number of periods in the time-
frequency plane usually only the strongest component is visible
in the concentration measure. In this case its parameter α̂ is
estimated as in Step 5. The other parameters are estimated for
this component as in Steps 6-9. The strongest component is
removed and the algorithm is used on the remaining signal
components, until the energy of the remaining signal is negli-
gible. After parameters of all components are found, they can
be readjusted by a mean-squared comparison with the original
signal.

Example 3: Let us consider a multicomponent noisy signal
consisted of K = 3 sinusoidally FM components of the form
(5). Signal parameters are:

A
(1)
x = 1, f (1)m = 1.4, A(1)

m = 50, θ(1)m = 30◦,

A
(2)
x = 0.7, f (2)m = 1, A(2)

m = 35.7, θ(2)m = −60◦,

A
(3)
x = 0.7, f (3)m = 0.8, A(3)

m = 28.6 and θ(3)m = 180◦.
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Fig. 3. Multicomponent signal. Estimation of the first component (a), (b);
second component (c), (d); and third component (e) and (f). Each component is
removed from the signal after estimation, according to the described procedure,
prior to next component estimation.

The proposed method estimate parameters of one com-
ponent, as presented in Fig. 3(a) and (b). The estimated
parameters are

f̂ (1)m =
8.8

2π
≈ 1.4, Â(1)

m = 48.8, θ̂(1)m = 29.6◦

From Fig. 3(a) we can see that estimated modulation pa-
rameters highly correspond to the component instantaneous
frequency. Now we will filter out the estimated component.

In the filtering procedure the original signal is demodulated

xd(n) = x(n) exp

(
−j Âm

f̂m
sin(2πf̂mn∆t+ θ̂m)

)
.

The DFT of the demodulated signal Xd(k) = DFT[xd(n)]
is calculated and DC component is removed by putting zero
value to Xd(0), and several neighboring points Xd(1), Xd(N),
Xd(2), Xd(N − 1) . . . Here the signal length is N = 129 and
we remove 7 points. The filtered signal is obtained by the
inverse DFT xf (n) = IDFT[Xd(k)].

Finally filtered signal is modulated in order to cancel
frequency shifts in the remaining components caused by the
demodulation

xm(n) = xf (n) exp

(
j
Âm

f̂m
sin(2πf̂mn∆t+ θ̂m)

)
.
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Fig. 4. Nonsinusoidal modulation. Triangularly modulated signal (a), (b);
Signal with nonsinusoidal modulation and varying amplitude (c), (d).

Now we can repeat estimation procedure with x(n) =
xm(n) and estimate second component parameters. The results
are presented in Fig. 3(c) and (d). The estimated modulation
parameters are

f̂ (2)m =
6.4

2π
≈ 1.02, Â(2)

m = 35.4, θ̂(2)m = −63.4◦

In the next step we filter the estimated component and proceed
to the parameters estimation for the last component. Results
are given in Fig. 3(e) and (f) and the estimated parameters are

f̂ (3)m =
5

2π
≈ 0.796, Â(3)

m = 28.5, θ̂(3)m = −178.7◦.

The agreement with the true parameters is high.

C. Nonsinusoidally Modulated Signals

The presented estimation procedure could be used even if
the analyzed signal is periodic, but not sinusoidally modulated.
We will illustrate this application on an example.

Example 4: Considered a triangularly modulated signal
x1(t) and nonsinusoidal periodic modulated signal x2(t) with
a varying amplitude

x1(t) = exp

(
j

∫ t

0

200 arcsin(cos(3.6πu))du

)
x2(t) = A(t) exp

(
j

∫ t

0

300 3
√

arcsin(cos(3.6πu))du

)
where

A(t) = exp
(
−
(
t−0.35
0.3

)2 )
.

Although the proposed method is derived having in mind
sinusoidal modulation, the results presented in Fig. 4 clearly
show that the applicability of the proposed method is not lim-
ited to the sinusoidal modulation patterns only. The estimated
modulation parameters for signal x1(t) are

f̂m =
11.2

2π
≈ 1.78, Âm = 41.4, θ̂m = 6.1◦
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Fig. 5. Multicomponent signal with missing intervals. First component
estimation (a), (b); Second component (c), (d); Third component (e), (f).
Missing values in time-frequency representations (a), (c) and (e) are presented
in white color.

and for signal x2(t)

f̂m =
11.4

2π
≈ 1.81, Âm = 54.5, θ̂m = 1.33◦.

They agree with fm = 1.8 in the considered signals. The
closest estimated sinusoids are presented in this figure as well.

D. Analysis Using Partial Data

Assume that not all signal samples are available. In this
case we can calculate the spectrogram only at time in-
stants/intervals when signal samples x(n) are available. This
procedure will be illustrated with example.

Example 5: Consider the signal defined in Example 3, and
assume that samples from the intervals 20-28, 50-80, and 95-
110 are missing. Since the total number of samples is 129 we
have 43% of missing samples. The estimation results obtained
by using the available signal values are presented in Fig. 5.
Regions with unavailable samples are presented with white
color in this figure. The parameters estimated using available
samples are

f̂ (1)m =
6.4

2π
≈ 1.401, Â(1)

m = 49.4, θ̂(1)m = 30.8◦

f̂ (2)m =
6.4

2π
≈ 0.986, Â(2)

m = 35.0, θ̂(2)m = −58.3◦

f̂ (3)m =
6.4

2π
≈ 0.796, Â(3)

m = 28.5, θ̂(3)m = −178.7◦.



−0.1 −0.05 0 0.05 0.1
−3

−2

−1

0

∆ f
m
/(2π)

∆
 A

m
 [

%
]

−0.1 −0.05 0 0.05 0.1
−4

−2

0

2

4

∆ f
m
/(2π)

∆
 θ

m
 [

 o
 ]

Fig. 6. Error in modulation amplitude (left) and modulation phase (right)
caused by error in modulation frequency estimation.

Even with a reduced number of available signal values the
presented method produced accurate estimates.

E. Discretization Error Analysis

The estimation error can be caused by many factors, for
example noise, interferences, used time-frequency representa-
tion . . . Here we will analyze the errors caused by parameters
discretization for noise-free case only.

For modulation, the frequency estimation error is deter-
mined by a discretization step for α, denoted by ∆α. Since
we use M equally spaced points between fmin and fmax this
error can be estimated as

|∆f̂m| <
fmax − fmin

2(M − 1)
=

∆α

4π
.

In the considered examples α is varied from 0.2 to 15 with a
step 0.2 producing the discretization error in f̂m as |∆f̂m| <
0.0159.

The modulation amplitude and phase are estimated from
the IRT. The estimation error depend on the frequency dis-
cretization step in the used time-frequency representation.
For a signal sampled in the time domain with ∆t and Nw

frequency points in the discrete TFR we get the estimation
error for Âm, caused by the discretization, as

|∆Âm| <
1

2Nw∆t
.

In the considered examples we have used ∆t = 1/128, Nw =
55 (Example 1) producing |∆Âm| < 1.16. Value Nw = 101
is used in other examples, producing |∆Âm| < 0.63. The
estimation errors in our examples are slightly beyond this
limits. Increase is due to instantaneous frequency bias in the
spectrogram.

Phase discretization error depends on the estimated modu-
lation amplitude. The upper limit of its absolute value is

|∆θ̂m| <
180

π

|∆Âm|
Âm

resulting in: |∆θ̂m| < 1.3◦ for data in Example 1 and
|∆θ̂m| < 0.7◦ for the data in Example 2 and the first
estimated component in Example 3. For the second component
in Example 3 we have |∆θ̂m| < 1◦, while |∆θ̂m| < 1.3◦ for
the third component in this example.

Errors in Âm and θ̂m depend on error in f̂m. This
dependence is presented in Fig. 6. Error in the modulation
amplitude estimation has negative bias caused by the bias in the
spectrogram i.e., the spectrogram maximum position is shifted
from the true IF due to nonlinear modulation [12]. Here, the
adaptive window could be used [13].

IV. CONCLUSION

A method for estimation of the parameters of sinusoidally
modulated signal is introduced. The proposed method is based
on the inverse Radon transform and the concentration mea-
sures. It is shown that proposed method provides promising
estimation and decomposition results for monocomponent and
multicomponent signals. The noise and interferences influence
to the estimation procedure is considered. It can be concluded
that the proposed method is very robust to the noise and other
interferences. We have also shown that the results obtained by
the proposed method are meaningful even in cases when the
analyzed signal is periodic but not sinusoidally modulated. It
can be used to estimate the parameters of periodic extension of
a non-periodic time-frequency patterns and partially available
data as well.
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