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Abstract— The Compressive Sensing (CS) method for 

reconstruction of musical signals is analyzed in this paper. CS is 

a new method for signal acquisition which has been developed in 

recent years. In the CS scenarios, it is possible to reconstruct the 

entire signal information from just a small set of randomly 

chosen measurements, using different minimization algorithms. 

Consequently, this method founds application in a large number 

of signal processing areas. The analyzed musical signals and the 

applied acquisition procedure, satisfy two important CS 

requirements. Namely, the observed signals have sparse 

representation in frequency domain, and the measurement 

procedure provides conservation of the main information about 

the signal, despite the reduction of the number of analyzed 

samples. Musical signals of different nature and complexity are 

observed in the paper. The efficiency of the CS reconstruction is 

analyzed for different number of available measurements. It will 

be shown that the minimal number of measurements required for 

successful signal reconstruction depends on the complexity of 

musical tones. Based on reconstruction error, the simple CS 

procedure for classification of two types of musical signals is 

presented. The reconstruction accuracy is measured by mean 

relative error between original and reconstructed signal, as well 

as perceptually – by listening both original and reconstructed 

signal.  
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I.  INTRODUCTION  

 Nowadays, the musical signals storage requires significant 
memory capacities, especially in the cases of significant 
number of samples that have to be recorded. A large number 
of compression algorithms exist for musical signals and they 
are still intensively developed. However, another challenging 
task that arisen in recent years is the possibility to directly 
acquire musical signals in compressive manner. In other 
words, it is interesting to analyze the possibility and the 
efficiency of applying Compressive Sensing (CS) signal 
reconstruction to the randomly acquired small set of musical 
samples.  
 CS [1]-[4] is introduced in order to represent a signal using 
small number of linear measurements, i.e., signal samples. The 

number of samples is usually much smaller than it is required 
when the signal is sampled at the Nyquist rate. It is important 
to emphasize that signal must fulfil certain requirements in 
order to be analyzed by using the CS. First important CS 
requirement refers to a measurement procedure. Namely, the 
signal has to be measured in a way that minimizes the number 
of samples necessary for signal reconstruction and analysis, 
i.e., measurements have to be incoherent. Furthermore, the 
signal has to be sparse in the certain domain (Fourier, discrete 
cosine transform, wavelet, etc.). For sparse signals, the 
important information about the signal is condensed into the 
small number of non-zero coefficients. The signal 
measurements in the CS procedure are acquired from the 
domain where the signal has dense representation. An example 
of sparse signal is sinusoid – although sinusoidal signal has 
non-zero samples most of time, in frequency domain it is 
represented by peak at a certain frequency. Therefore, it can 
be said that sinusoid has sparse representation in the frequency 
domain. When talking about musical signals, we can say that 
they consist of or can be modeled using small number of time-
varying sinusoidal signals [5], [6]. For that reason, musical 
signals exhibit sparsity property in the frequency domain, and 
consequently, they can be good candidates for the applications 
of CS approach. The characteristics of musical signals, 
including their complexity, depend on the tone or sound 
quality, the frequency of the sound wave, the musical 
instrument on which sound is played, and so on. Different 
nature of musical signals causes different number of 
harmonics, which directly affects their sparsity. Accordingly, 
the musical signal complexity will affect the required number 
of Compressive Sensed signal samples that can still provide 
successful reconstruction of the entire signal information. 
Based on the minimal number of samples used for signal 
reconstruction, in this paper we define a simple procedure for 
the classification of some musical tones. The musical tones 
reconstruction is tested for different number of randomly 
acquired measurements. The reconstruction accuracy is 
quantified using the mean relative error between the original 
and reconstructed signal. The quality of reconstructed signal is 
also proved by using the listening tests.  

This work has been supported by the project CS-ICT (New ICT Compressive 
sensing based trends applied to: multimedia, biomedicine and communications), 
funded by Montenegrin Ministry of Science. 
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The paper is organized as follows: In Section II basic concepts 
of CS method are given. The procedure for CS musical signal 
reconstruction is explained more detailed in Section III. The 
experimental results and error analysis, as well as error-based 
classification are given in Section IV. Conclusion is given in 
Section V. 

II. THEORETICAL BACKGROUND 

Sampling the signals according to the sampling theorem 
results in large amount of information that has to be further 
processed. However, the number of important features within 
this large number of data are, in most cases, much smaller. 
Therefore we might say that these signals are compressible. 
This feature of real signals is being exploited by the CS [7], 
[8]. The idea is to reduce the number of samples during 
acquisition, so that there is no need for further signal 
compression. However, complex and sophisticated 
mathematical algorithms are needed for the entire signal 
reconstruction and analysis. 

Let us first explain term “sparse signal”. The N-length 
signal is said to be sparse in certain basis if it can be 
represented by K non-zero samples in the frequency domain, 
where K<<N holds. If signal f is finite-length signal, it can be 
represented as [9]-[11]:       

 f xψ= , (1) 
where ψ  is an N N× matrix whose columns are the basis 

functions iψ , x is the ψ – transformed vector and it is sparse 

in domain ψ . Clearly, f and x are equivalent representations 

of the one-dimensional signal. By using properly chosen 
measurement matrix M Nθ × , the vector of measurements could 

be written as:                                 
 b xθψ= , (2) 

where vector 1Mb × contains CS measurements. Relation (2) 

could be written in the form: 
 b Ax= , (3) 

where M NA × is a CS matrix. The CS case of interest is when 

M<<N holds, i.e. vector of acquired samples used in 
measurement procedure should be as small as possible. 

The equation (3) has no unique solution. In order to 
reconstruct f with good accuracy, eq. (3) must meet two 
conditions: it has to be sufficiently sparse and the matrices 
must be incoherent. Random matrices are largely incoherent 
with any fixed basis, and thus are used as measurement 
matrices in CS.  The system could be solved by using the 
optimization algorithms [12], [13], such as greedy algorithms 
(MP, OMP, StOMP, CoSaMP, etc.), convex relaxation 
algorithms and the least absolute shrinkage and selection 
operator (LASSO). 

III.  COMPRESSIVE SENSING BASED RECONSTRUCTION OF 

MUSICAL SIGNALS 

Sound generation in acoustic musical instruments is based 
on the vibrations of strings (e.g. violin, cello, piano), or air, 

membranes (e.g. flute, clarinet).  These vibrations appear on 
certain frequencies. Vibrations of strings (air or membranes) 
on one frequency lead to vibrations on the whole number of 
frequencies that are multiplies of that frequency, called 
fundamental frequency or pitch. These multiplies of the 
fundamental frequency are called harmonics (overtones). 
Having in mind harmonic nature of the musical signals, they 
can be good candidates for CS reconstruction. 

The attention is paid on the number of harmonics, i.e., 
number of sinusoidal components in the musical signals 
produced by various instruments. Signal is reconstructed with 
CS method, by using certain percent of the total signal length. 
In order to provide sparse signal representation, we have used 
discrete cosine transform (DCT) as transform basis. Depending 
on the signal complexity, reconstruction is done with 25% or 
35% of the total signal length. Measurements are taken 
randomly from the dense domain, i.e., time domain of the 
signal. For all considered signals, non-noisy environment is 
assumed. The CS measurement matrix A is, in fact, submatrix 
of the matrix ψ . It is obtained by using set of rows from the 

DCT matrix ψ .  Which row to take is obtained with random 
permutations of vector d, described as follows: 

 ( ),d P N=  (4) 
where P denotes random permutations of N elements and N is 
the signal length.  Matrix A  is then obtained as: 

 ( )(1: 1: ,1 : ))A d M Nψ=  (5) 

As it can be seen from (5) only M rows are used, where M is 
defined number of measurements. The undetermined system of 
equations,   

 ( )(1: 1: ,1 : ))b x d M N xθψ ψ= = , (6) 

is solved by using 1l − minimization [13]-[16], described as: 

 
1

min
lx

x subject to b Ax= . (7) 

In this paper, the reconstruction is done by l1-minimization, 
using basis pursuit (BP) algorithm. The complexity of the BP 
depends on the type of dictionary we are using and has range 
from O(n) to O(n log (n)), where n is signal length [16].   

IV. ANALYSIS AND EXPERIMENTAL RESULTS 

In this section the results of musical signals reconstruction 
are given. Several types of real musical signals are observed: 
five signals belong to the string instruments, and another five 
signals belong to the wind instruments group. As previously 
mentioned, the different instruments may sound different even 
if they have the same fundamental frequency. This difference 
is caused by a difference in overtones - frequencies present 
above the fundamental frequency that sometimes are not at 
exactly integer multiples of the fundamental. As a 
consequence, the sound has a unique characteristics from 
instrument to instrument. In order to demonstrate different 
nature of the musical instruments, in all considered cases we 
have observed one note. In the cases of the musical signals 
created by several instruments, signal sparsity is degraded and 
CS could fail to reconstruct signal exactly. 
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In all considered examples total signal length is chosen to 
be 6000 samples, and sparse signal domain is DCT domain (for 
matrix ψ ). As representatives of the two groups, the violin 
(string instruments) and the trumpet (wind instrument) are 
used. The signal reconstruction is tested for different number of 
measurements. As violin has more overtones compared with 
the trumpet, it will require 35% of samples for successful 
reconstruction, while this number is 25% for the trumpet 
signal. The number of measurements is chosen experimentally. 
The chosen number of measurements is minimal number which 
gives no audible signal degradation after reconstruction. This is 
proved by listening both, the original and reconstructed signals. 
Original and reconstructed DCTs of the violin signal are shown 
in Fig. 1, while Fig. 2 shows zoomed original (blue) and 
reconstructed (red) signal in the time domain. Frequency and 
time domains of the original and reconstructed trumpet signals 
are show in Figs. 3 and 4, respectively. 

 
Figure 1. DCT of the original signal (upper graph); reconstructed signal 

(lower graph) for violin signal 
 

 
Figure 2. Original (blue) and reconstructed (red) violin signal, time domain 

 
Comparing the frequency domains of the observed signals 

it is clear that trumpet signal is more sparse, i.e. it has less 
non-zero frequency components, for the same played note. 
Therefore, smaller number of measurements is required for 
trumpet than for violin signal reconstruction, in order to obtain 
reconstructed signal of the same quality.  

Reconstruction accuracy is also proved numerically by 
calculating mean relative errors between original and 

reconstructed signal. The errors are calculated in cases when 
25% of samples are used in reconstruction and the results are 
given in the Table 1. 

To achieve better visual comparison between the observed 
signals, time-frequency (TF) representations of the signals are 
calculated. As TF representation, the S-method is used. It is 
defined as [17]: 

*1
( , ) ( ) ( , ) ( , ) ,

2 2 2
SM t P STFT t STFT t d

θ θ
ω θ ω ω θ

π

∞

−∞

= + −∫   (8) 

where ( )P θ is the frequency window function and STFT 

denotes Short-Time Fourier transform. S-methods of the 
observed signals are presented in Fig. 5.  

 
Figure 3. DCT  of the original signal (upper graph); reconstructed signal 

(lower graph) for trumpet signal 

 
Figure 4. Original (blue) and reconstructed (red) trumpet signal, time 

domain 
 

From Fig. 5 it can be seen that violin signal has large number 
of closely spaced components in the TF plane, while the 
distance between harmonics in the trumpet signal is larger. 
This proves that the trumpet signal is more sparse, as we 
noticed by observing DCT domains of the signals.  

A. CS based classification of the musical signals 

Different number of samples is required for high quality 
signal reconstruction in different musical signals groups. In this 
part, we have observed reconstruction accuracy using the same 
number of measurement for all considered signals. It is shown 
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that the classification of the signals, based on reconstruction 
error, could be performed. 

 

 
a) b) 

Figure 5. S-method of the a) violin; b) trumpet signal 
 

Two groups of the signals are observed: string and wind 
instrument groups. The reconstruction with the 25% of 
samples is performed. The reconstruction with this number of 
samples gives no audible distortion for wind instruments, 
while for the string instruments gives small degradations, but 
still high quality reconstruction. In the Table 1 the mean 
relative errors of the reconstruction are given. The errors are 
shown to be of 10-3 order for wind instruments group, while 
for the string instruments this error is larger - 10-2 or 10-1 

order. Note that these reconstruction errors do not produce 
audible signal degradation. Therefore, signals could be 
classified into string and wind group, based on the mean 
relative reconstruction error. Let us note that the experiments 
for each signal are repeated several times. The errors in the 
Table 1 are the average of the errors obtained in each 
repetition.  

TABLE I.  MEAN RELATIVE ERRORS BETWEEN ORIGINAL AND 
RECONSTRUCTED SIGNALS 

Type Instrument Error 

String instruments 

VIOLA 0.02280 

VIOLIN 0.01000 

CELLO 0.05800 

PIANO 0.83000 

GUITAR 0.02430 

Wind instruments 

FLUTE 0.00734 

TRUMPET 0.00175 

CLARINET 0.00389 

OBOE 0.00493 

TROMBONE 0.00855 

V. CONCLUSION 

CS method application on the musical signals of different 
types and complexity is analyzed in this paper. Audio signals 
with different number of sinusoidal components are observed. 
The 25% and 35% of samples is used as number of 
measurements, depending on the signal complexity. This 
number of taken measurements is shown to give satisfactory 
results, i.e. reconstruction with no audible distortion. The 
reconstruction accuracy is proved by listening signals, as well 

as by calculation mean relative errors between original and 
reconstructed signal. It is shown that signals which consist of 
smaller number of overtones could be reconstructed by using 
smaller number of measurements (25% for the wind 
instruments group). Also, the classification of the signals 
between two groups – wind and string instruments, could be 
performed, based on the reconstruction error, when the same 
number of measurements is used in reconstruction. Namely, 
measured mean relative errors between original and 
reconstructed signals are shown to be of 10-3 order for wind, 
and 10-2/10-1 order for string instruments.  
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