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Abstract - A compressive sensing approach for separation of 

linear frequency modulated signals from non-stationary 

disturbance is proposed. The linear time-frequency 

representation is achieved using the Local Polynomial Fourier 

Transform (LPFT), which allows revealing data local behavior. 

Based on the LPFT, the frequency-chirp rate domain is used to 

achieve sparse signal representation. Then the LPFT is combined 

with the L-statistics to collect only the time-frequency points 

belonging to the desired signal, while the points belonging to 

overlapping regions and disturbance are deemed inappropriate 

and omitted from observations. The relationship between the 

measurement and sparsity domain is established in order to use 

the compressive sensing concept and to completely recover the 

desired signal. The theory is proven on examples. 

Keywords - time-frequency analysis, compressive sensing, L-

estimation, signal separation 

I.  INTRODUCTION 

 

Signals in real applications, such as in radars and 

communications, are often disturbed by different kinds of 

interferences that are produced by different sources and 

different physical processes. The components of interest 

(desired components) could be seriously interrupted by 

impulse noise, clutters, frequency hopping jammer, etc [1]-[3]. 

Therefore, if these components highly overlap in time and 

frequency, signal separation and desired signal recovery can 

be hardly accomplished through conventional methods and 

filtering techniques [4],[5]. Moreover, the time-frequency (TF) 

content of desired and undesired signals can reside over 

common TF regions and thus it is difficult to provide the 

separation in the TF domain using TF masking and synthesis 

methods. Also, the disturbance can be much stronger than the 

desired signal in the overlapping regions. Hence, we need to 

exclude all observations containing the disturbances. For this 

purpose, we use the L-statistics to isolate the TF points 

belonging only to the signal of interest [6]-[8]. Such an 

approach can be efficient only if the desired components have 

stationary nature [10]. In that sense, when dealing with time-

varying frequency content as in the case of linear frequency 

modulated signals (LFM), we propose to use the Local 

Polynomial Fourier Transform (LPFT), which provides the TF 

representation of demodulated signal [11]. As a consequence 

of applying the L-statistics, we deal with missing observations 

in the TF domain. The theory that considers reconstruction of 

signals, with sparse representations in certain transform 

domain, using an incomplete set of samples is known as 

Compressive sensing (CS) [12]-[18]. Although, in the 

considered application, the missing samples are not due to 

Nyquist sampling relaxation as in the case of standard CS 

concept, we might benefit from the CS reconstruction 

algorithms. Unlike the standard CS formulations and 

reconstructions [16], here the observations are made in the TF 

domain instead of the time domain. Thus, the problem is 

observed as a CS application aiming at recovery of 

narrowband signals in interference, using �1 reconstruction 

algorithms. Unlike the other existing methods, the proposed 

one provides efficient results with preserved amplitudes and 

phases. 
The paper is organized as follows. The theoretical 

background on the L-statistics and time-frequency analysis is 
given in Section 2. The LFM components separation based on 
the LPFT, the L-estimation and the CS is proposed in Section 
3. The experimental results are presented in Section 4, while 
the concluding remarks are given in Section 5. 

II. THEORETICAL BACKGROUND – L-ESTIMATION AND 

TIME-FREQUENCY ANALYSIS 

A. Problem formulation 

Consider the case of signal corrupted by impulse noise or 

certain disturbances (impurity components) that impede the 

analysis of useful components. For example, the narrowband 

signals in communications may be disturbed by a frequency 

hopping jammer that is of shorter duration than the considered 

time-interval, but may also be overlapping with narrowband 

signals within same intervals. The problem formulation can be 

stated as follows. Consider a composite signal: 

 ( ) ( ) ( )x n f n nε= + , (1) 

 

where f(n) represents useful signal part, while ε(n) represents 

the impurity components. The discrete Fourier transform 

(DFT) of signal x(n) can, therefore, be defined as: 

 

 ( ) ( ) ( )X k F k k= + Ε , (2) 

where F(k)≠0 for k∈{k1,k2,…kK}, K<<N (N is the number of 

time samples). Furthermore, we assume that certain frequency 

components in E(k) could be much stronger than their 

counterparts in F(k): 
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Figure 1. a) real part of signal in time domain, b) DFT of signal 

 

  

 ( ) ( ) , 1,2,...,i iE k F k i K=� . (3) 

An illustration for the DFT of chirp signal with several 

impulsive components is shown in Fig. 1. When observing the 

signals in the frequency domain, we can hardly distinguish the 

type, source and duration of components, and thus it is usually 

difficult, if not impossible, to separate different components. 

This is the reason that we often prompt towards the TF 

analysis of such signals. 

B. L-estimation and time-frequency analysis 

 

The short-time Fourier transform (STFT) is the simplest 

time-frequency representation calculated using a rectangular 

window of the width M as follows: 
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The values of the STFT are sorted for each frequency k 

along the time axis n. By removing several strongest values of 

the sorted STFT, for each frequency, we eliminate most or all 

of the disturbance components. Summing the rest of the STFT 

values over time will result in the spectrum of the desired 

signal part. For a given frequency k, let us observe one STFT 

column with M elements: 

 ( ) { ( , ), 0,..., 1}kS m sort STFT m k m M= = − , (5) 

such that (0) (1) ... ( 1)k k kS S S M≤ ≤ ≤ − . Since the addition 

is a commutative operation, using the entire data set yields [8]: 
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If we discard Q highest values and P smallest values of Sk for 

each k, we will produce an estimate of S(k), denoted by SL(k), 

as follows: 
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In the data analysis, this approach, based on elimination of 
a certain part of data, before analyzing the rest of the data, is 

known as the L-statistics. The L-statistics has been already 
used for realizations of signal transforms and representations 
when signal is heavily corrupted by impulse noise [7]-[10]. If 
there is only a disturbance at certain frequency in STFT plane, 
then omitting highest values along that frequency would 
eliminate the interference. If at certain frequency there is a 
contribution from both the interference and the desired 
components, the highest values would correspond to 
overlapping points. Finally, when the interference and desired 
components are of opposite phases, it will produce low 
amplitude at the overlapping point. For that reason it is 
necessary to remove some of the lowest values, as well. 
Consequently, the missing samples appear as a consequence of 
attempting to separate desired from undesired components. 

III. CS BASED COMPONENTS SEPARATION 

 

The concept of compressive sensing reconstruction can be 

used to recover narrowband signals when contaminated with 

different impulsive disturbances. In this case, the desired 

sparse representation can be achieved using the Fourier 

transform. Furthermore, large number of signals, especially 

the sinusoids, are both locally and globally sparse in the time-

frequency domain. The local behavior of sinusoids is revealed 

by taking the STFT [10]. However, when dealing with LFM 

signals or some other known IF laws, we propose to use the 

LPFT. In this way, we demodulate components of interest and 

the scenario is again reduced to the sparse sinusoidal 

components. The time-frequency regions corresponding to the 

non-stationary disturbance over all windows are identified and 

removed from consideration, using the previously presented 

L-estimation approach. Based on the set of remaining TF 

points, the CS reconstruction methods will be employed to 

provide the exact recovery of sparse signal.  

Let us observe the signal x which is made of time-varying 

LFM signal f and a set of strong non-stationary disturbances εεεε. 

In the considered case, it is obvious that prior to the L-

estimation approach which aims to remove all disturbances, 

we need to stationarize the desired components in f. Hence, 

the idea is to use the LPFT, which can be defined as: 
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where w is a window function (without loss of generality the 

rectangular window can be assumed). The term exp(−jαm
2
) is 

used to compensate the linear frequency modulated part of the 

signal, or in other words to demodulate the signal. The LFM 

signals are sparse in the frequency-chirp rate domain. Like the 

signal frequency, the parameter α, i.e., the chirp rate is not 

known in advance, but we can calculate LPFT for all values 

from a certain set [αmin, αmax]. The exact value of α can be 

estimated as the value which provides the highest 

concentration (the highest peak when summing up the LPFT 

values along time axes). Alternatively, we can estimate α as a 

value that produces representation which at certain frequency 

has M non-zero values higher than a threshold. Here, it is also 

important to emphasize that the components within the 



multicomponent LFM signal may have different chirp rates. 

The LPFT in the matrix form can be written as: 

 

 ( ) ( ),M Mn n=LPFT zF  (9) 

where LPFTM(n) and z(n) (x(n) multiplied by exp(−jαn
2
)) are 

vectors in the form: 
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while MF   is M×M DFT matrix with elements: 
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We assume that non-overlapping windows are used for LPFT 

calculation. Hence, after calculating all LPFT vectors, we can 

combine them in a single equation: 

 

 , ,M N=LPFT zF  (12) 

such that vector LPFT is composed of vectors: LPFTM(0), 

LPFTM(M), …, LPFTM(N-M). The matrix ,M NF  of size N×N 

is obtained as a Kronecker product: 

 

, /M N N M M= ⊗IF F , 

where IN/M denotes the identity matrix of size (N/M)×(N/M). 

Now, if we express z using its Fourier transform vector Z, we 

may write: 

 

 1

,M N N

−
=LPFT ZF F , (13) 

where 1

N

−
F  is the inverse DFT matrix of size N×N, or: 

 

  =LPFT ΨZ . (14) 

with 1

,M N N

−
=Ψ F F . The L-estimation is now applied to the 

LPFT as follows. For each frequency k, a vector of LPFT in 

time is formed as: 

 

 [ ( ), ] { ( , ), 0,..., 1}m sort LPFT m k m M= = −kS p , (15) 

where p denotes the vector of positions in the original (non-

sorted vector). Then we have: 
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where CS
kp denotes positions of remaining CS coefficients. 

Finally, when considering all frequencies k, the vector of all 

available LPFT values is denoted as LPFT
CS

. The 

corresponding CS matrix A is formed by omitting the rows in 

Ψ that correspond to the removed positions in LPFT
CS

 vector. 

Each row corresponds to one time and frequency point (n,k). 

In order to reconstruct the original sparse stationary signal, the 

CS minimization problem can be defined as follows: 

 

 
1

CSmin  subject to  = · .Z LPFT A Z
�

 (17) 

The reconstructed DFT vector Z is used to obtain the time 

domain signal z(n), which is then re-modulated to LFM signal 

by multiplication with the factor exp(jαn
2
). The same results 

can be obtained by using the fractional Fourier transform 

instead of the LPFT, with the rotation parameter instead of 

chirp rate. 

IV. EXPERIMENTAL RESULTS 

 

Consider the sparse signal in the form: 

  
2 2( 640 / 256 / ) ( 640 / 128 / )( ) j n N j n N j n N j n N

f t e e
π π π π− + − −

= +

corrupted by the nonstationary disturbances. The disturbances 

are of the form of short duration modulated signals (some of 

them are at the same frequencies as the stationary sinusoids): 
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Different amplitudes are assumed for 19 components all in 

the range between Ai = 1 and Ai = 4, with different 

durations defined by bi. Some of the disturbance terms appear 

at the same frequencies as the desired components. The STFT 

is calculated for N = 1024 and M = 32. The LPFT is calculated 

for a set of values α between αmin=-1024 to αmax=1024. The 

STFT of original disturbed data is presented in Fig. 2.a. The 

LPFT of demodulated signal is shown in Fig 2.b. The sorted 

LPFT values are shown in Fig 2.c. The L-statistics is applied 

to the sorted LPFT: 50% of the largest values are removed 

along with 10% of the smallest values. The reconstructed 

sinusoids in the STFT domain are shown in Fig 2.d. 
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Figure 2. a) STFT of original signal, b) STFT of demodulated signal, c) sorted 

STFT, d) STFT of reconstructed re-modulated signal 
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Figure 3. FT of original signal, noisy signal and reconstructed one 
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Figure 4. Original and reconstructed isolated LFM components 

 

The DFT of original LFM components is shown in Fig.3 

(top), while the DFT of noisy LFM signal with disturbances in 

shown in Fig. 3 (middle). The reconstructed DFT (after re-

modulation), with preserved amplitude and phase, is shown in 

Fig. 3 (bottom). We might observe that despite the strong 

disturbances that appeared in the corrupted signal in Fig. 3 

(middle), the reconstructed signal (Fig. 3, bottom) is very 

close to the original one. Moreover, the original time domain 

LFM signals and their reconstructed version are shown in Fig. 

4. In order to evaluate the precision of reconstruction, the 

mean square error (MSE) and mean absolute error (MAE) are 

calculated for original and reconstructed signal. The values of 

errors:  MSE=0.0047, while MAE=0.05 (which is 2.5% of 

signal amplitude), prove high reconstruction accuracy.  

V. CONCLUSION 

 

A procedure for recovering the LFM signals from strong 

pulses and overlapping disturbances was addressed. The 

portions of desired signal components with no noise influence 

are selected using the L-estimation approach applied to LPFT, 

which is used to stationarize the LFM signal toward sinusoid. 

Dealing with a set of significantly reduced observations in the 

TF domain, the linear relationship is established with the 

Fourier domain of sparsity, and the problem is cast as 

compressive sensing aiming at the recovery of narrowband 

signals in interference using ℓ1 reconstruction algorithm. The 

experimental evaluation of the proposed algorithm show high 

reconstruction accuracy for multicomponent LFM signals, 

providing low MSE and MAE between original non-noisy and 

reconstructed (de-noised) signal.  
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