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Inverse Radon Transform Based Micro-Doppler
Analysis from a Reduced Set of Observations
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Abstract—A method for accurate and efficient parameter esti-
mation and decomposition of sinusoidally frequency modulated
signals is presented. These kinds of signals are of special interest
in radars and communications. The proposed method is based
on the inverse Radon transform property to transform a two-
dimensional sinusoidal pattern into a single point in a two-
dimensional plane. Since the signal is well concentrated (sparse)
in the inverse Radon transform domain its reconstruction can be
performed from a reduced set of observations (back-projections).
Theory is illustrated on signals with one and more components,
including noise and disturbances, as well as time-frequency
patterns that deviate from sinusoidal form.
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I. INTRODUCTION

Sinusoidally frequency modulated (FM) signals appear in
many applications, such as radars and communications. In
radar signal processing, fast rotating, vibrating or oscillating
parts reflect a signal causing micro-Doppler (m-D) effect in a
form of sinusoidally FM signal [1]-[8]. In practice, it is very
important to extract, decompose, and estimate parameters of
these kinds of signals, since they are related to the physical
dimensions and other properties of the moving objects [9]-
[26]. Most of the techniques used for the detection, extraction
and parameter estimation of these signals are based on two
approaches. One is the parametric approach when the form
of a signal, we are looking for, is assumed and we try to
extract a desired component by matching its parameters [27],
[28]. The other approach is based on the L-statistics and time-
frequency (TF) analysis to extract non-stationary features from
the TF representation of a composite signal. This method just
separates stationary and non-stationary parts, but it does not
separate non-stationary components within the signal [29],
[30].

In this paper, we will present a method for analysis of
sinusoidally FM components based on the inverse Radon
transform (IRT) of signal’s TF representation. The Radon
transform, widely used in computer imaging applications
(computed tomography), is also used in TF for projecting
Wigner distribution in order to detect linear FM signals
[31]-[34]. The Radon transform of a two-dimensional (2D)
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function, for a given angle, is defined by a projection (line
integrals) onto the line with the same angle. The maximal
value of the projections in the Radon transform is obtained
for an angle when the integration line coincides with a signal
component direction. In this case a line structure in the TF
plane is projected into a point in the Radon transform. Thus,
the direction of the linear FM signal can easily be estimated
by varying the projection angle and calculating the Radon
transform of the Wigner distribution. By detecting the Radon
transform with the highest concentration (its maximum) the
chirp rate value of a linear FM signal can be estimated. The
fractional Fourier transform (FrFT) and the local polynomial
Fourier transform (LPFT) are also used for the parameter
estimation of the linear FM signals [38], [39]. They could
be applied in similar scenarios as the Radon transform of the
TF. Moreover, these methods are equivalent to each other, as
it will be explained in Section III, [40], [41], [42]. The FrFT
and LPFT are used for estimation of a vibration signature (TF
signature of a sinusoidal FM signal) as well. To this aim, a
nonstationary signal, corresponding to a vibrating object, is
analysed within short time intervals so that in each analysed
interval (subaperture) it can be approximated as a linear FM
signal [38], [39]. The FrFT is then applied to estimate the local
chirp rate in subapertures, with appropriate shifts along time.
In the method proposed in [38], the duration of subapertures
should be much smaller than the duration of the analysed
vibration so that the linear FM approximation of the analysed
signal part holds in the subaperture.

Here, we will use the IRT rather than the Radon transform
of TF representation. The Radon transform of a 2D function
containing a 2D delta function is a sinusoidal pattern with an
amplitude corresponding to the distance of the point from the
origin and the initial phase corresponding to the angle of the
point position. It is obvious that a sinusoidal pattern in the
TF plane (TF representation of sinusoidally FM signal) will
project to a 2D delta pulse in the IRT. In the IRT, the sinusoidal
TF forms of any duration will transform to a point, without
the assumption about linearity in the considered interval. Thus,
the entire signal’s energy from the TF domain is projected
into a single point in the IRT domain. Behavior of the Radon
transform and the inverse Radon transform is completely
different, in contrast, for example, to the Fourier transform
[44]. Unlike in the Radon transform of TF representation (or
the FrFT or LPFT) where a sinusoidally FM signal must be
analysed within short intervals so that linear FM law can be
assumed, in the algorithm proposed here, the IRT is applied
on this kind of signals without linearity assumption.

The initial idea for using the IRT was presented in [30],
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with more details in [45]. In [30], the IRT is used for the m-D
separation from a rigid body. In the case of multiple rotating
reflectors, multiple peaks will be detected in the IRT, therefore,
by filtering the region around each peak and calculating RT
of the filtered IRT, TF representation of the signal resulting
from the rotating parts is obtained [45]. The basic idea from
these two papers is further developed and presented here. In
this paper, a property that the IRT of a TF representation
of a sinusoidally FM signal is well concentrated (sparse) is
used to perform analysis and reconstruction from a few back-
projections (observations). It is shown that in an ideal case just
three observations in the IRT would be sufficient to reconstruct
more than one sinusoidal pattern in image. The robustness of
the proposed technique is tested through examples with noisy
signals with a various number of observations. Disturbances
in a form of flashes, rigid body reflection and noise, are
considered in this paper as well. The method is applied on
the benchmark data set of Iroquois helicopter simulations.

The paper is organized as follows. The signal model of the
m-D effect is introduced in Section II. The IRT is reviewed in
Section III. A method for estimation of the sinusoidally FM
signal’s parameters is the topic of Section IV. The examples
that illustrate the efficiency of the presented method are given
in Section V. The conclusion is given in Section VI.

II. SIGNAL MODEL

In the ISAR (Inverse Synthetic Aperture Radar) case, the
aim is to obtain a high-resolution image of a target based on
the change in viewing angle of the target with respect to the
fixed radar. The received signal usually contains a rigid body
part and an m-D part. Here we will ignore the rigid body part
in the analysis, and consider only the m-D components.

In the case of K fast rotating m-D points, the received signal
can be written as [29]

s(t) =

K∑
k=1

σRke
j2[yR0kωBt+ARk sin(ωRkt)]ω0/c, (1)

where ωRk is the angular frequency of the k-th m-D point,
ARk is the rotation amplitude, yR0k is the center of rotation,
ωB is the angular velocity of the rigid body with respect to
radar, σRk is the reflection coefficient, ω0 is the radar operating
frequency and c is the propagation speed (speed of the light).

If a reflecting point vibrates, around a central point
(xR0k, yR0k), along a line parallel to the line-of-sight, with the
frequency ωV k, reaching the maximum amplitude ARk from
the central point, then we get the form as (1), with the last
phase term ARk sin(ωRkt) being replaced by ARk sin(ωV kt).
Thus, the vibrations can be analysed in the same way as the
rotations.

In the case of many rotating/vibrating reflectors, the re-
sulting signal is a sum of sinusoidally FM components. The
instantaneous frequency of each component is equal to the
phase derivative

Ωk(t) = 2[yR0kωB + ωRkARi cos(ωRkt)]ω0/c.

In the Fourier domain, the components are approximately
located within the frequency range from 2[yR0kωB −
ωRkARk]ω0/c to 2[yR0kωB + ωRkARk]ω0/c. An ideal TF

representation should concentrate the signal energy along the
instantaneous frequency. It should be of the form

ITFk(t,Ω) ∼ 2πσ2
Rkδ(Ω− Ωk(t)). (2)

In the next section it will be shown that this representation
is transformed into a single nonzero point by using the IRT.
The IRT of TF representation of these kinds of signals is the
domain where it is sparse. The sparsity of the IRT presentation
means here that the number of sinusoidal components is much
fewer than the total number of points in the radar image and
the corresponding IRT of this image.

Any TF representation concentrating the signal energy along
the instantaneous frequency in the TF plane can be used as an
approximation of (2), [42]. The spectrogram, as the simplest
TF representation, is defined as a squared modulus of the
short-time Fourier transform (STFT). In the discrete domain
it reads

SPEC(n, l) = |STFT (n, l)|2

STFT (n, l) =

Nw−1∑
m=0

w(m)x(n+m)e−j
2π
Nw

ml,

where w(n) is the analysis window of the length Nw.
The S-method is used to improve the concentration of

the spectrogram along the instantaneous frequency in the TF
plane. It is defined as [42], [43]

SM(n, l) = |STFT (n, l)|2

+2 Re

{
L∑
i=1

STFT (n, l + i)STFT ∗(n, l − i)

}
, (3)

where L is the number of correcting terms with respect to the
spectrogram |STFT (n, l)|2. It can significantly improve the
TF representation concentration toward the ideal one with just
a few of correcting terms. Further concentration improvement
can be achieved by using higher-order TF representations.

III. RADON AND INVERSE RADON TRANSFORM REVIEW

A review of the IRT is presented next, in order to show that
a TF representation of a sinusoidally modulated signal will be
transformed into a point and to relate the position of this point
to the signal parameters.

A projection of a 2D function f(x, y) onto the x-axis is

Rf (x) =

∞∫
−∞

f(x, y)dy. (4)

A rotated version of a 2D function may be described in a
rotated coordinate system using the coordinate transform. For
a rotation angle β, it reads[

ξ
ζ

]
=

[
cos(β) sin(β)
− sin(β) cos(β)

] [
x
y

]
.

The projection of a function f(x, y) onto ξ, with a varying
rotation angle β, is the Radon transform of f(x, y)

Rf (ξ, β) =

∞∫
−∞

f(ξ, ζ)dζ, (5)
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where f(ξ, ζ) is the 2D function f(x, y) in the rotated system,

f(ξ, ζ) = f(x cosβ + y sinβ,−x sinβ + y cosβ).

The Radon transform is periodic in β with 2π. Projections for
0 ≤ β < π are sufficient to calculate all transform values. By
knowing all projections, for 0 ≤ β < π, we can reconstruct
a 2D function f(x, y) from its projections (basic theorem for
computed tomography) [44].

Let us consider a simple setup where the analysed image
is a 2D delta function located at the point f(x, y) = δ(x −
x0)δ(y − y0) in the x, y domain. For an arbitrary direction a
projection of the function f(ξ, ζ) = δ(ξ−ξ0)δ(ζ−ζ0) onto ξ,
with ξ0 = x0 cos(β)+y0 sin(β), ζ0 = −x0 sin(β)+y0 cos(β),
results in the Radon transform

Rf (ξ, β) =

∞∫
−∞

f(ξ, ζ)dζ = δ(ξ − ξ0) (6)

= δ(ξ − (x0 cos(β) + y0 sin(β))) = δ(ξ −A cos(β + ψ)).

Note that this is a sinusoidal pattern in a 2D (ξ, β) domain,
with the amplitude A =

√
x2

0 + y2
0 and the phase ψ =

arctan(y0/x0). Thus, a point in the (x, y) domain transforms
to a sinusoidal pattern in the Radon transform domain. It
means that a sinusoidal pattern will be transformed into a point
by using the IRT

δ(ξ −A cos(β + ψ))
IRT

�
RT

δ(x− x0)δ(y − y0).

When all signal energy is concentrated into a point, then
its parameter estimation is very robust and reliable. Moreover,
just three parameters are to be estimated meaning that three
independent observations will be sufficient. In addition, if we
will be able to associate parameters from one back-projection
to different sinusoidal patterns, then three observations will be
sufficient for more than one sinusoidal pattern analysis.

Since the Radon transform has already been used in the TF
analysis, including the analysis of radar signals, here we will
explain the crucial difference between the Radon transform
behavior and the IRT used in this paper. The Radon transform
projects a 2D signal. A projection is calculated as an integral
(5) along the straight lines, whose direction is defined by the
projection angle β. As such, it can be used (and it has been
used) for the detection of straight line structures in the 2D
image. In the TF analysis, straight line structures correspond to
the linear FM signals. When the projection line coincides with
a TF structure of a liner FM signal (linear structure), then the
projection (line integral) value is large. For any other direction
of the integration, not corresponding to the TF structure of a
linear FM signal, the projection (line integral) assumes much
smaller values. This was the basis for the Radon transform
application in the detection of the linear FM signals in a TF
representation [31]-[34].

This property of the Radon transform is directly related to
the FrFT, defined by

Xβ(t) =
√

1−j cot β
2π ej

cot(β)
2 t2

∞∫
−∞

x(τ)ej
cot(β)

2 τ2

e−jtτ csc βdτ.

(7)

It is well known that the fractional Fourier transform rotates
the TF plane [40], [41]. If a fractional Fourier transform is cal-
culated with a parameter β and then the 2D TF representation
is calculated using the FrFT of the signal, it is the same as if
the 2D TF representation is calculated based on the signal and
the TF representation is rotated by the angle β. In symbolic
notation:

if f(t,Ω) = TF{x(t)}
then TF{Xβ(t)} = f(t cosβ − Ω sinβ, t sinβ + Ω cosβ)

Having in mind that the projections of the TF representations
are equal to their marginal properties, then instead of calcu-
lating the TF representation and then its Radon transform, the
same result will be obtained by calculating the FrFT and taking
its squared moduli

Rf (ξ, β) = |Xβ(ξ)|2 .

The squared moduli of the FrFT are the projections (marginal
properties) of the rotated TF representations (their Radon
transforms). This procedure can be further simplified by using
the fact that the FrFT defined by (7) is just a scaled Fourier
transform of the signal multiplied by a linear FM signal,
FT{x(τ)ej

cot(β)
2 τ2}. The FrFT can directly be related to the

first-order polynomial Fourier transform (PFT) as

Xβ(t) =
√

1−j cot β
2π ej(t

2/2) cot βPFT−cot(β)/2(t csc(β))

PFTΩ1
(Ω) =

∞∫
−∞

x(τ)e−j(Ωτ+Ω1τ
2)dτ.

Thus, we may say that the calculation of the Radon trans-
form of a TF representation or the fractional Fourier transform
or the first-order polynomial Fourier transform of a signal
reduces to:

1. Multiplication of a signal x(t) by e−jΩ1τ
2

(de-chirping)
2. Fourier transform calculation of the de-chirped signal.
Based on this, we come again to the same conclusion as the

one drawn from the geometry of the Radon transform. These
techniques are optimal for the linear FM signals. They are used
for analysis of these signals in [31]-[34], including the signals
that can be approximated by linear FM signals within the
considered time interval. These methods are not appropriate
for nonlinear structures, like for example, sinusoidal structures
in the TF representation, corresponding to the m-D effect.

In contrast to the Fourier transform, when the properties of
the direct and inverse transform are similar, the inverse Radon
transform is a completely different from the direct Radon
transform. Its calculation is based on back-projecting of one
dimensional forms to two dimensions of the original signal. An
elementary 2D delta-pulse like structure (the sparsiest possible
form of a function) will back-project into a sinusoidal form in
the original domain. It is important to note that this kind of
TF representations (2D delta-pulse like TF representation) is
not considered in the literature due to a simple reason that
it does not exist (uncertainty principle would be violated).
However, a sinusoidal pattern in the IRT domain exists as
a TF representation. It is then back-projected to a 2D delta-
pulse like form, which is not a TF representation. Therefore
the uncertainty principle is not violated in this case. This is
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the reason why the traditional research related to the direct
Radon transform cannot be related to the theory presented in
this paper and the reason why the IRT is proposed as the main
tool for the m-D structure analysis.

IV. PARAMETER ESTIMATION USING THE INVERSE RADON
TRANSFORM

Consider a multicomponent signal

x(t) =

K∑
k=1

A(k)
x exp

(
j
A

(k)
m

f
(k)
m

sin(2πf (k)
m t+ θ(k)

m )

)
+ ε(t),

(8)
with K sinusoidally FM components. Disturbing components
and noise are denoted by ε(t). A TF representation T (t,Ω) of
a given signal concentrates its energy along the components’
instantaneous frequencies

Ωk(t) = 2πA(k)
m cos(2πf (k)

m t+ θ(k)
m ).

Therefore, this signal is presented in (t,Ω) plane by K
sinusoidal patterns.

If we change the time coordinate with ϕ = 2πf
(k)
m t,

then, based on the analysis in the previous section, we can
conclude that in the IRT of the obtained TF representation-
based image T (ϕ/(2πf

(k)
m ),Ω) we will have at least one

highly concentrated peak (point) that corresponds to the k-
th sinusoidal pattern. Its distance from the origin corresponds
to the modulation parameter A(k)

m and the angle of the point
is equal to θ

(k)
m . In this way, we can accurately estimate the

modulation parameters A(k)
m and θ(k)

m .
The modulation parameter f (k)

m can be estimated by in-
troducing a change of coordinate from t to ϕ, as ϕ = αt
where α is a parameter. Now we can vary the parameter α
within a range of possible values and search for a value α̂(k)

that produces an IRT with a highly concentrated peak. In that
case, we know that α̂(k) = 2πf

(k)
m and we can estimate the

modulation parameter f (k)
m . The range of α should be wide

enough to include 2πf
(k)
m . Its limits could be determined as the

minimal and the maximal expected 2πf
(k)
m in the considered

case.
Since the IRT in the case of α̂(k) = 2πf

(k)
m is highly

concentrated for k-th component, the concentration measures
[35] can be used to detect the event when α̂(k) is found.

In the considered multicomponent case, the concentration
measure of the obtained IRT can produce several or all K
values of α with visible and distinguishable concentration
measure peaks. Then, these values are associated to the
corresponding signal parameter f

(k)
m , while A

(k)
m and θ

(k)
m

are calculated from the position of maximum in the IRT
calculated for α̂(k), i.e. IRT of T (ϕ/α̂(k),Ω). However, due
to different amplitudes and different number of periods in the
TF plane, usually only the strongest component is visible in
the concentration measure.

In general, two approaches are used to measure the concen-
tration of a signal transform. One is based on the measuring
transformation spread. The basic idea for this measures comes
from counting nonzero values using the L0-norm of the
transformation. However, this kind of norm is difficult for

optimization and sensitive to any disturbance. That is why
measures of the form [35]

Mp
p =

(∑
n

∑
k

|IRT (n, k)|1/p
)p

are used with 1 ≤ p <∞. The most widely used norm, within
this approach, is obtained with p = 1. This kind of norm
dominates the optimization problems in compressive sensing
[36], [37].

The other approach to measure the transformation concen-
tration is based on measuring its peakedness, with a normal-
ized transformation energy. Then, higher order powers of the
transformation are used. This kind of concentration measures
are used in the TF adaptive kernel design. This approach is
especially interesting if we look for a very peaked form of
the transformation, like in the IRT case. A limit case of this
approach is the concentration measure obtained for p → 0,
i.e. 1/p → ∞. The concentration measure, in this limit case,
equals to

M = lim
p→0

(∑
n

∑
k

|IRT (n, k)|1/p
)p

= max {|IRT (n, k)|} .

In our previous work [45], the normalized measure µ =

M1
1/M

1/2
1/2 was used. It was based on the first approach

and was more sensitive to the disturbances presence. In our
research afterwords, we have found the measure based on
maxima (corresponding to L∞-norm) is more robust and the
best suited for a single maximum detection in the IRT function.

A. Algorithm

The estimation algorithm is summarized as:
Step 1. Start from the signal x(n) with unknown modulation
parameters and unknown number of components. Assume that
the modulation frequency satisfies fmin ≤ fm ≤ fmax, where
fmin and fmax are constants. Set the number of estimated
components to k = 0.
Step 2. Set k = k + 1 and repeat the following steps if the
energy of the signal x(t) is not negligible or if it is higher
than the expected noise energy.
Step 3. Calculate the TF representation T (t,Ω) of x(n). Here
we can use any TF representation concentrating the signal
energy along the instantaneous frequency in the TF plane [42].
The result of this step is a 2D TF image of the considered
signal.
Step 4. Consider a set of possible α as M equally spaced
values between 2πfmin and 2πfmax. For each α within the
considered set, introduce coordinate change ϕ = αt and
calculate the IRT of the image T (ϕ/α,Ω).
Step 5. Calculate the concentration measureM of the obtained
IRTs for each α and find α̂(k) that produces the highest
concentration.
Step 6. Estimate the modulation frequency of the k-th com-
ponent as f̂ (k)

m = α̂(k)/(2π).
Step 7. Find the position of the IRT maximum calculated
with α̂(k), i.e. IRT of T (ϕ/α̂(k),Ω). Denote the detected
coordinates as x(k)

m and y(k)
m .
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Step 8. Estimate the modulation amplitude and phase of the
k-th component as

Â(k)
m =

√
(x

(k)
m )2 + (y

(k)
m )2,

θ̂(k)
m = arctan(y(k)

m /x(k)
m ).

Step 9. Filter out k-th component by demodulating current
signal x(n)

xd(n) = x(n) exp

(
−j Â

(k)
m

f̂
(k)
m

sin(2πf̂ (k)
m n∆t+ θ̂(k)

m )

)
,

calculating the DFT of the demodulated signal Xd(k) =
DFT[xd(n)] and removing DC component by putting zero
value to Xd(0), and several neighboring points Xd(1), Xd(N),
Xd(2), Xd(N−1) ... Calculate the filtered signal by the inverse
DFT xf (n) = IDFT[Xd(k)] and modulate it in order to cancel
frequency shifts in the remaining components caused by the
demodulation

xm(n) = xf (n) exp

(
j
Â

(k)
m

f̂
(k)
m

sin(2πf̂ (k)
m n∆t+ θ̂(k)

m )

)
.

Step 10. Set x(n) = xm(n) and go to Step 2.
The presented procedure can be used on periodic non-

sinusoidally FM signals, producing non-sinusoidal patterns in
the TF plane. The result will be the parameters of the closest
sinusoidal pattern form, as it will be shown in the examples.

B. Analysis of the m-D from a Reduced Set of Observations
From the previous analysis, we can conclude that the m-D

effect of rotating or vibrating parts is sparse in the IRT
of its TF representation. Namely, in the IRT domain, with
appropriate scaling parameter α, each m-D component is
represented as a single nonzero value.

From the compressive sensing theory, we know that such
signals can be analysed by using much smaller data sets i.e.,
we do not have to use the whole data set [36], [37]. In
general, when we have data represented with N observations
if there is a transformation domain where this data can be
represented with K nonzero coefficients (K � N ), then
this data can be analysed by using only Np observations
K < Np < N . For this kind of signal, we say that it is
sparse in this transformation domain. Its processing is done
within the framework of compressive sensing.

Consider the m-D effect caused by a single rotat-
ing/vibrating scatterer. Its ideal TF representation is sinusoidal
pattern of the form

ITF (t,Ω) ∼ 2πσ2
Rδ(Ω− (x0 cosβ + y0 sinβ)), (9)

with β = αt. The parameter α is used to transform the
time axis from TF domain into angle in the Radon transform
domain. This parameter is unknown and it equals to the
angular frequency of the m-D component.

Let us consider just three TF observations of the m-D
component at the instants t1, t2, and t3

ITF (t1,Ω) ∼ δ(Ω− Ω1)

ITF (t2,Ω) ∼ δ(Ω− Ω2)

ITF (t3,Ω) ∼ δ(Ω− Ω3).

These three observations correspond to three angles in the IRT

β1 = αt1 β2 = αt2 β3 = αt3,

where parameter α is to be found.
In the IRT domain, we have system of three equations

x0 cosαt1 + y0 sinαt1 = Ω1

x0 cosαt2 + y0 sinαt2 = Ω2

x0 cosαt3 + y0 sinαt3 = Ω3.

Each equation presents a line in the IRT domain. Now we
should find α when three lines intersect in a single point. By
solving the system of two equations (first and second equation)
for x0 and y0 we get

x0 =
Ω1 sinαt2 − Ω2 sinαt1

sinα(t2 − t1)

y0 =
Ω1 cosαt2 − Ω2 cosαt1

sinα(t1 − t2)
. (10)

Replacing these values into the third equation we get the
solution

Ω1 sinα(t2 − t3)− Ω2 sinα(t1 − t3) = Ω3 sinα(t2 − t1).

For the special case t2 = t, t1 = t −∆t, and t3 = t + ∆t

a simple solution for α follows

−Ω1 sinα∆t + Ω2 sin 2α∆t = Ω3 sinα∆t

cosα∆t = (Ω1 + Ω3)/(2Ω2).

Here we should take care about 2pπ ambiguity in solving for
α, where p is an integer. After α is estimated, the m-D param-
eters are calculated as A =

√
x2

0 + y2
0 and θ = arctan(y0/x0)

with x0 and y0 obtained from (10).
In theory, with three close observations we can reconstruct

one m-D component. For close observations there is no 2pπ
ambiguity in the solution of α [18]. In the case of K
components, we will have ideal TF representation of the form

ITF (t,Ω) ∼
K∑
k=1

2πσ2
Rkδ(Ω− Ωk(t)). (11)

If the observations are close enough and frequencies
are sufficiently apart, we can easily distinguish sets
[Ωk(t1),Ωk(t2),Ωk(t3)] for different k. Then the application
of the presented one component case to a K component signal
cases is straightforward. This approach can be extended to any
three observations as far as we are able to correctly associate
the frequencies Ωk(t1),Ωk(t2),Ωk(t3) to the corresponding
m-D components (for example, by using component ampli-
tudes).

Using more than three observations will improve possibility
to resolve signal components. In the case of noisy data
using more observations will also improve the reconstruction
performance.
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V. EXAMPLES

Example 1: Consider N = 128 samples of a multicom-
ponent noisy signal consisted of K = 3 sinusoidally FM
components of the form (8). The signal is sampled with
t = n∆t, ∆t = 1/128, n = 0, 1, . . . N − 1, while component
parameters are:
A

(1)
x = 1, f (1)

m = 1.4, A(1)
m = 50, θ(1)

m = 30◦,
A

(2)
x = 0.7, f (2)

m = 0.8, A(2)
m = 28.6, θ(2)

m = 180◦,

A
(3)
x = 0.7, f (3)

m = 1, A(3)
m = 35.7 and θ(3)

m = −60◦.
The spectrogram and the S-method of the considered signal

are presented in Figs. 1 (a) and (b). The spectrogram is
calculated with a 17-point Hann window, while the S-method
is calculated with a 55-point Hann window and L = 8. In
both cases, the TF representation is calculated at each available
time instant. The Radon transforms of the spectrogram and the
SM, calculated for β from 0 to 180 degrees with one degree
step, are presented in Figs. 1 (c) and (d) respectively. The
Radon transform of TF representation (at an angle β) is a
projection onto the line with an angle β. Since the considered
TF representation is consisted of sinusoidal patterns, there are
no sharp peaks in the Radon transform. Slightly higher values
in the Radon transform appear for angles β that coincide with
the directions of the sinusoidal pattern that can be considered
as locally linear. However, no conclusions about the sinusoidal
pattern parameters can be made from Figs. 1 (c) and (d).

The Radon transform would project a linear pattern into
a point. It could be used for the estimation of a linear FM
direction, but not for the estimation of the sinusoidally FM
patterns. For analysis of these signals we use the IRT. The
parameter α is varied from 0.2 to 15 with step 0.2. For each α
the IRT, along with the corresponding concentration measure,
is calculated. The IRT of the spectrogram and the SM, calcu-
lated for α = 8.8, producing maximum concentration measure
M(α), is presented in Figs. 1(e) and (f), respectively.

The presented algorithm estimates first the parameters of
the strongest component, Figs. 1(g) and (h). The estimated
parameters are

f̂ (1)
m = 1.4, Â(1)

m = 48.50, θ̂(1)
m = 30.26◦.

The sinusoid that results from the estimated modulation pa-
rameters is depicted by dashed line over the spectrogram of the
analysed signal in Fig. 1(g). The estimated modulation param-
eters correspond to the component instantaneous frequency.
The concentration measure of the IRT, calculated for each
value of α, is presented in Fig. 1(h). Its maximum is depicted
by a circle. The first estimated component is filtered out and
the next iteration of the presented algorithm is continued with
x(n) = xm(n). The parameters of the second component are
estimated next. Results are presented in Figs. 1 (i) and (j).
The estimated modulation parameters are

f̂ (2)
m = 0.80, Â(2)

m = 28.0, θ̂(2)
m = 180◦.

In the next step, the second estimated component is filtered out
and the parameters estimation for the last component is done.
The results are given in Figs. 1 (k) and (l). The estimated
parameters are

f̂ (3)
m = 0.99, Â(3)

m = 35.52, θ̂(3)
m = −58.4◦.

R
a
d
o
n
 T

ra
n
s
fo

rm

angle from 0 to 180 degrees

(d) 
 

R
a
d
o
n
 T

ra
n
s
fo

rm

angle from 0 to 180 degrees

(c) 
 

time

fr
e
q
u
e
n
c
y

Spectrogram

(a) 
 

0 0.5 1

−50

0

50

time

fr
e
q
u
e
n
c
y

S−method

(b) 
 

0 0.5 1

−50

0

50

IR
T

 f
o
r 

α
 =

 8
.8

A
m

 
, θ

m

(e) 
 

IR
T

 f
o
r 

α
 =

 8
.8

A
m

 
, θ

m

(f) 
 

fr
e
q
u
e
n
c
y

(g) 
 

Spectrogram

0 0.5 1

−50

0

50

0 5 10 15
0.5

1

1.5

2

2.5

3
x 10

−3

M
(α

)

(h) 
 

Measure

fr
e
q
u
e
n
c
y

(i) 
 

0 0.5 1

−50

0

50

0 5 10 15
0

0.5

1

1.5

2

2.5
x 10

−3
M

(α
)

(j) 
 

fr
e
q
u
e
n
c
y

(k) 
 

time

0 0.5 1

−50

0

50

0 5 10 15
0

0.5

1

1.5

2
x 10

−3

M
(α

)

(l) 
 

α

Fig. 1. Multicomponent signal example. Time-frequency representation:
spectrogram (a), SM (b); Radon transform calculated for angles from 0 to
180 degrees, with one degree step (c), (d); inverse Radon transform with
the highest concentration (e), (f). Estimation of the first component (g), (h);
second component (i), (j); and third component (k) and (l). Each component
is removed from the signal after estimation, according to the given algorithm,
prior to next component estimation. Estimated modulation is plotted with
dashed line over spectrogram image in (g), (i) and (k), while the maximum
of the concentration measures given in (h), (j) and (l) is depicted by circle.
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Fig. 2. Time-frequency representation of sinusoidal FM signal (a). Con-
centration measure of the inverse Radon transform calculated from three
observations of the spectrogram (b). Inverse Radon transform calculated from
three observations when parameter α is not optimally chosen (c), (e). Inverse
Radon transform calculated from three observations with highest concentration
(optimally chosen α) (d). Three vertical lines on the spectrogram in (a)
represents positions (instants) of the three observations used in reconstruction.

The agreement with the true parameters is high.
Example 2: The reconstruction procedure of one m-D

component, based on three close observations of its TF repre-
sentation, is illustrated in this example.

The analysed sinusoidal FM signal is of form (8) with
K = 1, ε(t) = 0, Am = 10, fm = 0.1/(2π), θm = 270◦,
sampled with ∆t = 1/64 and 64N samples in the total
signal duration, with N = 200. The spectrogram is used as a
TF representation. The STFT is calculated by using a Hann
window with length Nw = 129, with the time step 64, so that
we have N time instants in its spectrogram. This is presented
in Fig. 2(a).

In the considered case, we can estimate all parameters of
the analysed sinusoidal pattern (FM signal) by using only three
observations of its TF representation. Green lines in Fig. 2(a)
represent three values of β for which the observations of the
considered TF representation are assumed to be available, i.e.
βi = αti, i = 1, 2, 3. Then, the parameter α is varied from,
for example, from 0.01 to 0.2 with a step of 0.01 and for
each α the IRT and the corresponding concentration measure
is calculated. The concentration measure M(α), obtained by
this procedure, is presented in Fig. 2(b) for the IRT calculated
using only three observations of the spectrogram. Maximum at
α = 0.1 can easily be detected and the modulation parameters
estimated from the IRT calculated by using this value of α,
Fig. 2(d). In Figs. 2(c)-(e) the corresponding IRTs calculated
for different values of α are presented. As it is expected
from the previous theoretical analysis, in each IRT there are
three lines, one line per available observation. All three lines
intersect at a single point in the IRT for α = 0.1 which is equal
to the angular frequency of the analysed signal. The IRTs for
values α 6= 0.1 are depicted in Fig. 2(c), (e). In these cases
there is no one-point intersection of all three lines as in Fig.
2(d).
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Fig. 3. Two sinusoidal patterns (a). Concentration measure for the inverse
Radon transform calculated from three observations of sinusoidal pattern (b).
Inverse Radon transform when parameter α is not optimally chosen (c), (f).
Inverse Radon transform with optimally chosen α for the first sinusoidal
pattern α = 0.1 (d). Inverse Radon transform with optimally chosen α for
the second sinusoidal pattern α = 0.12 (e).

Example 3: In this example, the sinusoidal patterns:

ITF (t,Ω) =

K∑
k=1

δ(Ω−Ak cos(βk + ψk)) (12)

with K = 2, N = 200, A1 = N/6, A2 = N/3, β1 = 0.1t,
β2 = 0.12t, ψ1 = 3π/2, ψ2 = 0 and t = 0, 1, ..., N
are considered and depicted in Fig. 3(a). The concentration
measure of the IRT calculated by using three observations are
presented in Fig. 3(b) for different values of α. Parameter α
is varied from 0.01 to 0.2 with step 0.01. Two peaks at the
positions, corresponding to the first and the second sinusoidal
pattern, are clearly distinguishable. These values of α can be
used for the IRT calculation and other modulation parameter
estimation. Green lines in Fig. 3(a) represent time instants of
the available observations of the considered sinusoidal pattern.
For each observation, we have two non-zero values, one per
sinusoidal pattern. From Figs. 3(c)-(f) we can see that in
each IRT, calculated by using three observations, there are
six lines (three per one sinusoidal pattern). Moreover, each
set of these three lines which corresponds to one sinusoidal
pattern has, for each value of α, a parallel counterpart that
correspond to the other sinusoidal pattern. Consequently, they
will never intersect each other. In addition, only for α that
corresponds to the period of a sinusoidal pattern three lines
that are related to that sinusoidal pattern intersect each other in
a single point, Fig. 3(d) for α = 0.1 and Fig. 3(e) for α = 0.12.
The modulation amplitude and phase of a component can be
estimated from the position of the point where all three lines
intersect.

In theory, three observations are sufficient to detect all
m-D components. However, in practice, the sensitivity to any
kind of noise or discretization error is high. By increasing
the number of observations, the robustness of the proposed
approach is improved.
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Example 4: Consider a signal of form (8) composed of
five sinusoidal FM components, with K = 5, A(k)

x = 1 for
each k, A(k)

m = 21, for k = 1, 4, 5, A(2)
m = A

(3)
m = 42,

f
(1)
m = 0.1/(2π), f (2)

m = 0.12/(2π), f (3)
m = 0.07/(2π),

f
(4)
m = 0.14/(2π), f (5)

m = 0.18/(2π), θ
(k)
m = 3π/2, for

k = 1, 4, 5, θ(2)
m = θ

(3)
m = 0 sampled with ∆t = 1/128,

N = 200, and duration 128N . Although, in theory, three ob-
servations are sufficient for detecting all the m-D components,
in the case when there are several m-D components, a higher
number of observations should be used. The results for the
IRT calculated from twenty observations (back-projections)
of spectrogram are presented in Fig. 4. The Hann window
of the length Nw = 513 is used for the STFT calculation.
The STFT is calculated with a time step of 128, so that we
have N time instants in the corresponding spectrogram shown
in Fig. 4(a). There are five clearly distinguishable peaks in
the concentration measure, Fig. 4(b). Each of these peaks is
at the value of α which corresponds to one of the five m-D
components. Higher number of observations make easier to
distinguish the concentration measure for α when all back-
projections are crossing in one point. To that aim, the IRT
calculated from twenty observations for α that corresponds
to the second and the third m-D component are presented in
Figs. 4(c), (e). One point, where all twenty observations of the
m-D components with modulation parameter that correspond
to α = 0.07 and α = 0.1, crossed each other, assumes
significantly higher intensity than all others. When the value
of α does not correspond to the modulation parameter of
any analysed component, there are many points with similar
intensity, Fig. 4(d).

Performance of the proposed technique in the case of noisy
signal are tested for various numbers of available obser-
vations. They are presented in Fig. 4(f). For each signal-
to-noise ratio (SNR) and for the numbers of observations
Np = 10, 20, 50, 100, and 200, the percentage of properly
detected components in 20 realizations is presented. From Fig.
4(f) we can conclude that the detection with a reduced number
of observations is possible at high values of SNR. Increasing
the number of available observations the detection percentage
is improved at low SNRs.

Comparison of the L1-norm based concentration measure
used in [45] and the maximum (L∞-norm) based measure is
done for Np = 50 observations. For low noise (high SNR)
both of them behave in a similar way. However, the detection
threshold is lower for the maximum (L∞-norm) based measure
for about 5 [dB], Fig. 4(g). Similar results would be obtained
for other numbers of observations Np.

Example 5: The robustness of the proposed technique
to other common disturbances is tested in this example. A
pattern of form (12) is used with K = 9, Ak = N/3, for
k = 1, 4, 5, 6, 9, A2 = N/6, A3 = 1.1N/3, A7 = 0.9N/3,
A8 = 0.8N/3, N = 200, β1 = 0.1t, β2 = 0.12t, β3 = 0.11t,
β4 = 0.07t, β5 = 0.14t, β6 = 0.16t, β7 = 0.09t, β8 = 0.15t,
β9 = 0.18t, ψ1 = 3π/2, and ψk = 0 for k = 2, ..., 9. Nine
sinusoidal patterns are presented in Fig. 5(a). The concen-
tration measure of the IRT calculated from 20 observations
and for different values of α, where α is varied from 0.05
to 0.2 with step 0.001 is presented in Fig. 5(b). Nine clearly
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Fig. 4. Time-frequency representation of a signal composed of five sinusoidal
FM components (a). Concentration measure for the inverse Radon transform
calculated from Np = 20 observations of the time-frequency representation
at the positions indicated by vertical lines (b). Inverse Radon transform of
20 observations with optimally chosen α for the third sinusoidal pattern
α = 0.07 (c). Inverse Radon transform of 20 observations when parameter
α is not optimally chosen (d). Inverse Radon transform of 20 observations
with optimally chosen α for the second sinusoidal pattern α = 0.1 (e).
Percentage of detected components as a function of SNR for varying number
of observations Np = 10, 20, 50, 100, and 200 (f). Percentage of detected
components as a function of SNR forNp = 50 observations and two measures
used for the detection: maximum (L∞-norm) and L1-norm (g). Statistical
results are obtained by averaging over 20 realizations with random observation
positions.

distinguishable peaks can be seen in this figure. Each peak is at
a value of α that corresponds to the modulation parameter of a
sinusoidal pattern. Nine sinusoidal patterns are analysed with
20 randomly selected observations to illustrate the proposed
approach and its robustness to different kind of disturbances.

Common situation in the radar imaging is to have the m-D,
rigid body reflectors and the flashes in the same image. In
order to illustrate this scenario, the same nine component
sinusoidal patterns are analysed in the presence of rigid body
reflectors (horizontal lines) and flashes (vertical lines), Fig.
5(c). The concentration measure of the IRT of this kind of
the signal, calculated for different values of α, is presented
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Fig. 5. Nine sinusoidal patterns (a). Concentration measure for the inverse
Radon transform calculated by using 20 observations of the sinusoidal patterns
(b). Nine sinusoidal patterns with rigid body reflectors and flashes (c).
Concentration measure for the inverse Radon transform calculated by using
20 observations of the sinusoidal patterns with rigid body reflectors (d). Nine
sinusoidal patterns with rigid body reflectors and flashes in the presence of
Gaussian noise with σ = 0.2 (e). Concentration measure for the inverse Radon
transform, calculated by using 20 observations of the sinusoidal patterns
with rigid body reflectors and flashes in the presence of Gaussian noise with
σ = 0.2 (f).

in Fig. 5(d). Despite the presence of significant disturbances
caused by the rigid body reflectors and flashes, nine clearly
distinguishable peaks, at the values of α which correspond
to the nine sinusoidal patterns, are still visible. The IRT is
calculated by using 20 observations, Fig. 5(c).

Now, the noise is added to this signal. In Fig. 5(e) the
corresponding pattern obtained by adding a white Gaussian
noise with σ = 0.2 is presented. The concentration measure
of the IRT is presented in Fig. 5(f). Still we have nine
distinguishable peaks, even with only 20 observations used
for the IRT calculation.

Example 6: A benchmark data set for measuring the per-
formance of this method that deals with the m-D is simulation
of a German Air Force Bell UH-1D Helicopter known also as
‘Iroquois’, [29]. This is due to the fact that various effects
are covered by this data set. In this example, we do not
use the radar signal data, but rather the radar image from
the literature, read as an image and loaded for the proposed
method application as a matrix, Fig. 6(a). The stationary
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Fig. 6. German Air Force Bell UH-1D Helicopter. Image of the original
TF representation, where the highest values are eliminated (a). Concentration
measure for the inverse Radon transform calculated by using 300 observations
(b). Concentration measure calculated for value of α which is not optimal (c).
The IRT with optimally selected value of α (d) .

patterns along the time-axis correspond to the rigid body
reflection. The motion of two main blades is manifested as
two rotating reflectors, producing sinusoidal FM signals with
a large magnitude in the frequency direction. The main rotor
flashes are the signals producing lines that connect extreme
points of the sinusoidal FM signal, along the time axis. The
smaller pulses that can be seen on Fig. 6(a) correspond to the
tail rotor flashes, [29].

We will show that even in this very complex case an analysis
based on a reduced set of observations can be done. Here
we will use 300 of available 441 observations for the IRT
calculation. Concentration measure of the IRT calculated for
α = 87.5 to α = 439.25 with a step of 6.2750 is depicted
in Fig. 6(b). By comparing Fig. 6(a) and Fig. 6(b) it can be
seen that the peak in the concentration measure of the IRT
is obtained for α = 251. It corresponds to the period of
sinusoidal patterns in the TF representation used for the IRT
calculation. We can see that two sinusoidal patterns are present
in the TF representation (Fig. 6(a)), but only one peak appears
in the measure of the IRT, Fig. 6(b). This is due to the fact
that these sinusoidal patterns are with equal periods. However,
in the IRT calculated for one α = 251 two clear peaks appear,
Fig. 6(d). The positions of these two peaks correspond to the
amplitude and phase of the analysed sinusoidal patterns. For
all other values of α, the measure does not detect a peak
significantly higher than the other IRT values due to the fact
that there are many different intersections of lines, but there is
no intersection of 300 lines in single point, Fig. 6(c). Since a
huge number of lines appears in the IRT calculated from 300
observations of this kind of signal, its 3D presentation is used
here in order to increase the readability of the presentation.

Example 7: The presented estimation procedure could be
used if the analysed signal is not sinusoidally modulated. We
will illustrate this application through an example. Consider a
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Fig. 7. Nonsinusoidal modulation: Frequency hopping signal (a), (b); Signal
with triangular modulation and varying amplitude (c), (d).

frequency hopping signal

x1(t) = exp

(
j

∫ t

0

250 round[cos(3.6πu)] du

)
,

where round[·] operator rounds toward nearest integer, and a
triangularly modulated signal x2(t) with a varying amplitude

x2(t) = A(t) exp

(
j

∫ t

0

150 arcsin(cos(3.6πu)) du

)
,

A(t) = exp
(
−
(
t−0.35

0.5

)2 )
.

We will also assume that some signal samples (about 20%) are
unavailable. In this case, we can only calculate the spectrogram
at the time instants/intervals when signal samples are available.

Although the proposed method is derived for sinusoidal
modulations, the results presented in Fig. 7 clearly show that
its applicability is not limited to the sinusoidal modulation
patterns. Regions with unavailable samples are presented with
white color in this figure. The estimated modulation parame-
ters for the signal x1(t) are

f̂m = 1.75, Âm = 41.9, θ̂m = −14.0◦

and for the signal x2(t)

f̂m = 1.72, Âm = 31.8, θ̂m = 12.6◦.

They agree with fm = 1.8 in the considered signals. The
closest estimated sinusoids are presented in Figs. 7 (a) and (c)
as well.

Example 8: The spectrogram may not be a suitable tool for
time-frequency analysis of the signal whose IF changes within
the window are very fast. Then quadratic or other higher order
time-frequency representations should be used. A very simple
quadratic representation for improving the spectrogram based
representation is the S-method, presented in Section II. In
order to illustrate this situation consider a signal consisted
of two sinusoidally FM components of the form (8), with a

small noise ε(t). The signal is sampled with t = n∆t, ∆t =
1/128, n = 0, 1, . . . N − 1, where N = 128. The component
parameters are:

A
(1)
x = 1, f

(1)
m = 6, A

(1)
m = 50, θ

(1)
m = 30◦,

A
(2)
x = 0.25, f

(2)
m = 6.5, A

(2)
m = 30, θ

(2)
m = 90◦.

The IF variations are fast in this case. The signal is ana-
lyzed using: the spectrogram with a narrow 21-point window,
Fig. 8(a), and the S-method based improvement of the calcu-
lated spectrogram (with L = 5 terms, equation (3)), Fig. 8(b).
Parameter α is varied from 1/15 to 10 with step 1/15. For
each α, the IRT and its measure are calculated. The IRTs
with the highest measures are presented in Figs. 8(c) and
(d). Estimation of the first (stronger) component is presented
in Fig. 8(e) and (f). After the parameter estimation, this
component is removed from the analyzed signal and the
parameters of the second component are estimated, Fig. 8(g)
and (h). Since the IF variation are very fast the analysis based
on the S-method is able to track these changes and to produce
accurate results.

VI. CONCLUSION

A method for the parameter estimation of sinusoidally FM
signals is introduced. The proposed method is based on the
IRT and the concentration measures. It is shown that the
proposed method provides promising estimation and decompo-
sition results for monocomponent and multicomponent signals.
In theory, since the TF representation of the m-D effect is
sparse in the IRT domain, only three independent observations
(back-projections) are sufficient to detect and reconstruct even
more than one sinusoidally modulated pattern. In practice,
a few observations are sufficient since the IRT domain is
the domain of sparsity for these kinds of signals. The noise
and the interferences influence to the estimation procedure is
considered. It can be concluded that the proposed method is
very robust to the noise and other interferences. We have also
shown that the results obtained by the proposed method are
meaningful even in cases when the analysed signal is periodic
but not sinusoidally modulated. It can be used to estimate the
parameters of periodic extension of a non-periodic TF patterns
and partially available data as well.
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Miloš Daković was born in 1970, Nikšić, Montene-
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