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Abstract - A reconstruction of images in the DCT 

transformation domain based on the adaptive gradient 

algorithm is considered in this paper. Two approaches are 

used in the reconstruction. In the first approach, the image is 

pre-processed using 8x8 blocks, such that the smallest DCT 

coefficients are set to zero in order to make the image sparse. 

The second approach reconstructs the image without the pre-

processing step. It has been assumed that the sparsity is an 

intrinsic property of the analyzed image. An adaptive 

gradient based algorithm is used to recover a large number 

of missing pixels in the image. In order to improve the 

calculation complexity, in this paper we propose an 

improved version of recently proposed adaptive gradient 

algorithm, which is now reduced to a single, automatically 

determined parameter.  The previous reconstruction of black 

and white and colour images is repeated with a significant 

calculation efficiency improvement.  

 

Keywords - compressive sensing, gradient-based algorithm, 

image processing, image reconstruction, sparse signals      

 

I. INTRODUCTION 

Compressive Sensing (CS) is a new, growing field in 

signal processing with an intensive development in the last 

ten years. Sparse signals are in the focus of compressive 

sensing theory and applications. Most of the signals are 

processed and analysed in some of the transform domains, 

and then reconstructed via the inverse transforms. Signals 

can be observed as sparse in a transformation domain if 

the number of non-zero coefficients in that domain is 

much fewer than the number of signal samples. Such 

signals can be reconstructed using a small number of non-

zero coefficients, recovered from a small set of signal 

samples. This formulation is in the core of CS. Namely, it 

has been shown that just a small number of randomly 

positioned samples is required to reconstruct all values of 

a sparse signal [1]-[8]. Various techniques are developed 

to deal with the reconstruction of sparse signals from 

randomly chosen measurements. All these techniques 

belong to two large groups. The first one is based on the 

analysis of signal in a transformation domain. The 
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reconstruction is performed in the transformation domain 

where the signal is sparse. The other group of 

reconstruction techniques is the gradient based. Image-

related applications, such as medical imaging, image 

compression, denoising, photography, holography, facial 

recognition, radar and array signal processing are some of 

the applications of CS techniques.  

Common images usually have just a few significant 

DCT coefficients within each transformation block that 

should be considered as non-zero. Thus, they comply with 

the CS algorithm requirement that the image is a sparse 

signal in the considered transformation domain [9]. Since 

the images have a huge number of pixels, the 

reconstruction algorithm should be applicable to the cases 

when a large number of the missing pixels are randomly 

positioned over the whole image. To this aim the adaptive 

gradient based recovery algorithm is used [10]. In this 

paper, its variant that uses only one parameter is applied. 

In this way the number of parameters is reduced. The only 

parameter is automatically determined. Computation 

efficiency of the algorithm is improved compared to the 

more complex form given in [11], [12], while the same 

quality of results is obtained.   

The paper is organized as follows. The problem 

formulation is given in the Section 2. A reconstruction 

algorithm, with image recovery examples, is presented in 

Section 3. The results and conclusions are given in Section 

4.  

II. BASIC THEORY 

Consider an image ( , )x n m  whose random set of pixels 

is available at 

{ }1 1 2 2
 ( , ) ( , ),( , ),...,( , )

M M
n m n m n m n m∈ . 

The goal is to reconstruct the remaining pixels that are 

not available. In order to apply the CS reconstruction 

algorithms, the image sparsity is assumed in the transform 

domain (in this case DCT). The DCT of an image is 

usually calculated by using 8x8 blocks. Most of the 

common images could be considered as sparse in the DCT 

domain without any additional processing. If we want to 

be sure that the original image, which will be processed in 

our examples, is sparse we can pre-process it by 

calculating the DCT of its 8x8 blocks and set the lowest 

amplitude coefficients to zero. By making the image 



sparse in the DCT domain we will not make a notable 

visual difference with respect to the original image. 

Nevertheless, even if we do not use this step, most of the 

images can be considered as sparse in the DCT domain, 

and the presented method can be used without pre-

processing of the original image. For the analysis we use 

the same image as in [11], [12]. The original image “Isi” 

and its pre-processed version with “sparsified” DCT 

representation are shown in Fig. 1. These two images will 

be used in the analysis and reconstruction procedure. 

We have assumed that the analyzed image is sparse and 

that its values are available only for the set of pixels: 

{ }1 1 2 2( , ),  for  ( , ) ( , ),( , ),...,( , )M Mx n m n m n m n m n m∈   (1) 

Using the available pixels (measurements), an 

incomplete image ( , )y n m  is formed. It assumes the 

original image values at the positions of available pixels, 

while the missing pixels are set to zero value. This new 

image is defined as: 

{ }1 1( , ),  if ( , ) ( , ),...,( , )  
( , )

0,  elsewhere

M Mx n m n m n m n m
y n m

 ∈
= 


 (2) 

Note that for the missing pixels any value within the 

possible image values range can be assumed in the initial 

step. The algorithm will reconstruct the true image values 

at these positions. For graphical representation of missing 

pixels the value 255 corresponding to a white pixel will be 

used instead of 0. The missing pixels are then represented 

as blank (white) pixels, Fig. 2. 

              (a)       

(b)  

    

Figure 1: (a) Original image; (b) Image sparse in the DCT 

domain 

 
Figure 2: Image with a large number of missing pixels 

 

III. RECONSTRUCTION ALGORITHM 

In the analysis, the image is split into 8x8 blocks. The 

DCT is calculated for these blocks and the gradient 

algorithm is applied in the reconstruction of the missing 

samples [10], [11]. After reconstruction, the image blocks 

are recombined into a final image. The two-dimensional 

adaptive gradient algorithm is similar to the one-

dimensional one [13]-[15] except that we use the position 

of the value in x (rows) and y (columns) directions rather 

than a value in a sequence. The 
1

L -norm is used over two-

dimensional space of the image transform, i.e., as a sum 

the DCT values over all rows and columns. 

 

Algorithm is implemented as follows: 

 

Step 1:  

 

Using the available image pixels ( , )x n m , at the 

positions 
1 2

{ , ,..., }
M

n n n n∈ and 
1 2

{ , ,..., }
M

m m m m∈ , a 

new image ( , ) ( , )y n m x n m=  is formed. The new image 

( , )y n m  is formed by setting the unavailable values of 

( , )x n m , at 
1 2

{ , ,..., }
M

n n n n∉  or 
1 2

{ , ,..., }
M

m m m m∉ , to 

zero:  

{ }1 1
( , ),  if ( , ) ( , ),...,( , )  

( , )
0,  elsewhere

M M
x n m n m n m n m

y n m
 ∈

= 


  

Step 2:    

 

For each position where the signal samples are not 

available, for 
1 1 2 2

( , ) {( , ), ( , ),..., ( , )}
M M

k l n m n m n m∉ , 

within the same considered blocks: 
( , )

1

( , )

2

( , ) ( , ) ( , )

( , ) ( , ) ( , )

k l

k l

y n m y n m n k m l

y n m y n m n k m l

δ

δ

= + ∆ − −

= − ∆ − −
  (4) 

are formed.  

 

Step 3:  

 

The 2D-DCT is calculated as 

   



( , ) ( , )

1 1

( , ) ( , )

2 2

( , ) 2{ ( , )}

( , ) 2{ ( , )}

k l k l

k l k l

Y p q DCT y n m

Y p q DCT y n m

=

=
  (5) 

The 1L -norm of 2D-DCT is used: 

 
1 1

( , ) ( , )

1 11
0 0

1 1
( , ) ( , )

2 21
0 0

( , )

( , )

N M
k l k l

p q

N M
k l k l

p q

Y Y p q

Y Y p q

− −

= =

− −

= =

=

=

∑ ∑

∑ ∑
  (6) 

The gradient corresponding to the change of the ( ,k l )-

th pixel, 
1 1 2 2

( , ) {( , ), ( , ),..., ( , )}
M M

k l n m n m n m∉ ,  is:  

( , ) ( , )

1 2
1 1( , )
2

k l k l
Y Y

G k l
−

=
∆

  (7) 

  

Step 4:  

 

Each missing signal value, at the positions 

1 1 2 2
( , ) {( , ), ( , ),..., ( , )}

M M
k l n m n m n m∉ , is then changed in 

the direction of the gradient for a step 2∆ :   

( 1) ( )( , ) ( , ) 2 ( , )i iy k l y k l G k l+ = − ∆   (8) 

  

The available signal values are not changed.  

The parameter value is automatically determined as  

max{ ( , )}.x n m∆ =  

When the signal values do not cause the measure value 

change, the step size is reduced as / 10∆ → ∆ . The 

procedure is repeated until the desired reconstruction 

accuracy is achieved. The reconstruction accuracy is of 

the order of parameter ∆  value. 

Applying the algorithm on the sparse image, the 

reconstructed image is obtained, Figure 3. 

 

 
 

Figure 3: Reconstructed image from the image with 

62% missing samples 

The algorithm was tested on the same image but with 

75% of missing samples. The image with 75% missing 

samples is presented in Figure 4. 

 

Figure 4: Image with 75% missing samples 

The reconstructed image is shown in Figure 5. The 

picture already became blurrier. The 8x8 blocks started to 

be more visible. For this image we can conclude that the 

algorithm works properly with up to about 75% missing 

samples. 

 

Figure 5: Reconstructed image from the image with 

75% missing samples 

 

The algorithm is also tested on colour images. For a 

colour images, each primary colour (red, green and blue) 

is reconstructed separately. The presented reconstruction 

method is used without pre-processing of the original 

image to make it sparse in an artificial manner by setting 

the DCT coefficients to zero. The number of corrupted 

pixels is 50% of the total number of pixels. The 

reconstruction of colour benchmark image "Autumn" from 

MATLAB is shown in Figure 6. 

 

 



(a)  

 

(b)  

 

 (c)  

 

 

Figure 6: (a) Image with missing/corrupted samples; (b) 

Reconstruction after 3 iterations; (c) Reconstructed image 

 

IV. CONCLUSIONS 

 A reconstruction of images with a large number of 

missing samples is considered. The case of missing 

samples can be considered due to reduced number of 

available samples or due to our desire to use a small 

number of signal samples in the process of information 

storage or transmission. In the image processing, the 8x8 

block-based DCT is commonly used. Since, in general, 

images are not strictly sparse then we have considered two 

possibilities. One was to make the analysed image sparse 

in the 2D-DCT domain by appropriate pre-processing, by 

setting only a few of its largest values as non-zero. The 

processing and reconstruction of missing samples is then 

based on this “sparsified” image version. Common images 

contain just a few significant 2D-DCT coefficients in the 

8x8 blocks (which means they are approximately sparse), 

and thus the pre-processing step can be avoided. This is 

considered in this paper as well. In all cases the image is 

reconstructed using the compressive sensing adaptive 

gradient algorithm. Both cases produced similar results for 

the analysed image. In this paper a simplified, one 

parameter form, of this algorithm is used. The parameter 

is automatically determined based on the image values. It 

has been shown that the recovery can be succesful with 

the number of noisy samples equal to the number of 

missing samples (up to 75% missing pixels). The 

algorithm has been applied on both black and white and 

colour images. High reconstruction accuarcy 

reconstructions are repeated with the simplified algorithm 

as in the case of the original two-parameter algorithm. 
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