
  

 
Abstract — Reconstruction of the sparse signals, 

performed by two algorithms which belongs to the class of 
convex optimization algorithms, is considered in this paper. 
Widely used algorithm implemented by the l1-magic code 
packet is used as the first algorithm. Its realization is based 
on the primal dual interior point algorithm for con vex 
optimization. The second considered algorithm also belongs 
to the convex optimization group of algorithms. It is a 
recently proposed adaptive step gradient-based algorithm. 
The reconstruction of missing data is based on the direct 
adaptation of the signal values by minimizing the 
concentration/sparsity measure of the signal in the 
transformation domain, where the signal is sparse. 
Comparison of these two algorithms is done here. 

Keywords — Compressive sensing, Gradient algorithm, l1-
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I. INTRODUCTION 

IGNAL is considered to be sparse in a transformation 
domain if the number of significant (non-zero) 

coefficients in  that domain is much smaller than the 
number of all coefficients. Reconstruction of this kind of 
signals attracts significant research interest in the last 
decade since the sparse signals are present in many 
applications [1]-[21]. The problem of reconstruction is 
minutely studied within the theory of compressive sensing 
(CS) [1]-[11].  

In order to perform sparse signal reconstruction many 
algorithms are introduced [2]-[14]. There are many groups 
of algorithms that are widely used in reconstruction like 
pursuit methods, convex relaxation, nonconvex relaxation, 
brute force based methods [11], etc. Here, we will focus 
on one commonly used class of the algorithms, the convex 
relaxation class of algorithms. The convex relaxations 
algorithms are based on the l1-norm optimization. Two 
methods of convex relaxation algorithms, the interior point 
and the adaptive gradient based one, are considered in this 
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paper. The software which is based on the interior point 
methods (commonly used for reconstruction) today, is the 
l1-magic  software  packet [12].  The other  algorithm  that 
will be considered here is the one that belongs to the class 
of gradient descent algorithms [14]. The gradient descent 
algorithms are used for convex optimizations problems. 
The goal of this paper is to make comparison between 
these two algorithms since both of them are from the same 
class of CS reconstruction methods (convex relaxation).  

Detailed analysis of the computational performance of 
each of these two algorithms will be done. Two very 
important parameters that will be analyzed are the 
reconstruction time and the reconstruction accuracy. The 
accuracy will be measured by the mean absolute error 
(MAE). Since the l1-magic software tool is widely used in 
research, we found interesting to compare it with a 
recently proposed algorithm dealing with the same 
problem of reconstructing sparse signals. Both of these 
two algorithms will be analyzed under the same conditions 
and the conclusions about the speed and the MAE of each 
of them will be presented.  

The paper is organized as follows. After introduction, 
reconstruction definitions are introduced in Section II. 
Section III provides overview of both algorithms. After 
that, comparison of these two algorithms is done in 
Section IV. At the end of the paper there is a concluding 
Section V. 

II. DEFINITIONS 

Let x be discrete-time domain signal of length N. 
Suppose that this signal has sparse transformation in some 
domain. Here we will consider the case of the discrete 
Fourier domain (DFT) as a study case. The sparse 
transform of the signal x will be denoted as X. The relation 
between these two domains is  

X=Wx (x=W-1X), 
where W is NxN DFT matrix with elements W(n,k)=exp(-
2jπnk/N). 

Assume that the signal x has only M available samples, 
while the other N-M samples are missing or are 
unavailable due to a physical constraint or measurement 
unavailability. The vector of M available signal samples 
will be denoted as y. Its values are 

 y(i ) = x(n
i
), where i = 1,2,...,M  . 

The reconstruction task can be defined as: 

 min || ||  subject to o

~ ~

X y = A X  , (1)     

 
where A is MxN matrix obtained from matrix W -1 by 
eliminating rows corresponding to missing samples 
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(preserve rows with indexes corresponding to instants ni, 
where i=1,2,…,M). Since (1) is an NP-hard combinatorial 
approach commonly l1-norm instead of l0-norm is used. In 
practical signal processing applications l0-norm is sensitive 
to small values, even for a values of  computer precision 
order too [21]. It is one more reason to use l1-norm. The 
considering reconstruction task (1) is then 

 1min || ||  subject to 
~ ~

X y = A X  . (2) 

It is important to note that solutions of (1) and (2) are 
the same if the signal x and its transform X satisfy 
restricted isometry property (RIP) [2]. 

 After the sparse presentation of signal 
~

X  is 
approximated according to (2), a reconstructed signal is 
obtained as  

 
~

-1
rx = W X  . 

When the reconstructed signal is obtained, the 
reconstruction quality can be measured using, for example, 
the mean absolute error of the reconstructed signal: 

 1
| ( ) ( ) |

N

rn
x n x n

MAE
N

=
−

= ∑  . (3) 

III.  ALGORITHM DEFINITIONS 

As it has been mentioned in Section I, there are many 
classes of algorithms that deal with sparse signals 
reconstruction. Algorithms that belong to the convex 
optimization class are the widely used ones. Here, we will 
deal with two types of algorithms that solve convex 
optimization problems. They will be presented next. 

A. l1-magic 

Software packet l1-magic is a tool intensively used to 
solve the CS reconstruction problems. This algorithm 
belongs to the class of interior point algorithms. It is a 
primal dual interior point method for linear programming  
[13, chapter 11]. The standard form of a linear program is: 

 

 
min ,  subject to 

( ) 0if ≤
0X

c X y = AX

X
 , 

  
where X∊RN, y=RK, A is KxN matrix, and each of fi , 
i=1,…,m is a linear functional: 

 ( ) ,i i if c d= +X X   

for some ci∊RN, di∊R. At the optimal point 
~

X , there will 
exist dual vectors  ν*∊RK, and  λ*∊Rm that satisfy Karush-
Kuhn-tucker conditions: 
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Algorithm finds search vector 
~

X  (optimal dual vector) by 
solving the system of nonlinear equations. At the interior 

point (  and 
~

* *X, ν λ ), the system is linearized and solved, 
for example, by a widely used software package  know as 
the l1-magic. 

B. Gradient descent algorithm 

One more algorithm that can reconstruct sparse signals is 
the adaptive gradient descent one. It also belongs to 
convex optimization class of algorithms. It is very simple 
and efficient algorithm reconstructing discrete-time 
domain samples of the signal by optimizing the 
concentration of sparse presentation of signal.  

 
Implementation of algorithm follows [14]: 
 

Step 0: Form the signal xr(0)(n), where (0) means that this 
is the first iteration of the algorithm, defined as 
xr(0)(n)=x(n) for available samples, and 0 for missing 
samples. 
 
Step 1: Two signals xr1(n) and xr2(n) for each missing 
sample at  ni , in each next iteration are formed as: 

( )
1 ( ) ( ) ( )k

r r ix n x n n nδ= + ∆ −   ( )
2 ( ) ( ) ( )k

r r ix n x n n nδ= − ∆ −  

where k is the iteration number.  
 
Step 2: The differential of the signal transform (here the 
DFT) measure is then estimated as: 

  

 
( )( ) ( )

1 2

1
( ) ( )

( )
2

k k
r r

i

DFT x n DFT x n
Ng n

   −   
=

∆

∑ ∑
 (4) 

  
Step 3: Form a gradient vector G with the same length as 
the signal x(n). At the positions of the available samples, 
this vector has value G(n) = 0. At the positions of the 
missing samples its values are g(ni), calculated by (4). 
 
Step 4: Correct the values of xr(n) iteratively by 
 

( 1) ( )( ) ( ) ( )k k
r rx n x n G nµ+ = −   

where µ is a step size that affects the performances of the 
algorithm (the error and the speed of convergence). 

By repeating the presented iterative procedure, the 
missing values will converge to the true signal values 
which produce a minimal concentration measure in the 
transformation domain. 

IV.  EXPERIMENTAL RESULTS 

Consider a signal 

 
1

( ) cos(2 / )
K

i i ii
x n A k n Nπ φ

=
= +∑   (5) 

with N = 128. Sparsity (number of signal components) of 
this signal s=2K is changed from 2 to N/2. Randomly 
chosen amplitudes, frequencies and phases were within 
1 2iA≤ ≤ , 1 63ik≤ ≤  and 1 2iφ π≤ ≤ . Results are 

averaged in 100 realizations for each combination of the 
sparsity s and the number of missing samples M.  
 
 Example 1: Results shown in Fig. 1. present the MAE 
logarithm as a function of the sparsity s and the number of 
available samples M. White color indicates the region 
where the algorithms were not able to reconstruct the 



 

signal in a such way that MAE<0.01. It is obvious that the 
reconstruction was performed only if the condition M≥2s 
was satisfied [1], [10]. As we can see from graphics, the 
adaptive gradient algorithm has precisely reconstructed 
missing samples in a wide region. The achieved precision 
is higher than with the l1-magic algorithm. As it has been 
shown in [14], this algorithm has the option to reconstruct 
the signal samples with the computer precision. Also it is 
very important to note that this algorithm has successfully 
reconstructed signal in cases when l1-magic could not 
reconstruct signal with MAE<0.01 (blue colored area in 
the top graphic is larger than the one in the bottom 
graphic). In almost all cases where the adaptive gradient 
algorithm has performed reconstruction, the logarithm of 
MAE was about -6 corresponding to low error MAE=10-6.  

 
Fig. 1. Logarithm of MAE as a function of the sparsity s 
and the number of available samples M for the adaptive 

gradient algorithm (top) and the l1-magic algorithm 
(bottom). White color corresponds to the region where 

there was not reconstruction with algorithms 
 

Example 2: One more very important parameter in each 
algorithm is the speed of convergence. We have analyzed 
this parameter for both algorithms. We can see that the 
reconstruction was performed in less than 0.1s in all cases 
when successful reconstruction was performed. In many 
cases, time was significantly lower (order of 0.02) in both 
algorithms. Results shown in Fig.2 are presented for the 
cases when a successful reconstruction was achieved with 
any of the algorithm.  

 
Fig. 2. Time as a function of sparsity s and number of 

available samples M for adaptive gradient algorithm (top) 
and l1-magic algorithm (bottom). White color corresponds 

to the region where there was not reconstruction  with 
algorithms 

 
Top graphic of Fig.3. presents comparison in speed of 

convergence of two mentioned algorithms. White color 
indicates region where there was no reconstruction in both 
cases. Positive values correspond to situation when l1-
magic algorithm has faster convergence, while negative 
values correspond to the situation when the adaptive 
gradient algorithm has faster convergence. It is important 
to note that in both of these two situations gradient 
algorithm had better accuracy (Fig.1.). Bottom graphic of 
Fig.3. is just an illustration which shows regions where 
each of algorithms had faster convergence. As we can see, 
for large number of available samples, the adaptive 
gradient algorithm produces faster reconstruction, while 
the situations corresponding to a small sparsity are on the 
side of l1-magic algorithm, since it had faster convergence. 
Regions denoted by blue and red circles correspond to the 
situation when the adaptive gradient algorithm produced 
the signal reconstructed, while the l1-magic hadn’t or l1-
magic had and gradient hadn’t perform reconstruction, 
respectively. 

V. CONCLUSION 

Accuracy of the reconstructed signal and the speed of 
convergence for the adaptive gradient and the l1-magic 
algorithm are considered. Both of algorithms are from the 
class of convex optimization algorithms. Cases when the 
MAE of reconstructed signal was below 0.01 are 
considered as successful reconstruction cases. The 
adaptive gradient algorithm is very simple and has better 
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accuracy in all cases when successful reconstruction was 
performed. The adaptive gradient algorithms had faster 
convergence in some regions, as well.  

 

 
Fig. 3. Speed comparison of the adaptive gradient and the 

l1-magic algorithms. Positive values on the top graphic 
correspond to the situation when the l1-magic algorithm 
was faster. White color corresponds to the region where 
there was no reconstruction  with none of algorithms in 

both cases. 
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