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Abstract — An adaptive gradient based algorithm
for signal reconstruction from a reduced set of samples is
considered in the paper. An extension to complex-valued
signals is proposed. It has been assumed that the signals are
sparse in a transformation domain. The proposed algorithm
is based on the previously published algorithm suitable for
real-valued signals only. The algorithm is based on the
steepest descent method where the measure of signal sparsity
is minimized by varying missing signal samples, using a
decreasing step size in iterations. The algorithm performances
are analyzed and presented through examples.
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I. INTRODUCTION

Sparse signal analysis and compressive sensing are
emerging areas in signal processing in the last decade [1]-
[16]. These areas are closely related since the compressive
sensing is possible with the assumption that the considered
signal is sparse in a transformation domain. Reconstruc-
tion of missing or intentionally omitted signal samples
is analyzed in [1]-[12]. The reconstruction process is
often formulated as a minimization problem. Compressive
sensing is also used in the time-frequency signal analysis
[12], [13], biomedical signal processing [14], L-estimation
[15], [16], and multimedia signal processing [17].

Consider N samples of discrete complex valued signal
x(n) with corresponding discrete Fourier transform (DFT)
denoted by X(k). We will assume that signal is sparse
with sparsity K in this transformation domain, meaning
that only K < N samples of X(k) are non-zero.

Signal sparsity is measured with various sparsity or
concentration measures. It is known that the `0-norm is
theoretically the most suitable for counting of the non-zero
transform coefficients. The `0-norm of a sequence X(k)
is equal to the number of its non-zero values. However,
the minimization with this norm could be done only
through a combinatorial search. This search is an NP hard
problem. Also, due to the finite calculation precision this
measure can not be used in the applications. For example,
we can calculate DFT of the properly sampled complex
sinusoid and count number of nonzero values in the DFT.
Although theoretical result is 1 we will more probably
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obtain result very close to the number of samples N . In
MATLAB/Octave this is implemented with commands

n=0:127;

x=exp(j*2*pi*n*10/128);

X=fft(x);

sum(X∼=0)

We obtain 128 as the output value although when we
plot(abs(X)) it is clear that only one transform value
is non-zero. This is a computational reason why other,
more robust, norms are used as sparsity measures. The
most used one is `1-norm that is equal to the sum of
absolute values of X(k). Sparsity measure is closely re-
lated to the concentration measure introduced in [18] where
the concentration measure is introduced in time-frequency
domain in order to obtain optimal time-frequency signal
representation.

Suppose that we have only M < N signal samples, i.e.
that some samples are unavailable or intentionally omitted.
This scenario belongs to compressive sensing area. In this
case it is very important to develop methods for recon-
struction of the unavailable signal samples. Advantages of
compressive sensing in signal transmission and storage are
very important, especially in big data setups.

The reconstruction of missing samples can be formu-
lated as optimization problem, i.e., Minimization of the
sparsity measure of the signal transform under condition
that available samples remain unchanged. By denoting the
measure function with M(·) and the set of available sam-
ples as Nx, the mathematical formulation of the problem
is

Minimize M(DFT(y(n))) (1)
under constraints y(n) = x(n) for n ∈ Nx

where y(n) is the reconstructed signal.
Any problem described with (1) can be solved by a

direct search over whole set of possible values. However,
such an approach belongs to the class of NP problems that
are very time demanding and that can not be applied in real
world applications. This is the reason why more efficient
algorithms for the solution of (1) are developed.

One of the solutions is to reduce problem to the linear
programming (LP) form, and solve it by the primal-dual
algorithm [2]. It is implemented in the well known and
widely used L1-magic toolbox for signal recovery.

Another approach is recently proposed in [5], [9], and
extended to randomly sampled sparse signals in [10], and
reconstruction in impulsive noise environments in [11]. It
is an iterative procedure based on the adaptive gradient
descent algorithm, where a finite approximation of the
measure gradient is used. This approach is focused to the



real-valued signals only. In this paper we will extend this
approach to the complex-valued signals.

The paper is organized as follows. Within Section II the
reconstruction algorithm is presented. The results obtained
by the presented algorithm are given in Section III.

II. RECONSTRUCTION ALGORITHM

The presented algorithm is based on the algorithm for
real-valued signal reconstruction proposed in [5] and [9].
The basic idea is to start from the minimum energy solution
(all missing samples are set to zero) and to vary missing
sample values for ±∆ where ∆ is appropriately chosen
variation step. The measure behavior is checked in order
to obtain an estimation of the measure gradient. Next,
the missing sample values are adjusted and the whole
procedure is repeated. Good starting choice of ∆ is signal
magnitude

∆ = max |x(n)|.

The values of algorithm step ∆ are reduced when algo-
rithm convergence slows down, until the required precision
is reached.

In the considered complex-valued signal case a sample
variation is done in four directions±∆±j∆. The estimated
gradient vector is complex-valued.

The iterative procedure of the reconstruction algorithm
can be summarized as
Step 1: For each missing sample at ni we form four signals
y1(n), y2(n), y3(n), and y4(n) in each next iteration as:

y
(k)
1 (n) =

{
y(k)(n) + ∆ for n = ni
y(k)(n) for n 6= ni

y
(k)
2 (n) =

{
y(k)(n)−∆ for n = ni
y(k)(n) for n 6= ni

y
(k)
3 (n) =

{
y(k)(n) + j∆ for n = ni
y(k)(n) for n 6= ni

y
(k)
4 (n) =

{
y(k)(n)− j∆ for n = ni
y(k)(n) for n 6= ni

,

where k is the iteration number. Constant ∆ is used to
determine whether the real and imaginary parts of the
considered signal sample should be decreased or increased.
Step 2: Estimate the differences of the signal transform
measure as

gr(ni) =M
[
DFT[y

(k)
1 (n)]

]
−M

[
DFT[y

(k)
2 (n)]

]
(2)

gi(ni) =M
[
DFT[y

(k)
3 (n)]

]
−M

[
DFT[y

(k)
4 (n)]

]
(3)

Step 3: Form a gradient vector G(k) with the same
length as the signal x(n). At the positions of the available
samples, this vector has value

G(k)(n) = 0.

At the positions of missing samples its values are

G(k)(ni) = gr(ni) + j gi(ni),

calculated by (2) and (3).
Step 4: Correct the values of y(n) iteratively by

y(k+1)(n) = y(k)(n)− 1

N
G(k)(n),

Repeating the presented iterative procedure, the missing
values will converge to the true signal values, producing
the minimal concentration measure in the transformation
domain.

Since we use a difference of the measures to estimate
the gradient, when we approach to the optimal point, the
gradient with norm `1 will be constant and we will not be
able to approach the solution with an arbitrary precision.
Instead of moving toward the optimal point we will obtain
oscillations, meaning that the gradient vector completely
changes direction in subsequent iterations.

This problem may be solved, by reducing the step ∆, for
example by

√
10, when we approach the stationary oscilla-

tions zone. Oscillations zone can be detected by measuring
angle between successive gradient vectors G(k−1) and
G(k), [10]. Since gradient vectors are complex valued
angle between them can be calculated as

β = arccos
<[
〈
G(k−1),G(k)

〉
]

||G(k−1)|| · ||G(k)||
(4)

where < stands for real part,
〈
G(k−1),G(k)

〉
is scalar

(dot) product of two complex valued vectors and || · || is
vector intensity. Note that for angle calculation we need
two successive gradient vectors.

After reduction of the step ∆, the presented procedure
is repeated until the required precision is achieved.

Initial value of parameter ∆ should be of the signal
amplitude order. Good estimate is maximal absolute value
of the available signal samples.

Maximal number of iterations should be limited to Nit

in order to avoid infinite iteration loop in the case when
the reconstruction is not possible.

III. PERFORMANCE ANALYSIS

Consider a signal of the form

x(n) =

K∑
k=1

Ak exp(jωkn+ ϕk) (5)

for n = 0, 1, . . . , N −1. Assume that the discrete frequen-
cies ωk are on the DFT frequency grid i.e.,

ωk =
2π

N
mk

where mk are integers 0 ≤ m1 < m2 < . . . < mK < N .
We will also assume that amplitudes Ak > 0. Under this
assumptions, the considered signal is sparse in the DFT
domain with sparsity K.

We will assume that M randomly positioned signal
samples are available and try to reconstruct the remaining
N − M samples with the proposed reconstruction algo-
rithm.

A. Reconstruction example

Here we will consider signal of the form (5) with N =
128, K = 3, A1 = A2 = A3 = 1, ω1 = 8π/128, ω2 =
36π/128, ω3 = 240π/128, and ϕ1 = ϕ2 = ϕ3 = 0.
Number of available samples is M = 32.

The considered signal, the reconstruction error and the
obtained angles β are presented in Fig. 1. Real and
imaginary parts of the original signal are given in Fig. 1(a).
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Fig. 1. Reconstruction example: signal length N = 128, sparsity K = 3 and number of available samples M = 32. (a) Real (thick blue line) and
imaginary (thin red line) part of the original signal; (b) Available samples real (blue circles) and imaginary (red crosses) parts; (c) Reconstruction
MSE calculated for each algorithm iteration; (d) Angle between gradients in successive iterations. Angles ate undefined in the first iteration after ∆
reduction.

Available signal samples are plotted in Fig. 1(b). Here
M = 32 out of N = 128 samples are selected.

The reconstruction error is calculated for each iteration
and presented in Fig. 1(c), while obtained angles β calcu-
lated by (4) are given in Fig. 1(d). From Fig. 1(d) iterations
when ∆ reduction is performed are clearly visible. Since
two successive gradients are required for β calculation,
angle β can not be calculated in iteration that immediately
succeeds ∆ reduction.

The algorithm is stopped after 117 iterations, when the
reconstruction error of approximately −100 dB is reached.

B. Statistical analysis

Statistical analysis is performed for N = 128, K =
3, 5, 10 and 20, and M = 1, 2, . . . , 102. For each pair
(K,M) 100 random realizations of the considered signal
(5) are analyzed. Obtained results are summarized in
Figures 2-5. Instead of the number of missing samples
M we used percentage of the missing samples equal to
100×M/N as x-axis variable in the figures.

For each realization of the considered signal we have
used random discrete frequencies ωk positioned on the
frequency grid, random phases ϕk uniformly distributed
over interval from 0 to 2π and the unity amplitudes
Ak = 1.

Stopping criterion for the reconstruction algorithm is
set so that target reconstruction error is approximately
−100 dB.

Figure 2 presents mean value of the reconstruction
error. The reconstruction error is calculated per sample and

normalized with the signal energy as

MSE = 10 log10

1

N −M
∑

n/∈Nx

|x(n)− y(n)|2

1

N

N∑
n=1

|x(n)|2
(6)

where y(n) is the reconstructed signal.
We can see that for each K there is a zone when the

reconstruction is not possible. Also there is a transition
zone when the reconstruction is possible with some prob-
ability. Finally there is a zone where the full reconstruction
is obtained in each realization. For a full reconstruction,
it is obvious that a higher sparsity requires more signal
samples.

Average number of performed iterations for each pair
(K,M) is presented in Fig. 3. The highest number of the
iterations is required is the transition zone where a full
reconstruction is obtained with some probability. Note that
the required number of iterations decreases rapidly if we
increase the number of available samples. It remains almost
constant within the full reconstruction zone.

Probability of a full reconstruction event is shown in
Fig. 4. Here we can clearly see the three zones for each
sparsity K.

Finally the reconstruction error for all realizations in the
case K = 10 is presented in Fig. 5. The line on the graph
is the mean value over all realizations. The errors obtained
in each realization are presented by dots.
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Fig. 2. Reconstruction error as a function of percentage of available
samples for signal sparsity K = 3, 5, 10, 20
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Fig. 3. Average number of iterations as a function of percentage of
available samples.

IV. CONCLUSION

In this paper we have analyzed the reconstruction of
missing samples in the case of complex valued sparse sig-
nals. New reconstruction algorithm suitable for complex-
valued signals is proposed. Algorithm performances are
demonstrated on a simple reconstruction case and statis-
tical analysis is performed in order to evaluate algorithm
efficiency for various signal sparsity and the number of
available samples.
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