
  

Abstract — The algorithm for separation of signals from 

two different wireless standards (Bluetooth and IEEE 

802.11b standard), operating within the same frequency band 

is proposed in this paper. The components separation is 

performed using the time-frequency representation and the 

concept of Compressive Sensing. Knowing the signals nature, 

it is possible to select just a small set of time-frequency points 

that entirely belongs to the IEEE 802.11b signal. These points 

are extracted from the original time-frequency representation 

and are used to recover the full signal by using Compressive 

Sensing method. Once when the components of IEEE 802.11b 

signal are known, it is possible to reconstruct the remaining 

components in the band, belonging to the Bluetooth signal. 

Unlike the conventional separation methods, such as 

windowing or filtering, this approach works well even in the 

case of overlapping signals as well. The theory is proved with 

experimental results. 
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I. INTRODUCTION 

 HE common challenge that appears in wireless 

communication systems is distinguishing between the 

signals that use same frequency band [1]-[4]. There is a 

number of wireless standards, in the first instance, the 

Wireless Personal Area Network – WPAN, Wireless 

Metropolitan Area Network (WMAN); Wireless Local 

Area Network – WLAN and Wireless Wide Area Network 

– WWAN. They differ in energy consumption, operation 

distance, data rates, types of modulations, and occupied 

frequency band [2]. This paper is focused on two modes 

that use Industrial, Scientific and Medical (ISM) frequency 

band: frequency hopping code division multiple access and 

direct sequence code division multiple access. Moreover, 

we consider the signals belonging to the standards based 

on modes – IEEE 802.11b (direct sequence) and Bluetooth 

(frequency hopping). The identification of the standard to 

which the signal belongs is important in applications 

related to wireless communications. Usually, the time-
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frequency (TF) methods have been used for the 

identification of the two standards at a certain time and 

frequency point [2]. TF blocks are implemented in order to 

extract signal parameters, and accordingly, to identify 

signal mode. In this paper, we have also used TF to 

represent wireless signals. However, instead of standard 

identification based on extracted signal parameters from 

the TF representation, the signals which belong to different 

standards are separated in the TF plane and then classified. 

The commonly used methods for component separation, 

like filtering or windowing require knowledge on the 

signal structure and may be complex for realization. Like 

an eigenvalue decomposition method, [5], [6], the signal 

separation methods often assume that components do not 

overlap in time or frequency. We propose the method 

which can deal even with highly overlapping signal 

components, by combining the TF, Compressive Sensing 

and L-statistics approach. 

Compressive Sensing (CS) [7]-[20] deals with signals 

sampled at the rates far lower than that defined by Shanon-

Nyquist theorem. In other words, the signal is highly 

under-sampled where available samples (observations or 

measurements) are chosen randomly. However, the 

missing samples may also occur by intentionally omitting 

some of the signal samples. This is the case with noisy 

signals where we omit corrupted samples using robust 

estimation techniques such as the L-statistics [9]-[13]. The 

removed noisy samples could be recovered by using CS 

reconstruction algorithms. The reconstruction is done from 

small set of available samples by using complex 

mathematical algorithms – optimization algorithms [7], 

[11], [14]-[16]. CS requires signal to satisfy certain 

conditions, such as sparsity in its own or certain transform 

domain.  

II. STANDARD COMPRESSIVE SENSING FORMULATION 

The important information for majority of real signals is 

concentrated in a small number of transform domain signal 

coefficients having large values, while the rest of 

coefficients can be set to zero. This property is called 

sparsity and it is imposed in the Compressive Sensing 

scenarios. The signal, which is sparse in one domain, needs 

to be dense in another domain, similarly as the sinusoid is 

sparse in the Fourier domain while it is dense in the time 

domain. Such kind of signals, can be reconstructed from a 

small incomplete set of samples, taken randomly form the 

dense representation. Let us illustrate the CS procedure on 
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the discrete time domain signal x. In terms of the transform 

domain coefficients, the signal could be represented as [7]: 

 
1

L

l ll
x s sψ

=
= =∑ ΨΨΨΨ , (1) 

where lψ  and ls  denote basis vectors and transform 

domain coefficients, and L is the full signal length (when 

sampled according to the sampling theorem). The signal is 

assumed to be sparse in the domain ΨΨΨΨ . The available 

samples (signal measurements) are randomly acquired 

from the dense domain, by using properly defined 

measurement matrix A. The measurement vector is: 

 1 1 1
CS

M M L L L L M L Lm x x× × × × × ×= =ΨΨΨΨA A  (2) 

where m is measurement vector, M is number of acquired 

samples (M<<L), AM×L is the measurement matrix and ACS 

is the CS matrix. The CS matrix could be formed from the 

matrix ΨΨΨΨ , as follows:  

 ( )(1: 1: ,1 : ))CS
M L= ∇ΨΨΨΨA , (3) 

where ∇ denotes the operator performing random 

permutations of M positions. The CS matrix is formed as 

random partial Fourier transform matrix. It has been 

known from the literature that such random partial Fourier 

matrix lead to fast recovery algorithms, and it satisfies a 

near optimal RIP with high probability [21]-[22]. The 

system of equations (2) can be solved by using 1l  norm 

minimization [7], [15]:  

 
1

min CS

lx
x subject to m x= A . (4) 

 

III. PROBLEM FORMULATION 

Consider the signal that consists of the sum of signals 

belonging to the considered wireless standards – Bluetooth 

and IEEE 802.11b: 

 802.11( ) ( )FHSS bx x n x n= + . (5) 

The signal x Fourier transform could be written as: 

 802.11( ) ( ) ( )FHSS bX k X k X k= + . (6) 
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Fig. 1. a) Time and b) frequency domain of the signal  

 

Time and frequency domain representation of the signal x 

are shown in Fig.1. It is important to note that 

distinguishing between the two different types of signal 

components is difficult, in some situations impossible, by 

observing time or frequency domain, separately. 

Therefore, in the applications we use the joint TF domain 

in order to provide suitable representation of the signal, 

and to localize regions in the TF plane that belong to the 

certain standard. As overlapping components can exist in 

the band, separation by using conventional techniques 

(filtering, eigen/singular value decomposition, etc.) 

become ineffective. Therefore, we use CS approach to 

extract signals of interest. 

The overlapping TF regions may have high or low 

energy values, depending on the phases of overlapping 

components. Therefore, we considered removing the 

certain percent of the lowest and highest energy TF regions 

and then recovering these regions by using the CS concept. 

Having in mind that separation is done in the TF domain, 

CS procedure will be modified compared to the standard 

CS approach described in Section II. 

 

IV. CS BASED SEPARATION OF WIRELESS SIGNALS IN THE 

TF DOMAIN 

The wireless signals, both Bluetooth and IEEE 802.11b, 

consist of sinusoidal components and therefore can be 

considered as sparse in the Fourier domain. Sinusoidal 

nature of these signals makes them appropriate candidates 

for the CS application. Unlike the common CS algorithms, 

where the measurements are taken in the time domain, here 

the measurements are selected from the TF domain. Since 

the components of Bluetooth signal have shorter time 

duration compared to the IEEE 802.11b signals, [1]-[4], 

[18], [19], they will produce lower sum of energy along a 

certain frequency in the TF plane. It means that sorting 

along the frequency axis in TF plane will completely 

condense the Bluetooth components in the lower part of 

sorted TF plane. In order to discard Bluetooth components 

and overlapping points, we have used the L-statistics 

approach - the highest and lowest components in the sorted 

TF plane are removed. Thus, we are left with the certain 

part of middle frequency region which actually belongs 

solely to IEEE 802.11b. Note that, depending on the 

phases of components the intersection points may have 

largest or smallest values. Using just a small number of 

selected points belonging to the IEEE 802.11b signal, the 

full signal is recovered using the CS procedure, as 

described in the sequel. 

The full signal x of length L can be represented by using 

the full length discrete Fourier transform (DFT) vector  X 

as [9], [20]: 

 1
L Lx X−

×= D , (7) 

where 1
L L

−
×D  denotes  inverse DFT matrix of size (L×L). 

On the other side, the Short-Time Fourier Transform 

(STFT) of the windowed signal x can be written in the 

matrix form as follows [13]: 
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where N is size of non-overlapping window, while 

 exp( 2 / )N j sk Nπ= −D  (9) 

is N×N  DFT matrix, s=0,…,N-1, k=0,…,N-1. 

In order to obtain D matrix of size L×L ( N L→D ), the 

following relation is used:  

 /L N N N×= ⊗D I D . (10) 



Matrix IL/N  is (L/N)×(L/N) identity matrix and ⊗  denotes 

Kronecker product. Combining relations (7) and (8) it 

follows: 

 1
.L Lx X X

−
×= = = ΨΨΨΨS D DD  (11) 

After calculating the STFT, the sorting operation along is 

performed along the frequency (for each k): 

 { }( , ) ( , ) ,SORTS n k sort S n k=  (12) 

where n=0, …., L-1. The sorting operation is performed in 

ascending order. The percentage P of low value 

coefficients and percentage Q of high value coefficients 

are removed from the sorted STFT vector [13]: 

 ( ) { ( , ), , 1,..., }CS SORTS k S n k n P P L Q= = + − , (13) 

where ( )CSS k  denotes the vector of available STFT 

coefficients at frequency k. When considering all 

frequencies k, the vector of all ( )CSS k is denoted by CSS . 

Now, based on (12) the vector of all available STFT points 

can be written as: 

 CS CS X= ΨΨΨΨS , (14) 

where the matrix CSΨΨΨΨ
 
is formed by omitting the rows 

which corresponds to the removed STFT values. The 

coefficients that remain in the TF plane ( CSS ) will be used 

in CS reconstruction procedure. Similar to the standard CS 

reconstruction formulation, here we also use 1l  norm 

minimization to reconstruct DFT vector X, which is further 

used to obtain time domain representation. The 

reconstruction can be written as the minimization problem 

[13], [20]: 

 
1

min X
l

subject to CS CS X= ΨΨΨΨS . (15) 

The obtained vector X denotes DFT of the IEEE 802.11b 

signal. The DFT of the Bluetooth signal can be easily 

obtained by eliminating the IEEE 802.11b signal 

components from the original DFT of the signal. Having 

separated DFTs of the signals, time domain and TF 

domain of the signals can be calculated, as well. Compared 

to the standard 1l reconstruction algorithms , the proposed 

algorithm is extended with STFT calculation and sorting 

operation. Complexity of the STFT calculation is 

T<(3/4)log2M-2, where M denotes window width.  Sorting 

operation could be performed using bitonic sort. Bitonic 

sorting complexity is O(NSlog2NS), where NS denotes 

square root of the signal length. 

V. EXPERIMENTAL RESULTS 

A. Example 1 

Consider the signal in the form defined with relation (5), 

where the 802.11bx  signal is defined as: 

 
1 ( / )

802.11 1
( ) i

p j nK L
b ii

x n M e
π ϕ+

=
=∑ , (16) 

while FHSSx  is defined: 

 
2 [( )/ ]( / )

1
( ) i i

p n dj nK L
FHSS ii

x n M e e
εδπ − −

=
=∑ . (17) 

Parameters p1 and p2 denote number of components in the 

corresponding signals, Mi denotes component amplitude, 

while K,ϕ, δ and ε are constants. Both signals are defined 

as sum of complex sinusoids. Parameter di in the FHSS 

signal definition determines component duration [13]. The 

signal with 7 IEEE 802.11b and 17 Bluetooth components 

is observed. Time domain and Fourier transform of the 

signal is shown in Fig. 2. The STFT of the sum of these 

two signals is shown in Fig. 3a, while the sorted values of 

the STFT are shown in Fig. 3b. The STFT that remains 

after the sorting and selection certain STFT region is 

shown in Fig. 3c. The reconstructed STFT of the IEEE 

802.11b signal is shown in Fig. 4a. The STFT of the 

Bluetooth signal is obtained by subtracting reconstructed 

IEEE 802.11b STFT from the STFT of original signal, and 

is shown in Fig. 4b. 
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Fig. 2. Time (first row) and frequency (second row) 

domain of the sum of signals (16) and (17) 
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Fig. 3. a) STFT of the original signal, b) sorted STFT, c) 

remain STFT after choosing certain region from the sorted 
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Fig. 4. a) Reconstructed STFT of the IEEE 802.11b, b) 

STFT of the Bluetooth signal 
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Fig 5. Fourier transform of the reconstructed IEEE 

802.11b (first row) and Bluetooth signals (second row) 

 

As it can be seen, all of the components of two signals are 

preserved and signals are separated in the TF plane. Fig. 5 

shows reconstructed DFTs of the wireless and Bluetooth 

signals, which completely correspond to the components of 

original signals. 



B. Example 2 

Let us now consider signal consisted of Bluetooth and 

IEEE 802.11b signals, with overlapped components. Four 

components belong to the IEEE 802.11b signal, while 

twelve components of short duration belong to the 

Bluetooth signal. The STFT of the original signal is shown 

in Fig. 6a. Fig. 6b and Fig. 6c shows sorted STFT values 

and STFT values that remain after the samples removal. As 

it can be seen from the Fig. 6a, three Bluetooth 

components overlap with the IEEE 802.11b components. 

After CS reconstruction, applied to the STFT from the Fig. 

6c, and subtraction from the original signal STFT, the 

Bluetooth signal STFT is obtained. The corresponding 

STFTs are shown in Fig. 7. All of the signal components 

are preserved – 4 components that belong to the IEEE 

802.11b signal and 12 Bluetooth signal components (see 

Fig.7a and Fig. 7b). The DFTs of the original and 

reconstructed signals are shown in Fig.8. The 

reconstructed components in DFTs completely correspond 

to the components of the original signal (see Fig. 8). 
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Fig. 6. a) STFT of the original signal, b) sorted STFT, c) 

remain STFT after choosing certain region from the sorted 

STFT 
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Fig. 7. a) Reconstructed STFT of the IEEE 802.11b, b) 

STFT of the Bluetooth signal 
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Fig. 8: Fourier transforms of the original signal (first row), 

and reconstructed IEEE 802.11b and Bluetooth signals 

(second and third row) 
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