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Abstract— As need for increasing the speed and accuracy of the 

real applications is constantly growing, the new algorithms and 

methods for signal processing are intensively developing. 

Traditional sampling approach based on Sampling theorem is, in 

many applications, inefficient because of production a large 

number of signal samples. Generally, small number of significant 

information is presented within the signal compared to its length. 

Therefore, the Compressive Sensing method is developed as an 

alternative sampling strategy. This method provides efficient 

signal processing and reconstruction, without need for collecting 

all of the signal samples. Signal is sampled in a random way, with 

number of acquired samples significantly smaller than the signal 

length. In this paper, the comparison of the several algorithms 

for Compressive Sensing reconstruction is presented. The one 

dimensional band-limited signals that appear in wireless 

communications are observed and the performance of the 

algorithms in non-noisy and noisy environments is tested. 

Reconstruction errors and execution times are compared 

between different algorithms, as well. 
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I.  INTRODUCTION  

Compressive Sensing (CS) [1]-[9] appears as a new 
paradigm that recently has attracted the attention of many 
researches in the signal processing community and applied 
mathematics. It provides signal sampling at the rates that are 
far below Nyquists. Therefore, CS provides memory saving 
and shortens the execution time, which is of great importance 
in many applications. Besides lowering the sampling rate, CS 
provides successful signal processing in the cases when the 
missing samples phenomenon occurs [1]. It has been applied in 
large number of areas, such as medicine, radars, 
communications, speech and image processing [5]-[10], etc. 

CS is based on the complex mathematical algorithms for 
finding the sparse approximation of the signal. Therefore, in 
order to reconstruct signal with high accuracy, the signal has to 
be sparse in certain domain.  Additionally, sampling procedure 
in the CS should be done in a way that provides efficient 
reconstruction with number of measurement as small as 
possible. There are many reconstruction algorithms, such as 

greedy strategies, 1l -minimization, etc. [5], [11]-[13] for 
finding the sparsest solution of the optimization problem. 
Another methodology for capturing regularity from the data is 
minimum description length (MDL) principle [14], [15]. MDL 
allows data compression using limited set of the observed data.   

In this paper, we detail the application of different CS 
algorithms to the reconstruction of randomly sampled band-
limited signals that appear in communications. These are 
multicomponent signals that exhibit sparseness property in the 
frequency domain, and could be described as follows:  
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where K denotes number of sinusoidal components in the 
observed signal, while N is the signal length. As these signals 
usually have very large bandwidth, i.e. large N, and small 
number of non-zero components in frequency domain 
(K<<N), they are possible candidates for CS application. The 
application of several commonly used CS signal 
reconstruction solutions applied to these signals is presented in 
the paper. The performance in the noiseless and noisy signal 
case is examined. The comparison results and performance 
analysis are given, as well.  

The paper is organized as follows. In Section II, the 
fundamental concepts of CS theory and signal reconstruction 
method are given. The overview of the applied CS algorithms 
is given in the Section III. The CS application to band-limited 
sparse signals is discussed in Section IV. Concluding remarks 
are given in Section V. 

II. COMPRESSIVE SENSING  

 To be able to efficiently analyze the signals using the 
traditional methods, it would be desirable to deal with the full 
set of signal samples. Usually, this number of samples is very 
large. Another difficulty in signal analysis is presence of noise 
which causes missing information about the signal, and thus 
complicate signal analysis and further processing. Recently, a 
new method for signal reconstruction and processing, that can 
outperform these difficulties, is intensively studied. This 
method, called CS, provides efficient analysis of the signal 
even in the cases when there is no complete information about 
the signal. Certain requirements must be satisfied in order to 
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apply CS procedure. Namely, CS deals with the signals which 
are sparse in a certain transform domain, i.e., have concise 
representations when expressed in the proper basis. Signal 
shows sparsity in different domains, such as Fourier, discrete 
cosine transform, wavelet, time domain, etc. In general, a K-
sparse signal in a specific domain can be completely 
characterized by M measurements (M>K) with M<<N, where 
N is the number of samples imposed by the Shannon-Nyquist 
theorem and K denotes the number of non-zero samples in 
certain domain.  

The discrete–time signal x of length N can be represented 
in terms of basis vectors as follows [3]: 

 1 ,N
i ii
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=
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where iz  represents the transform domain coefficient, iψ  is a 

basis vector, ψ denotes NxN transform matrix. For signal z   

it is said that is K-sparse in the ψ -domain. Signal 

measurements are acquired from the domain where signal 
have “dense” representation, where M<<N holds. Some a 
priori defined conditions have to be satisfied in order to 
reconstruct signal from the acquired, small number of 
measurement. Firstly, the measurement matrix, denoted as φφφφ , 

must be incoherent with the basis matrix ψ . Lower coherence 

leads to a smaller number of measurements required to recover 
the entire signal. Second requirement is the signal sparsity in 
the certain domain.  
 If the measurement vector is denoted as b, then the signal 
measuring procedure can be defined using the measurement 
matrix φφφφ  as follows: 

 ×1 × ×1M M N N====b x ,φφφφ  (3) 

where φφφφ  is measurement matrix. From (2) and (3) follows: 

 = = =b x z zφ φψ θφ φψ θφ φψ θφ φψ θ   (4) 

The system of equations defined by (4) consists of M 
equations with N unknowns, which implies infinite number of 
solutions (M<<N). In order to obtain optimal solution, various 
minimization algorithms have been used. Each of them is 
based on finding the sparsest solution of the undetermined 
system of equations. Commonly used optimization technique 
is based on the 1l − minimization [3]-[5], [16]: 
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where z�  is a solution of the minimization problem, whereas 
the  1l − norm of vector z  is defined by [4], [5]: 
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The problems in CS can be recast as linear programs or as 
second-order cone programs. Usually, the linear programming 
problems are solved using the basis pursuit primal-dual 
methods, while the second-order cone programs are solved 
using a generic log-barrier algorithm [5]. The 1l -norm based 

minimization problems can be solved using a variety of 
existing solvers such as: CVX, l1-magic, and LASSO. 

III. CS RECONSTRUCTION ALGORITHMS 

A. Basis Pursuit  

 Basis Pursuit [3]-[5], [17] is technique for finding signal 
representation in overcomplete dictionaries by convex 
optimization. Standard Basis Pursuit [3] algorithm is based on 

1l - minimization, and is described with equation (5). In the 

cases of compressible, but not exactly sparse ,z  or b being 

corrupted by noise, equality constraints are modified.  The 1l  

regularization problem can be considered as quadratic 
programming as follows: 

 2
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which is known as Basis Pursuit Denoising. 
 Basis Pursuit problem can be solved by using primal-dual 
interior point method. In the case of real ,z θ  and b , problem 

(5) can be recast as [3]: 
 min , . . ,

p
p s t p z p− ≤ ≤∑ θz = b , (8) 

where variable p  is introduced to avoid absolute value in (6). 

Primal-dual procedure is defined with the following steps [4]: 
1. For the known measurement vector b , set 0z = z as 

= T
0z θ b . 

2. Set 0 max{ }p α β= +0 0z z , where α  and β  are user-

defined parameters. 
3. Form the Lagrangian function as:  
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4. Each argument of the Lagrangian function is updated by 
step direction ( ∆ ) and step length ( t ). Step directions are 
obtained by finding first derivatives of L  in terms of its 
arguments. Step lengths are calculated using backtracking line 
search [5]. For example, a new value for z  is obtained as
z z t z= + ∆ .  
 

B. Greedy Algorithms: Orthogonal Matching Pursuit and 

Iterative Hard Tresholding Algorithm  

 Except by using optimization techniques, the sparsest 
solution could be obtained by using greedy search strategies 
[12], [13]. These strategies are much simpler and faster than, 
for example, 1l -norm based optimization techniques. Greedy 

methods are iterative procedures, which in each iteration select 
the element of the dictionary (transform matrix) that best 
matches the signal. In this paper Orthogonal Matching Pursuit 
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(OMP), [13], [18] and Iterative Hard Thresholding (IHT) [12] 
greedy methods will be described.  

Knowing CS sensing matrix θ  and measurement vector b  
OMP approximate signal z  as linear combination of columns 
in θ .  In each iteration, a set of columns in expanded with 
additional column that best correlates with the residual signal. 
The algorithm terminates until residual falls below determined 
threshold. OMP [13] can be summarized as follows: 

1. Variables initialization: set the approximation error 0 =r

b, the initial solution to 0 0=z and 0 = ∅S . 
2. Do following steps till the stopping criterion is met: 

a) 1 1arg max ,n n i n i− −= ∪S S r θ , 

b)  
2

1 1 2
arg minn z n n n− −= −z r S z , 

c) 1 1.n n n n− −= −r r S z  

d) 1n n= +  and 1 1arg max ,n n i n i− −= ∪S S r θ  

until n K≤ , where K is number of signal components. 
IHT [12] is iterative algorithm which uses non-linear 

operator to reduce the 0l - norm in each iteration, i.e.: 
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 From the optimization problem described by (11), the 
following iterative algorithm is derived. The non-linear 
operator is denoted as ( )kH a  and sets all but the largest (in 

terms of magnitude) k  elements of  a  to zero. For given 0z , 
algorithm iterate: 

 1 ( ( ))n n T n
kH+ = + −z z θ b θz , (11) 

until either maxk N> or 
2
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as follows: 
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IV. ANALYSIS OF THE CS RECONSTRUCTION PERFORMANCE 

APPLIED TO SPARSE BAND-LIMITED SIGNALS 

 In this section, two greedy algorithms – OMP and IHT, as 
well as two basis pursuit algorithms – standard BP and BP 
Denoising are applied on the sparse band-limited wireless 
signal. The CVX and Sparsify Matlab toolboxes are used for 
solving optimization problems. We assumed non-noisy and 
noisy signal case. Different SNRs are observed, as well. 
Signal is described as: 

 2 34 / 2 88 / 2 128 / 2 64 /
1 2 3 4

j n N j n N j n N j n N
x A e A e A e A e

π π π π= + + + , 

  (13) 
where component magnitudes are:  

1 2 3 44.5, 4, 2.5, 4;A A A A= = = = N=512 is length of the 

signal and (1, )n N∈ . Signal consists of 4 components in the 
Fourier (DFT) domain and therefore is sparse in this domain. 
First the non-noisy case is observed. In all considered 

algorithms, signal is reconstructed with 60 samples, which is 
12% of the signal length. Fig. 1a shows time and Fig. 1b shows 
DFT domain of the original and reconstructed signals. Fig. 1a 
shows zoomed time region of the original and reconstructed 
signal on the same graph. All of the observed reconstruction 
algorithms give satisfactory results, with the mean square error 
(MSE) approximately the same. However, the reconstruction 
time is different for different algorithms. 

 
a) 

 
b) 

Figure 1: a) Zoomed time domain of the original and reconstructed signal, b) 
zoomed Fourier domain of the original (blue) and reconstructed signal (red) 

 
Table 1 shows MSEs and reconstruction times for the 
observed algorithms and for 60 samples taken as 
measurements in each case. From the Table 1 it can be seen 
that the IHT is the fastest, and BPD is the slowest among the 
observed algorithms. The results of the BPD algorithm are 
dependent on the parameter λ .  
  

Table 1: Mean square errors and execution times for different algorithms 

ALGORITHM MSE TIME (SEC) 

IHT 0.0119 0.031599 

OMP 0.0119 0.050623 

BP 0.0119 2.390187 

BPD 0.012 4.773038 

Larger λ  causes the smaller magnitudes of the DFT 
components. OMP and IHT require exact number of signal 
components to be known, which could be limiting factor for 
their applications. 

The performance of the observed optimization algorithms is 
also tested in the presence of Gaussian noise. Results related to 
the MSE for different SNRs and different algorithms are given 
in Table 2. The regularization parameter in BPD algorithm is 
chosen in a way that minimizes MSE. Larger values for 
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parameter λ results in better noise reduction, and consequently, 
less number of peaks in the DFT domain. However, the larger 
λ causes smaller signal components magnitudes in DFT 
domain, which increases the MSE between original and 
reconstructed signal and sometimes fails to reconstruct signal. 

 
Table 2: Mean square errors for different SNRs and different algorithms 

SNR 

18.079 

DB 
MSE 

SNR 

14.358 

DB MSE 

SNR 

11.389

DB MSE 

SNR 

8.9759 

DB 
MSE 

IHT 0.0377 IHT 0.0941 IHT 0.1756 IHT FAILED 

OMP 0.0377 OMP 0.0941 OMP 0.1756 OMP 0.1247 

BP 0.3059 BP 0.5425 BP FAILED BP FAILED 

BPD  0.2326 BPD 0.3969 BPD,  FAILED BPD FAILED 

 

 

 

 

 
Figure 2: Reconstructed Fourier transform of the noisy signal (SNR= 

8.9757 dB), by using different reconstruction algorithms: IHT, OMP, BP 
and BPD, from top to the bottom 

 
It is important to emphasize that execution time is the 

shortest for IHT and the longest for the BPD, as in the non-
noisy case. From the Table 2 it can be seen that OMP and IHT 
give the smallest MSEs among observed algorithms. In the 
case of SNR=8.9757 dB only the OMP succeeded to 
reconstruct signal exactly, as it can be seen form the Fig. 2. 
SNR is calculated as: SNR=20log10(As/An), where As is signal 
amplitude and An is noise amplitude. In the case of lower SNR, 
component with the smallest amplitude could not be detected.  

V. CONCLUSION 

Performance of the several reconstruction algorithms 
applied on sparse band-limited signal are considered in the 
paper. In all considered cases signal is reconstructed by using 
12% samples of the total signal length. Algorithms are tested in 

the non-noisy and noisy cases. MSEs between original and 
reconstructed signal are measured, as well as algorithm 
execution time. It is shown that greedy algorithms give shorter 
execution time, and smaller MSE compared to the BP 
algorithms. Also, the best performance is obtained by using 
OMP, as it gives satisfactory reconstruction even if the SNR is 
8.9759 dB, when other considered algorithms failed in 
reconstruction. However, the exact number of signal 
components has to be a priori known in the case of greedy 
algorithms, which sometimes could be limiting factor.  
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