
  

  

Abstract — The algorithm for compressive sensing 

reconstruction of signals with sinusoidal phase modulation is 

proposed. The signal is firstly demodulated and reduced to a 

set of sparse sinusoids, while the reconstruction is achieved by 

exploiting the sparsity in the DFT domain. The demodulation 

process is based on the parameters search method which also 

employs specific compressive sensing reconstruction 

procedure to detect the exact parameters sets. The procedure 

is tested on the multicomponent signals with sinusoidal 

modulation that often appear in radar communication as a 

micro-Doppler part reflected from fast rotating scatterers.  

Keywords —signal reconstruction, compressive sensing, 

random undersampling, sinusoidal phase modulation  

I. INTRODUCTION 

OWADAYS the Compressive sensing concept (CS) 

has been widely accepted as a new alternative 

approach to signal acquisition [1]-[7]. This concept brings 

the possibility to deal with highly undersampled data, 

which is especially important in the situations when 

sensing, storing and transmission of large data amount is 

difficult, expensive and not feasible. The conventional 

sampling theorem states that the signal has to be sampled 

at the rate at least twice higher than the maximal frequency 

in order to preserve the signal information. In the CS 

scenarios, the signal can be exactly recovered from a small 

number of randomly chosen measurements, even when the 

number of measurements M is far below the number of 

samples required by the sampling theorem. The CS 

exploits two important properties: 1) the signal sparsity 

when represented in appropriate basis; 2) incoherence 

between the measurement matrix and sparsity basis [1]. As 

a commonly used example of sparse signal model, we can 

observe the sum of complex sinusoids which can be 

exactly reconstructed using the orthonormal Fourier basis 
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[8],[9]. The signals encountered in real applications may 

have quite different nature. For instance, although the rigid 

body components in radar applications could be sinusoids-

like, the micro-Doppler components that originate from 

fast rotating target parts can be modeled by the sinusoidal 

phase modulation [10],[11]. Now, having in mind that such 

signals are not generally sparse in the commonly known 

frequency domains, the CS application and reconstruction 

becomes a challenging task.      

In this paper we propose a simple method for the 

reconstruction of signal characterized by sinusoidal phase 

modulation. The method is based on components 

demodulation technique which is further combined with 

the threshold based sparse components detection proposed 

in [8]. The demodulation process aims at detecting signal 

phase parameters. Ideally, in the case of monocomponent 

signal, the demodulation will result in a single sinusoid, 

i.e., single spike in the Fourier transform domain. 

However, when dealing with multicomponent signals, the 

demodulation term corresponding to one component will 

interfere with other components. In this case, an efficient 

solution for components detection is achieved using the 

threshold based procedure. Once the signal parameters are 

determined as a result of demodulation, the problem is 

reduced to the reconstruction of sparse sinusoids. 

The paper is organized as follows. The theoretical 

background about the Compressive sensing theory is given 

in Section II. The problem formulation and the proposed 

solution for the CS-based reconstruction of signal with 

sinusoidal phase modulation are given in Section III. The 

experimental results are given in Section IV, while the 

concluding remarks are given in Section V.   

II. THEORETICAL BACKGROUND - COMPRESSIVE SENSING 

 

The CS concept has been used as an alternative way to 

sample/acquire signals in various signal processing 

applications. This concept is based on the premise that the 

signal can be completely recovered from a small and 

randomly chosen set of measurements when two important 

requirements are met. The first requirement is related to 

the signal sparsity, meaning that the observed signal can be 

represented by a small number of non-zero coefficients in 

certain transform domain. For instance, a signal s(t) can be 

represented in basis ΨΨΨΨ using basis vectors ψi: 
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If the vast majority of transform domain coefficients 

within the vector S are zero (or close to zero), we say that 

S is sparse representation of s. The commonly used 

transform domains are Discrete Fourier Transform - DFT, 

Discrete Wavelet transform - DWT, or time-frequency 

domain [3],[4],[12]-[14].  

The second requirement imposes incoherent 

measurement process. Signal measurements are usually 

acquired in the domain where signal have “dense” 

representation [2]:  

 y =Φs , (2) 

where ΦΦΦΦ is a measurement matrix (N×M) that models 

random measuring process, while y is the resulting 

measurement vector. Based on (1) and (2) we can write the 

set of equations in the matrix form as follows: 

 

 y =Φs =ΦΨS =ΘS , (3) 

 

where the measurement matrix ΦΦΦΦ must be incoherent with 

the basis matrix ΨΨΨΨ. Therefore, a K sparse signal can be 

completely characterized by using just N>K 

measurements, where N<<M holds and M is the number of 

samples defined by the sampling theorem. Based on this 

small set of randomly chosen samples, the entire signal can 

be reconstructed using powerful mathematical algorithms 

[1],[4]-[3]. The system of equations (3) is undetermined 

since it consists of N equations with M unknowns (N<<M). 

Hence, in order to achieve an optimal solution, the 

optimization algorithms are employed to search for the 

sparsest solution using the 1 −� minimization
1
 [15]-[17]:  
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III. RECONSTRUCTION OF CS SIGNALS WITH SINUSOIDAL 

PHASE MODULATION 

A.  Signal sparsity using sinusoidal phase demodulation 

 

One of the common examples of sparse signals is a pure 

sinusoidal component that is analyzed in the DFT domain. 

However, when dealing with signals with nonlinear phase 

functions such as the considered sinusoidal phase 

modulation, the main challenge is to determine the domain 

of signal sparsity. Let us observe the signal s, consisting of 

a sum of K components with sinusoidal phase modulation:  
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The coefficients a, b and c are assumed to be bounded 

 
1 The sparsest solution of the minimization problem is originally 

defined using 0� -norm, but the in the practical applications, the 

optimization problems becomes NP-hard.    

integers, m is a discrete time parameter, while M is the 

total number of signal samples (signal length). The 

components amplitudes are denoted by Ai. The DFT of 

signal s, given by: 
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is not sparse in DFT (neither in other commonly used 

sparsity domains DCT or DWT, etc.) and as such is not 

amenable to CS applications. In that sense, we propose a 

simple technique to demodulate the signal of interest and 

reduce the problem to the reconstruction of sinusoids in the 

DFT domain. The term: 
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is introduced to compensate the nonlinear phase part of 

signal components. Consequently, when the set of 

observed parameters (a,b) within the demodulation term is 

chosen to match with at least one of the phase parameters  

(a1,b1),(a2, b2),…,(aK,bK), the corresponding signal 

component will be demodulated and reduced to sinusoid, 

i.e., for the i-th component we will have: 
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It is important to note that the demodulation procedure 

needs to be applied using the component-by-component 

strategy. Namely, in order to demodulate the i-th  

component, the parameter search procedure is performed:  

 

for a∈ (amin , amax) and b∈ (bmin , bmax) 

if DFT{s(m)⋅ν(m), m=0,…,N-1} has a spike at ik c=  

then a=ai, b=bi 

 

In this case, the spectrum S(k) is highly concentrated at 

ik c= . Otherwise for a≠ai or b≠bi the spectrum is 

dispersed. Here, the assumption is: min 1

K

ii
M A A

=
>∑ .  

B. Proposed signal reconstruction procedure 

 

In order to define the CS problem of interest, the 

demodulated version of signal s is defined in the vector 

form as follows:  

 x=s ν���� ,     (9) 

 

such that x contains samples of s multiplied by 

demodulation terms (the component-wise product is 

denoted by the operator ( ���� )): 

( )
2

( ) exp si (0,.., 1n 2 / , )i im j b a m Mm M
M

π
ν π ∈ −= − . 

Then the DFT of demodulated signal can be written as: 

 



 

 x=ΨX , (10) 

 

where X is the vector of DFT coefficients, while ΨΨΨΨ is 

M×M DFT matrix. For a chosen pair of parameters (a,b) 

in νννν that is equal to the (ai,bi) in s, X=Xi is characterized 

by the i-th sinusoidal component at the frequency ci that 

becomes dominant in the spectrum. Now, assume that x is 

compressive sampled signal, represented by an incomplete 

set of N randomly chosen samples. Thus, instead of s we 

are dealing with a measurement vector y obtained using the 

incoherent measurement matrix ΦΦΦΦ (N×M):  

 

 ( )y=Φx=Φ s ν���� . (11) 

 

Now, using (10) the CS problem can be formulated as: 

 

 ==y ΦΨX ΘX , (12) 

 

where Θ=ΦΨ . In the case when the searching parameter 

a=ai and b=bi then the DFT vector X can be approximately 

observed as a demodulated version of the i-th signal 

component X=Xi that can be recovered by solving the l1 -

norm minimization problem in the form: 

1
 . .  i imin s t =X y ΘX

����
. 

Nevertheless, since we consider multicomponent 

signals, in real situations it is necessary to deal also with 

the terms resulted from cross-component multiplication. 

This product terms will be noise-like and spread in the 

spectrum. Consequently, we need to provide the 

reconstruction of the i-th signal component, neglecting the 

influence of other spread terms. For that purpose we use 

the threshold based single iteration algorithm proposed in 

[8]. The threshold detects only the sparse signal 

components which allows us to reconstruct just the 

dominant i-th component X=Xi.  

In the case (a,b)≠(ai,bi) for ∀i and N<<M there is no any 

dominant component and zero value is obtained as the 

output of reconstruction.  

The exact values of the components amplitudes (vector 

A) are obtained as a solution of the following equations (in 

matrix form): 

 

 ( )−= ∆ ×∆ ×∆ ×H 1 HA y  (13), 

where, 
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The rows of ∆∆∆∆ correspond to measurements instants 

(m1,m2,…,mN), while columns correspond to frequencies 

ai, for i=1,…,K.  

 

IV. EXPERIMENTAL EVALUATION 

 

Example 1:  Consider the multicomponent signal in the 

form: 

( )
0.35 2 0.05 2

3 2 32 5 2 160
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where amplitudes A1=4 and A2=2 , t=[-1/2,1/2] with step 

∆t=1/1024 and T=32. The total signal length is M=1024 

samples. Also, the signal is represented using K=24 

randomly chosen measurements (2,35 % of the total signal 

length). This type of signals usually appears in radar 

applications, as a micro-Doppler component that originates 

from the fast rotating target parts. Note that the signal can 

be generally written in the form: 
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In our case a1=0.35, b1=3, c1=T=32 (for the first 

component), a2=0.05, b2=5, c2=160 (for the second 

component). Therefore, we need to detect two different 

values of parameter a (a1=0.35 and a2=0.05) and two 

different values of signal parameter b (b1=3 and b2=5). The 

incomplete set of available samples is firstly multiplied by 

the corresponding exponential terms sin(2 /2)jb aTte π , in 

order to perform demodulation. Parameters a and b are 

changed iteratively within the sets: min max[ , ]a a a∈ , 

min max[ , ]b b b∈ . In each iteration (for different a and b), the 

signal reconstruction procedure based on the threshold [8] 

is performed. When the spectrum is spread ((a,b) do not 

match neither (a1,b1) nor (a2,b2)) the result of 

reconstruction is zero, as shown in Fig.1. 
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Fig. 1. DFT of demodulated signal and DFT of recovered signal 

when signal parameters are not matched for any (ai,bi)  

 

When one pair of signal parameters is matched, the 

reconstruction procedure will provide sparse sinusoidal 

component at frequency c (c1 or c2 depending whether we 

detect (a1,b1) or (a2,b2)). The result for one matched pair 

(a2=0.05, b2=5) corresponding to the second signal 

component is shown in Fig.2 (similar result are obtained 

for the first component). It means that c can be determined 

as argument of the peak value in demodulated spectrum. 
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Fig. 2. DFT of demodulated signal and reconstructed DFT when 

signal parameters are matched for (a2,b2) 

The reconstruction results (applied to demodulated 

signal) for several different pairs (a,b) are shown in Fig.3. 

The positions of two maxima correspond to (a1=0.35, 

b1=3), (a2=0.05, b2=5), i.e., the 16
th

 and 25
th

 trial. The 

reconstructed values for other pairs of (a,b) are zeros. 
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Fig 3.  The reconstructed values of demodulate signal DFT obtained 

for different pairs (a,b) 

 

After detecting the signal parameters a, b and c original 

amplitudes of demodulated components are recovered 

(A1=4, A2=2) and then the reconstructed signal components 

are obtained using re-modulation process, Fig. 4. The 

reconstructed components are identical to the original 

ones. 
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Fig 4.  The reconstructed values of demodulate signal DFT obtained 

for different pairs (a,b) 

 

V. CONCLUSION 

The algorithm for CS reconstruction of signals with 

sinusoidal phase function is proposed. The considered 

signals are stationarized and sparsified during the 

demodulation process, which further allows reconstruction 

from small set of random measurements. The experiments 

show that the proposed method can be efficiently applied 

even in the case of highly undersampled signal (less than 

3% of original signal length).  
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