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Abstract— A synthetic software tool for the reconstruction of 
Compressive Sensed signals is proposed. Compressive Sensing is 
a new signal sensing approach aiming to decrease the 
requirements for resources in real digital systems. Using very 
complex mathematical algorithms, it is possible to reconstruct the 
Compressive Sensed signals using just a small number of 
randomly chosen samples. Accordingly, the proposed software 
comprises and implements different signal reconstruction 
algorithms, providing different reconstruction performances. 
There is also an open possibility to include other methods within 
the software. Here, we will present just some of the most 
important algorithms and functionalities provided by the 
proposed tool. The software options and efficiency will be 
demonstrated on synthetic and real-world signals.  
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I.  INTRODUCTION  

Standard signal acquisition methods are based on the 
Shannon-Nyquist theorem, which requires signal sampling 
with frequency at least two times higher than maximal signal 
frequency. In this way, the sampling process results in a large 
number of samples which will further require large storage 
capacities, especially for signals with high frequency range. 
Compressive Sensing/Sampling (CS) [1]-[5] receives a lot of 
interest in the last decade, as a new emerging method for signal 
sampling and recovery. The CS provides efficient signal 
analysis and reconstruction using a very small set of samples 
[6], [7]. The signal should be sparse in a certain transform 
domain, i.e., it can be represented using small number of 
nonzero coefficients. The reconstruction procedure is usually 
based on different norm minimization: l0, l1, l2 etc. The 
commonly used is optimization based on l1 norm minimization, 
which is solved using convex optimization algorithms [5], [6]. 
Much faster reconstruction algorithms, called greedy 
algorithms, are based on iterative procedures: Orthogonal 
Matching Pursuit (OMP), Gradient Pursuit (GP), CoSaMP, etc. 
[6], [8], [9]. These algorithms have shorter execution time 
compared to the convex optimization methods, but may assume 
that the number of signal components is a priori known. 

In this paper we propose a software tool for CS signal 
reconstruction that enables a comparison between various 
available methods for CS reconstruction. It allows users to 
choose the most appropriate approach for a particular signal. 

Furthermore, it provides an efficient analysis for a large class 
of sinusoid-like signals, analytical and real ones. The proposed 
tool includes the following optimization algorithms: OMP, 
minimization using primal-dual interior point method and the 
non-iterative method proposed in [10]. 

The paper is organized as follows. In Section II, the 
theoretical background on CS is given including the 
reconstruction algorithms. The overview of the synthetic 
software properties, facilities and performance are given in the 
Section III, while experimental results are presented in the 
Section IV. Section V contains concluding remarks. 

II. THEORETICAL BACKGROUND 

A. Compressive Sensing 

Consider a real-valued, one-dimensional signal x, which 
can be viewed as an N×1 column vector in RN with elements 
x[n], n = 1, 2,..., N. The signal x can be represented in terms of 
basis of N×1 vectors {ψi}

N
i=1 that defines a certain transform 

domain basis. Using the N × N  basis matrix ψ with the vectors 
{ψi} as columns, the signal x can be represented as: 
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where s is the N×1 column vector of transform domain 
coefficients. Furthermore, we assume that only M 
measurements (arranged in M×1 vector y) from x are available. 
The measurement matrix Φ that selects M out of N samples is 
of size M×N. According to the CS theory, a set of 
measurement can be acquired as [1]-[3], [11]:  
                                          y=Φx.                                           (2) 
It is said that x is sparse if it can be well approximated using 
M<<N coefficients in s (only few coefficients have large 
magnitudes and the others are zero). Then, from (1) and (2), y 
can be written as: 
                                 y = Φx = Φψs = θs                               (3) 
where θ = Φψ is an M × N matrix. System (3) is undetermined 
system of equation and therefore, it is solved by using 
optimization algorithms [12] - [14]. 

B. Signal Reconstruction Algorithms 

In the sequel, we will describe several approaches to 
reconstruct the original signal from the subsampled random 
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measurements. All optimization algorithms are based on 
finding the sparsest solution of the undetermined problem.  

1) L1 minimization implementation algorithms are usually 
based on the standard interior-point method. To recover the 
sparse signal x from its measurements y=Φx, one needs to find 
the solution to the highly non-convex problem. Generally, 
these methods use a linear optimization problem to recover the 
signal, which relies on Linear Programming and provides 
strong guarantees and stability. The original signal x is sparse 
in certain basis, which indicated that in this basis signal has 
only a small number of nonzero entries. It means that the 
recovery algorithm should be able to identify these nonzero 
entries. In other words: 

s*=argmin||s||l1                                   (4) 
The key idea is to find s* whose L1 - norm is minimal among 
all vectors s that satisfy (3). After minimization, we obtain the 
reconstructed vector s*.  

2) The second approach for sparse reconstruction is based 
on the greedy algorithm – OMP [7]. This method finds the 
support of the signal x iteratively, and reconstruct the signal 
using the pseudo inverse. Greedy methods are usually much 
faster but not always accurate as the convex optimization 
methods. In the OMP, the residual r is firstly set to the 
measurement vector y. Then, at each iteration we choose the 
column of Φ that is most strongly correlated with the 
remaining part of the signal. Then we subtract its contribution 
from the measurement vector and iterate on the residual. 

3) Unlike the previous two methods, the third algorithm 
represents the non-iterative signal reconstruction solution [10]. 
The algorithm is based on calculating the variances of values 
that a random process takes (taking random K-samples 
positioned of original signal). After that, algorithm use only 
values which are smaller than average value of variance 
multiplied by already known ratio. Among already two 
presented algorithms, non-iterative has received much attention 
because of its features for fast reconstruction and good 
efficiency for sparse signals.   

Variance-based non-iterative algorithm for sparse signal 
reconstruction could be summarized as follows [10]: 

1. Choose M random positioned samples. 
2. Calculate variance at each random position, according to: 

2 /( ) var( ( )) , (0, 1)Mj kq N
MV k x q e k N    where x is 

signal of length N and k=0,…,N. 
3.  Determine the signal support as follows: 

0 arg min{ ( ) }, 1,...,
i

k V k T for k N   . 

Parameter T represents certain threshold, calculated as e.g. 
max{ ( )}V k  and 0.85 0.95  [10].  
4. Form CS matrix θ. Matrix rows correspond to the 

available measurements positions, while matrix columns 
correspond to the extracted frequencies 0i

k . 

5. Solve optimization problem in the form: X=( θ * θ)-1 θ *y. 
 

III. SOFTWARE TOOL FOR CS 

The software tool for CS signal reconstruction is presented 
in this Section. Software is implemented in Matlab 7 and it 

uses several Matlab features and its toolboxes [15]. The 
software interface is shown in Fig. 1. It allows user to create 
experiments that provide run-time access to design parameters. 
These variable design parameters are made accessible from the 
front panel in the form of controls, or inputs, in the interface. 
The complete system design and simulation can co-exist in a 
single software with graphs and other useful analysis 
indicators, or outputs, on the front panel as well. In this way, 
the user can change design parameters and see immediate 
feedback. The software interface consists of two main parts: 
Definition and Results. The Definition part contains: the block 
for signal selection, the percentage of measurements choice 
block, the algorithm choice block and domain choice block. 
The part Results consists of numerical results block and 
graphical results block. Numerical results block contains error 
between original and reconstructed signal (MAE - Mean 
Absolute Error, MSE - Mean Squared Error) as well as 
execution time and algorithm in use. The part denoted as 
Graphical results has original and reconstructed signal plots in 
time and frequency domain. The users initialize CS method in 
software by defining the input signal type (Signal selection 
block). The input signal can be chosen from the list of defined 
signals where several illustrative examples are offered. 
Choosing already defined signal, the user can select signal 
which is consisted of two or more sinusoids with different 
frequency and amplitude or can upload real data audio signal. 
Specifying, for example, an audio signal, users have 
opportunity to hear sound of uploaded signal in order to 
compare the quality of the recovered signal. Otherwise, the 
users can create their own signals with different frequencies 
and amplitudes. Also, the signal length should be specified. 
When user specifies signal with these parameters, the feedback 
is given in the graphical form – signal in time and frequency 
domain.  In software tool, random measurements are selected 
as percentage of original signal which is taken (Percentage of 
measurements choice block). The user can choose the domain 
of signal sparsity: Discrete Fourier Transform or Discrete 
Cosine Transform domain (DCT or DFT). The choice of 
different reconstruction algorithms is provided within Choose 
method panel: L1-norm based algorithm, non-iterative 
algorithm, or OMP (Algorithm choice block).  

By pressing CS button, the chosen reconstruction algorithm 
will be run and recovered signal will appear in the plotting 
window (time and frequency domain). Output is at the same 
panel as input so it is easy to compare recovered and the 
original signals. The numerical result (MAE, MSE, execution 
time for running algorithm) are above the graphs so user can 
easily realize the performance of algorithm. 

One of the benefits of working with presented software is 
that users can optionally see graphical result of reconstruction 
error. Using graphic error icon graphical results are shown in 
new panel which represent absolute error. Using numerical and 
graphical results various parameters can be monitored in order 
to make conclusions about the performances of the algorithm. 

The proposed tool can provide analysis for a large class of 
signals in real-world applications. With this approach, applying 
new types of signals or new algorithms is as simple as 
replacing an icon that represents one algorithm by another. For  
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Fig.1. The outlook of the proposed software tool  

 

example, one can easily test different methods for different 
types of signals, or for different transformations, or percentage 
of measurements. 

IV. EXPERIMENTAL RESULTS 

The simulation results are presented in this Section in order 
to examine the behavior of the proposed software tool for 
certain examples of signals. We have considered two 
simulation models to compare the performance of the different 
reconstruction algorithms. The chosen signals are sparse in 
frequency domain and random samples are taken in time 
domain. The properties, advantages and constraints of 
reconstruction algorithms are analyzed and compared. 

Model 1 (Defined Signal) 

In this example we observe a signal consisted of two 
sinusoids with different frequencies and amplitudes. The 
number of samples is 256. After running the reconstruction 
algorithms, for the measurements representing only 25% of 
original signal, the results are shown in Fig 2. The user may 
choose a domain within the Domain choice block. The DFT 
domain is chosen as domain where the signal is sparse. As we 
can see from the results, OMP algorithm has the best 
performance (MAE = 10-15; MSE = 10-29; exec. time = 0.0958s 
for OMP and MAE = 10-6; MSE = 10-11; exec. time = 0.3918 
for L1). Non-iterative method has the smallest execution time, 
and the same precision as in the case of L1 magic (MAE = 10-

15; MSE = 10-29; exec. time = 0.043s for non-iterative 
algorithm). Users optionally can see graphical result of error 
recovered signal by pressing “graphic error” icon.  Graphical 
results will be shown in new panel (as shown on Fig. 3) which 
represent the absolute error. Error is shown within the regular 
as well as within the zoomed graph (for small values of 
absolute error).  Consequently, users can see the difference 
between original and recovered signal.  

 
Model 2 (Uploaded Signal) 

Furthermore, the proposed synthetic software allows one to 
upload signals from a certain file. An illustration for a real 

musical signal is given in Fig. 4 (input option Upload a 
signal).  

 

 

 
Fig. 2:  Original (blue) and recovered (red) signal, reconstructed with L1, non-

iterative and OMP using  25% samples of original signal: 
time and frequency domain 

 

For real musical flute signal, we measured 30% of signal 
samples (3000 samples). After running the reconstruction 
algorithms, we get the result as in Fig 4. For real musical 
signals, we have used the DFT Domain. 
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It is important to emphasize that the magnitudes of DFT 
components of musical signals may differ between each other 
more than 150 times (when observing different frequency 
regions). Hence, it is not easy to reconstruct the smallest 
components in a single iteration (using non-iterative 
algorithm). Namely, in order to reconstruct small components 
it is necessary to remove the influence of the larger ones, as the 
iterative algorithms do. Therefore, for small number of 
samples, the MSE and MAE of non-iterative algorithm are 
larger compared to L1 and OMP, although it can provide very 
low execution time. The achieved errors are provided below, 
for L1 and OMP algorithm:  

L1: MAE = 0.0521; MSE = 2.71*10-3; exec. time = 24.925s 

OMP: MAE = 0.0368; MSE = 1.35*10-3; exec. time = 72.557s   

 
Fig. 3: Absolute error for L1 magic 

 

 

 

 
Fig. 4: Original (blue) and recovered  (red) flute signal, reconstructed with L1, 

non-iterative and OMP using 30% samples of original signal: 
time and frequency domain 

V. CONCLUSION 

In this paper we propose software tool that implements and 
compares different CS reconstruction algorithms. It represents 
a user-friendly tool that can serve to researchers and 
practitioners in the area of CS. The design of software allows 
us to: choose different input signals and return information 
within the implemented software; execute actions (recovery 
algorithms for CS method) and represent graphical and 
numerical results; help the user to adjust the parameter settings 
for these actions. Software can be used for different types of 
signals, different domains of signal sparsity and different 
number of available samples. The tool measures the 
performance of the algorithms using mean absolute error, 
mean square error and execution time. 
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