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Abstract— Compressive Sensing (CS) is currently a very popular 

signal acquisition approach. It provides an alternative way of 

signal sampling which is based on a small random set of 

measurements. The entire signal can be reconstructed from the 

measurements with high accuracy by using very complex 

mathematical algorithms if the certain conditions are met. 

Various algorithms for CS reconstruction have been proposed for 

different types of signals and different application requirements. 

In this paper, several commonly used algorithms for one-

dimensional (1D) and two-dimensional (2D) signals 

reconstruction are implemented within the Virtual Instrument 

for CS signals reconstruction. The Virtual Instrument is a user-

friendly tool that provides efficient analysis of signals, using 

different algorithms and variety of options and parameters. It 

includes different multimedia test signals (both 1D and 2D 

signals), but also there is an option for user-defined signals.   

Keywords – Compressive Sensing, reconstruction, l1-norm 

minimization, Orthogonal Matching Pursuit, TV minimization  

 

I.  INTRODUCTION  

 
Compressive Sensing/Sampling (CS) [1]-[4] is a recently 

developed approach for signal sampling and reconstruction. It 
allows a signal, having a sparse representation in certain 
domain, to be recovered from a small set of randomly acquired 
samples. Signal exhibits sparsity property if it can be 
represented by a small number of non-zero samples in the 
certain transform domain. The signal recovering procedure is 
based on minimization of different norms (l0, l1, l2 norm, etc.) 
[1]. The commonly used approach is based on l1-norm 
minimization [5]-[7], solved by convex optimization 
algorithms. Another type of algorithms, called greedy 
algorithms (e.g. Orthogonal Matching Pursuit OMP, Gradient 
Pursuit GP [8]-[10], etc.) are based on iterative procedures. 
They provide much simpler and faster solutions, but may 
require some a priori knowledge about the signals. Generally 
speaking, these algorithms may provide different results 
depending on the signal nature, number of available 
measurements, or signal sparsity. 

In this paper, the Virtual Instrument [11] for CS signal 
reconstruction is presented. Several algorithms for one-
dimensional (1D) and two-dimensional (2D) multimedia data 
reconstruction are implemented. Virtual Instrument allows user 
to choose between 1D and 2D signal reconstruction, as well as 
to test different algorithms and compare their performance. 
Additionally, the users may change the number of 

measurements and the domain of sparsity used in CS 
reconstruction. The reconstruction accuracy is quantified using 
different error types.  

The paper is organized as follows. In Section II, the 
theoretical background on CS theory and reconstruction 
algorithms implemented in the Virtual Instrument is given. The 
overview of the Virtual Instrument properties and performance 
are given in Section III, while its functionality is presented in 
Section IV. Concluding remarks are given in Section V.  

 

II. THEORETICAL BACKGROUND 

 

A. Compressive Sensing 

 
Signal reconstruction based on CS principles requires some 

conditions to be satisfied [2]-[4]. If we observe a signal x of 

length N, it can be represented in terms of basis vectors iψ  

(of size 1N × ): 
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where si is N×1 column vector of transform domain 
coefficients. The first condition required in CS is sparsity, i.e., 

the signal should be sparse in the domain ψ . Furthermore, we 

assume that only M measurements from x are available and 
arrange them in M×1 vector y. Selection of the samples has to 
be done in a random manner, to provide incoherent 
measurements, as the second CS requirement. Matrix that 
selects M out of N samples is called measurement matrix, and 
is denoted by Φ (M×N):  

 .y x= Φ  (2) 

Further, from (1) and (2), y can be written as: 

        ,y x s s= Φ = Φ =ψ θ  (3) 

where   = Φθ ψ  is called CS matrix (M×N). The system of 

equations (3) is undetermined and can be solved using 

different optimization algorithms [5]-[10], [12]-[17].  

 

B. Algorithms for 1D Signals Reconstruction 

 
Some interesting optimization algorithms for 1D signals 

reconstruction will be described in the sequel. For instance, we 
focus to basis pursuit l1-minimization method [5]-[7], [12], 
OMP [8]-[10], [12]-[13] algorithm and non-iterative threshold-
based algorithm [14]-[17].   



  
1. l1-minimization using primal-dual interior point 

method: In order to recover signal x from its measurements 

y x= Φ , the following optimization problem should be solved 

[2], [6]: 
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l

s subject to y s= θ . (4) 

As l1-norm is convex, linear programming can be used for 
solving this problem. The s* is sparse vector obtained as the 
result of the optimization.  

 2. OMP algorithm: Using the CS matrix θ  and vector y, 

OMP approximate signal s as linear combination of columns 

in θ . In each iteration, the set of columns is expanded with 

additional column that best correlates with the residual signal. 

The algorithm can be summarized as follows: 

1. Set the approximation error 0r y= , the initial solution to 

0 0s = and 0Ζ = ∅ . 

2. Do the following steps until the stopping criterion is met: 

a) 1 1arg max ,n n i n iZ Z r− −= ∪ θ , 

b)  
2
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s r Z s− −= − , and 1 1.n n n nr r Z s− −= −  

c) 1n n= +  and 1 1arg max ,n n i n iZ Z r− −= ∪ θ  until n K≤ , 

where K is number of signal components. 

3. Non-iterative signal reconstruction solution  
The algorithm is based on the variances of estimation 

errors, calculated for each signal frequency [14]. The variance 
acts as a good indicator whether there is signal component on 
the observed frequency or not. Non-iterative algorithm 
provides fast reconstruction. It can be described as follows: 
1. For a given number of measurements M on random positions 
qM, calculate variance at each frequency: 

2 /
( ) var( ( ) ),M
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ππππ
p∈(1,N), N is signal length. 

2. Find frequency positions 0i
p that satisfy relation: 

0 arg min{ ( ) max ( )}, 1,...,
i

p V p V p for p Nα= < ⋅ = , 

where α  is 0.85 0.95≤ ≤α .  

3. Form CS matrix θ: matrix rows correspond to available 
measurements positions, while columns correspond to the 
frequencies p0i. 

4. Solve optimization problem: * 1 *X ( ) yθ θ θ−=  

 
C. Algorithms for 2D Signals 

 

The image is not strictly sparse in any transform domain, 

but its gradient can be observed as a sparse signal. Thus, 

instead of standard algorithms, the Total Variation (TV) [18]-

[20] minimization is used for the reconstruction of the 2D 

signals. The TV of signal s represents the sum of the gradient 

magnitudes at each point (i, j): 
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where � represent operator described with relation: 

,

( 1, ) ( , )

( , 1) ( , )
i j

s i j s i j
D s

s i j s i j

+ − 
=  + − 

.

        

 (6) 

 

Minimization problem with TV could be described as: 

 

 min  ( ) 
s

TV s subject to y s= θ . (7) 

It is important to note that all the implemented algorithms for 

2D signals reconstruction are based on TV minimization 

procedure. The algorithms are shortly summarized below. 

Algorithm 1 [19] takes samples from the 2D Fourier 

transform domain (2D DFT), along radial lines, and these 

samples will serve as measurements in the CS procedure.  

Algorithm 2 [20] takes samples from 2D Discrete Cosine 

transform domain (2D DCT). Image is divided into blocks and 

the measurements are randomly taken from each block.  

Algorithm 3 also uses 2D DCT as the observation domain. 

Small number of low-frequency DCT coefficients are used in 

this algorithm, while the rest of the measurement are randomly 

chosen pixels form middle and high frequency image regions. 

 

III. VIRTUAL INSTRUMENT 

 
The proposed Virtual Instrument is implemented in Matlab 

7, and provides implementation of CS algorithms including the 
efficient analysis of reconstructed signals. It is important to 
emphasize that various signals can be uploaded or defined 
using signal parameters. Also, the performance of the 
algorithms could be compared by observing error between 
original and reconstructed signal, as well as execution time. 
The outlook of the instrument is shown in Fig. 1. It consists of 
two parts: part for 1D and part for 2D signals reconstruction. 
Both parts contain the Definition and the Results blocks. The 
Definition part contains: the Signal choice block, the 
Percentage of measurements choice block (for 1D part), the 
Algorithm choice block and the Parameters choice block (for 
2D part). The part Results has Numerical results block and 
Graphical results block.   

In the Signal choice block, the user chooses different audio 
signals (in 1D part), or may choose between medical and 
natural images (in 2D part). Additionally, for audio signals the 
option to hear sounds of original and reconstructed signal is 
implemented as well. Definition of the new signals (number of 
components, amplitudes and frequencies) is provided within 
New signal block - Fig. 1. Both, 1D and 2D parts have 
Algorithm choice block where one of the algorithms described 
in the Section II, can be selected and applied. Numerical 
result block contains errors between original and reconstructed 
signal (MAE - Mean Absolute Error, MSE - Mean Squared 
Error) for 1D signal, and PSNR for the 2D signals. Algorithm 
execution time is shown in this block as well. Graphical result 
block includes original and reconstructed signal plots in chosen 
domain, while Graphical Error represents graphic 
representation of absolute error between original and 
reconstructed signal (with zooming option). 
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b) 

Fig.1. The outlook of the proposed Virtual Instrument (for 1D and 2D signals) 

 

Graphical Error part in 2D signals contains image obtained 

as a difference between original and reconstructed image. 

Percentage of measurements choice block allows user to 

define number of measurements, while Parameters choice 

block has in-built parameters, depending on the 2D 

reconstruction algorithm. In Domain choice block for 1D 

signal, user can choose in which domain signal to be appeared: 

time, time-frequency and frequency domain. 

By pressing Run Reconstruction button, the recovered 1D 

or 2D signal will appear in the corresponding window. For the 

comparison, output will be at the same panel as input signal. 

The numerical result (MAE, MSE, PSNR, execution time) will 

be shown and allow user to easily make conclusions about the 

performance of the algorithms. 

IV. FUNCTIONALITY OF VIRTUAL INSTRUMENT 

 

In this part the performances of the proposed Virtual 
Instrument are described on several signals. Firstly, 1D signals 
are observed.  

A. 1D signals reconstruction 

 User can chose an audio signal representing a flute tone, 
for example. The observed signal is sparse in frequency 
domain and thus random samples are taken in time domain. In 
this example, the 40% of the randomly selected samples are 
taken for the reconstruction. Results obtained after running the 
l1 reconstruction algorithm are shown in Fig. 2. Reconstruction 
quality for audio signal is measured by calculating MSE and 
MAE, as well as by plotting the MAE (Fig. 2). By comparing 

the sound of original and reconstructed signal, it has been 
confirmed that the quality of the reconstructed audio is 
preserved without introducing audible distortions. The l1 
reconstruction algorithm execution time for real audio signal is 
about 22 s. Note that the execution time depends on the length 
of the signal, as well as on the chosen reconstruction algorithm. 

   
Fig. 2. Original (blue) and reconstructed (red) flute signal in time domain 

     
Fig. 3. Original and reconstructed user defined signal in time domain and 

reconstruction error 



  
A Virtual Instrument also allows user to specify the signal with 
parameters such as number of harmonics, value of amplitude 
and value of frequency, and analyze performance of different 
algorithms for the defined signal (Fig. 3). The quality of the 
reconstruction will be better and error will be smaller by using 
larger number of measurements. Observing results, user can 
conclude how many measurement of original signal should be 
taken, in order to obtain good quality of reconstruction. 

B. CS Image Reconstruction (2D Signals) 

Virtual Instrument implements some of the commonly 

used algorithms for image reconstruction and allows 2D 

signals analysis as well. The results using algorithm based on 

2D DCT random measurements are shown in this example. 

The medical image “Brain” is chosen for reconstruction and 

the 30% of the total number of samples are used in CS 

procedure. Original and reconstructed images are shown in the 

Fig. 4 (left column). On the same panel, execution time is 

presented, as well as the value of PSNR. Difference between 

original and reconstructed signal is shown as error image in 

the same figure (right column of the Fig. 4).  

 

 
Fig. 4. Original and reconstructed image MRI Brain reconstructed by using 

Algorithm 3  

V. CONCLUSION 

 

The Virtual Instrument for CS signal reconstruction is 

proposed. It implements several algorithms for the 

reconstruction of 1D and 2D multimedia signals, such as audio 

signals and different types of images. The software is easy to 

use and provides a number of options for parameters settings 

and performance analysis. For instance, it has been shown that 

besides various CS algorithms, the users can change the 

number of measurements, as well as domain of sparsity. The 

proposed instrument provides the evaluation and comparison 

of different approaches (numerically and graphically). For all 

signal types, the algorithms execution time in sec is measured, 

as well. Therefore, the proposed Virtual Instrument could 

serve researches and practitioners in the CS field, and could be 

a very educative experimentation tool for those interested in 

CS for multimedia applications. 
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