
 

  

Abstract— The procedure that combines Total Variation 

filtering method and Compressive Sensing signal reconstruction 

is proposed in this paper. Recently, Compressive Sensing has 

been intensively studied as a method for signals acquisition. It 

has been shown that signals can be reconstructed by using just a 

small set of random samples. However, the signal reconstruction 

may not be efficient in the presence of noise. Therefore, we 

considered a combined approach that performs Total Variation 

filtering prior to Compressive Sensing reconstruction, in order to 

provide high accuracy of reconstruction results. The procedure is 

tested on signals that appear in wireless communications. The 

experiments demonstrate that the Total Variation procedure 

successfully eliminates the Gaussian noise, while the filtered 

signal can be successfully recovered using only 30% of signal 

samples.  

 
Index Terms—compressive sensing, total variation, l1 

minimization, wireless signals  

 
 

I. INTRODUCTION 

 
 According to the Shannon-Nyquist sampling theorem, 
signal should be sampled at the rate that is at least twice 
higher than the maximal signal frequency, in order to preserve 
important information about the signal. Wide-band signals, 
sampled in this way, produce large number of samples. 
Therefore, in order to reduce memory requirements and to 
lower the acquisition time, different methods for Compressive 
Sensing (CS) approach have been developed [1]-[7].  
 CS assumes that a signal can be recovered using small 
number of randomly chosen samples, as long as the signal 
satisfies some a priori defined conditions, such as sparsity and 
incoherence property. Sparsity is related to the property that 
the signal can be represented by a small number of non-zero 
coefficients in a certain transform domain. Most of the 
existing compression algorithms are also based on the sparsity 
property. Furthermore, the acquired signal samples, i.e., 
measurements should be incoherent. Incoherence provides CS 
reconstruction with a quite small number of samples. The 
reconstruction of the signal is based on the optimization 
algorithms [7]-[11], usually on the l1 norm minimization, or 
approximate solutions based on the greedy algorithms. 
 Generally speaking, the noisy signals cannot be accurately 
reconstructed using the standard optimization algorithms, and 
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thus, the solution should be based on the combined denoising 
and reconstruction methods. In this paper, the signal denoising 
is based on the Total Variation minimization (TV) algorithm 
[12]-[14], which is applied to signals in the Gaussian noise 
environment. After denoising, the CS procedure is applied to 
provide a small set of measurements, which will afterwards 
allow an accurate reconstruction of the entire signal. 
Therefore, the goal of using CS is to significantly decrease the 
number of samples required to represent the considered 
signals (e.g. for the purpose of transmission). It has been 
experimentally proven that the exact signal reconstruction can 
be achieved.  

 The paper is organized as follows. The basic theory related 
to the TV denoising and CS reconstruction is given in Section 
II. Section III contains analysis of TV denoising and CS 
reconstruction procedure applied to wireless signals. Section 
IV contains experimental results and error analysis. 
Conclusion is given in Section V.  

 

II. THEORETICAL BACKGROUND 

 
A. Total Variation  

 

 Total variation (TV) [12]-[14] has been introduced as 
denoising technique for 2D signals first. Lately, TV is used in 
CS, interpolation and in-painting, as well. It can be applied 
both for the 1D and 2D signal filtering and restoration. The 
TV of the discrete signal x  is defined as follows: 
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In the case of noisy signal nx x n= + , estimation of the signal 

x could be performed by minimizing: 
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and λ is smoothing parameter. Relation (2) is called TV 
denoising. Parameter λ  is regularization parameter and 
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controls the amount of smoothing. Larger values of λ  are 
used to remove higher noise. In this paper, dual formulation 

for the l1 norm of the x is used: 
1 1

max t
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x p x
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= , as it is easily 

performed. Then, the minimization problem becomes [14]: 
 

 2

21
min max t

n lx p
x x p Ax

≤
− + λ . (3) 

 
 
 

B. Compressive Sensing 

 

 Efficient signal analysis using traditional sampling 
technique, requires a large set of signal samples. 
Consequently, further signal processing becomes demanding. 
CS provides signal analysis using significantly less samples 
than it is required by the Sampling Theorem. CS enables 
signal reconstruction from small number of samples, acquired 
in a random manner. In order to properly reconstruct the 
signal form its measurements, the measurement procedure 
should be incoherent and the signal should be sparse. Sparsity 
means that the signal, having a dense representation in one 
domain, could be represented with small number of non-zero 
coefficients in the other (sparse) domain. The domain of 
signal sparsity could be the Discrete Fourier Transform (DFT) 
domain, Discrete Cosine Transform (DCT) domain, wavelet 
domain, etc.  
 Let us describe CS method on the discrete-time signal x. 
Signal consists of the N samples in the time domain, and K 
non-zero samples in the frequency domain. Therefore, it is 
said that the signal is K-sparse. Signal can be represented in 
terms of basis vectors as follows [15], [16]:  
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where iw  is weighting coefficient, iψ  is basis vector, 

ψ denotes NxN transform matrix whose columns are basis 

vectors and w is the equivalent of the signal in ψ  domain. 

Sparse signal domain has its dense domain equivalent, from 
which the samples are acquired. The number of measurements 
M is larger than the number of non-zero components K, but is 
significantly lower than the length of the signal. Acquisition 
of the samples is performed using the measurement matrix φ . 

If we denote measurement vector as y, then the equation: 
 
 x1 x x1,M M N Ny x= φ   (5) 

holds, i.e.: 
 ,y x w w= = =φ φψ ξ   (6) 

 
where ξ  denotes CS matrix. As (6) has M equations with N 

unknowns, this system of equations is undetermined 
( M N< ) and has infinite number of solutions. To solve this 
problem, optimization algorithms are used, such as primal-
dual interior point method, greedy methods such as 

orthogonal matching pursuit, non-iterative and iterative 
variance based algorithms [7]-[11], [17], [18], etc.    

Commonly used optimization technique is based on the  l1 

norm minimization. The optimization problem is defined as: 

 
1
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l

x subject to y x = ξ .  (7) 

Vector obtained by solving (7) will have the sparsest 
representation among infinite number of possible solutions. 

 
 

III. COMBINED CS AND TV PROCEDURE FOR WIRELESS 

SIGNAL RECONSTRUCTION 

 
In this paper, signals that appear in wireless 

communications are used to test combined TV and CS 
reconstruction procedure. Wireless signals could have wide 
frequency band, and therefore require large number of 
samples to be analyzed [19], [20]. As wireless signals could 
be observed as a sum of the small number of sinusoids, the 
sparsity property will be satisfied in the Fourier domain.  

In this paper we have observed the signal, defined as: 
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where e is additive Gaussian noise. For the signal 
reconstruction we have used l1 minimization primal dual 
interior point method. As this method shows poor results in 
the noisy signal case, the TV filtering is firstly performed. The 
algorithm could be summarized as follows: 
 
1. Having noisy signal xn and defining smoothing parameter λ, 
form the optimization function F as follows: 
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2. Finding vectors x and p is based on iterative procedure, i. e.  

 

 

( 1) ( )

( 1) ( ) ( 1)

,
2

2
( ,1)

i t i

i i i

x y A p

p C p Ax

+

+ +

= −

= +

λ

αλ

. (10) 

 
Number of iterations, as well as parameter λ is user defined. 
Parameter α is chosen to be larger than the maximum 
eigenvalue of AA

t  and it is sufficient to use α>2. Operator C is 
the clipping operator, and it is defined as: 
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3. After denoising, signal can be reconstructed using primal 
dual interior point method. DFT matrix ψ  is used as a basis 

matrix.  Measurements are obtained by using set of rows from 



 

matrix ψ .  Random permutations of samples positions are 

stored in vector d and they determine M available signal 
samples, i.e. M matrix rows:  
 ( ),d P N=  (11) 
where P denotes random permutations of N elements and N is 
the signal length.  CS matrix ξ  is then obtained as: 

 ( )(1: 1: ,1 : ))d M N=ζ ψ . (12) 

The optimization problem is solved with l1 minimization 
(from the L1-Magic Matlab toolbox). The experiments are 
performed under presence of Gaussian noise of different 
strength (different signal to noise ratio – SNR). As l1 

minimization algorithm does not give satisfactory results in 
the noisy case, the TV denoising procedure is firstly applied. 
Afterwards, it has been shown that the signal can be 
completely recovered from small set of noise-free signal 
samples.  
 In the experiments we have repeated the TV denoising 
algorithm more than once, in order to eliminate the noise as 
much as possible. TV algorithm is based on signal smoothing 
operations. Therefore, the smoothing parameter λ should be 
carefully chosen according to the number of iterations and the 
amount of noise.    
 
 

IV. EXPERIMENTAL RESULTS 

 
 In the sequel we provide the experimental results for 
denoising and reconstruction of sparse signals.  

 
 

Figure 1. Time domain of noisy (blue) and reconstructed (red) signal 
 
 

The test signal consists of three sinusoidal components and it 
is corrupted by Gaussian noise. The number of components in 
the signal is K=3, with frequencies f1=2, f2=-16, f3=32, while 
t=-1:1/512:1-1/512. The results shown in the following 
figures are obtained for the SNR=6.5052 dB. The noisy signal 
is presented in the Figure 1 (blue line), while its reconstructed 
version obtained using 30% of noisy samples is plotted with 
red line. As it can be seen from Figure 1, l1 minimization 
algorithm fails to reconstruct the signal, due to the presence of 
noise which destroys signal sparsity. Therefore, signal is first 
filtered using TV method. 
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Figure 2. Time domain of: a) original (non-noisy signal); b) signal 
corrupted by Gaussian noise; c) signal denoised using TV algorithm; d) signal 

recovered from 30% of non-noisy measurements 
 
 

TV denoising is performed with smoothing parameter 4λ = . 
Denoising is performed twice, in order to minimize the error 
between original (noise-free) and denoised signal. In Figure 2, 
the original, noisy and denoised signals are shown (Figure 2a, 
b and c, respectively). Figure 2d shows the reconstructed 
signal using only 30% of samples. In Figure 3, the zoomed 
regions of the original, noisy, denoised and reconstructed 
signals are illustrated, as well. 
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Figure 3. Time domain of: a) noisy (blue) and denoised (red) signal; b) 
non-noisy (blue) and denoised (red) signal; c) non-noisy (blue) and 

reconstructed (green) signal 
 
 

The Fourier transforms of non-noisy, noisy and denoised 
signal are presented in Figure 4. The denoised and 
reconstructed signal using 30% of signal samples is presented 
in the Figure 4c (green), together with the original signal 
(blue). The difference between original and reconstructed 
signal is small, as it can be seen from the Figure 4c. Denoising 
and CS reconstruction accuracy is verified numerically by 
calculating errors - mean square and mean absolute errors 
between the signals. Table I shows mean absolute error 
between original and denoised signal (MAE_OD), mean 
square error between original and denoised signal (MSE_OD), 
as well as the mean absolute and mean square error between 
denoised and reconstructed signals (MAE_DR, MSE_DR). 
The calculated errors are small, compared to the mean square 
value of the signal (which is equal to 1.5) or mean absolute 
signal value (which is equal to 1.0086). 
 
 

TABLE I 
MAE AND MSE BETWEEN ORIGINAL AND DENOISED SIGNAL 

AND BETWEEN DENOISED AND RECONSTRUCTED SIGNAL 
 
 

SNR 

[dB] 
MAE_OD MAE_DR MSE_OD MSE_DR 

2.9771 0.3815 0.3123 0.2297 0.2172 

4.9669 0.3121 0.3263 0.1507 0.2498 

6.5052 0.2449 0.1768 0.0927 0.0685 

7.9428 0.2110 0.1693 0.0692 0.0632 

12.8014 0.1325 0.0914 0.0277 0.0184 
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Figure 4. Fourier transform  of non-noisy (blue), signal corrupted by impulse 
noise (red) and denoised signal (green) 

 

V. CONCLUSION 

The combined total variation denoising and compressive 
sensing reconstruction procedure is proposed for the case of 
noisy signals in wireless communications. The l1-norm based 

optimization technique for CS reconstruction can be applied 
only after the signal denoising, which is performed by using 
TV filtering method. The signals corrupted by Gaussian noise 
are observed in the paper.  It has been shown that, by using 
TV filtering, much of the noise can be removed. This is 
proved by calculating errors between the non-noisy and the 
filtered signal. Finally, after signal denoising, the CS can be 
applied assuring high reconstruction accuracy using just 30% 
of the signal samples. 
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