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Abstract Reconstruction of the sparse signals,
performed by two algorithms which belongs to the @ss of
convex optimization algorithms, is considered in tis paper.
Widely used algorithm implemented by thel;-magic code
packet is used as the first algorithm. Its realizabn is based
on the primal dual interior point algorithm for convex
optimization. The second considered algorithm alsodbongs
to the convex optimization group of algorithms. Itis a
recently proposed adaptive step gradient-based algthm.
The reconstruction of missing data is based on theiréct
adaptation of the signal values by minimizing the
concentration/sparsity measure of the signal in the
transformation domain, where the signal is sparse.
Comparison of these two algorithms is done here.
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|l. INTRODUCTION

paper. The software which is based on the intgrmnt
methods (commonly used for reconstruction) todsyhée
[;-magic software packet [12]. The other algorithmttha
will be considered here is the one that belonghéoclass
of gradient descent algorithms [14]. The gradiessagnt
algorithms are used for convex optimizations protde
The goal of this paper is to make comparison batwee
these two algorithms since both of them are froensame
class of CS reconstruction methods (convex relamati
Detailed analysis of the computational performaate
each of these two algorithms will be done. Two very
important parameters that will be analyzed are the
reconstruction time and the reconstruction accurdate
accuracy will be measured by the mean absoluter erro
(MAE). Since thd;-magicsoftware tool is widely used in
research, we found interesting to compare it with a
recently proposed algorithm dealing with the same
problem of reconstructing sparse signals. Both hefsé

S'GNA!- is considered to be sparse in a transfornmatio, s gigorithms will be analyzed under the same e
domain if the number of significant (non-zero)ynq the conclusions about the speed and the MASaGH

coefficients in
number of all coefficients. Reconstruction of tkiad of
signals attracts significant research interest Ha tast

that domain is much smaller thdme t

of them will be presented.
The paper is organized as follows. After introdoati
reconstruction definitions are introduced in Settib.

decade since the sparse signals are present in M&ytion |1 provides overview of both algorithmsftek

applications [1]-[21]. The problem of reconstructias
minutely studied within the theory of compressieasing
(CS) [1]-[11].

In order to perform sparse signal reconstructiomyna

algorithms are introduced [2]-[14]. There are mgnyups
of algorithms that are widely used in reconstruttiixe
pursuit methods, convex relaxation, nonconvex edlan,
brute force based methods [11], etc. Here, we fedus
on one commonly used class of the algorithms, tmrex
relaxation class of algorithms. The convex relaai
algorithms are based on thenbrm optimization. Two
methods of convex relaxation algorithms, the iatepioint
and the adaptive gradient based one, are considethi
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that, comparison of these two algorithms is done in
Section IV. At the end of the paper there is a tating
Section V.

Il. DEFINITIONS

Let x be discrete-time domain signal of length N.
Suppose that this signal has sparse transformatisame
domain. Here we will consider the case of the discr
Fourier domain (DFT) as a study case. The sparse
transform of the signad will be denoted aX. The relation
between these two domains is

X=Wx (x=W7X),
whereW is NxN DFT matrix with element8V(n,k)=exp(-
2jznk/N)

Assume that the signal has onlyM available samples,
while the other N-M samples are missing or are
unavailable due to a physical constraint or measent
unavailability. The vector oM available signal samples
will be denoted ay. Its values are

y(i)=x(n), wherei =1,2,..M .
The reconstruction task can be defined as:

min||X || subjectty=AX |, 1)

where A is MxN matrix obtained from matrixyV * by
eliminating rows corresponding to missing samples



(preserve rows with indexes corresponding to iristan ) co . - .
wherei=1,2,...,M). Since (1) is an NP-hard combinatorialP®int (X, v andi "), the system is linearized and solved,
approach commonly+horm instead ofstnorm is used. In for example, by a widely used software package wkas
practical signal processing applicatiogsorm is sensitive theli-magic

to small values, even for a values of computecipien g Gradient descent algorithm

order too [21]. It is one more reason to usadrm. The

considering reconstruction task (1) is then One more algorithm that can reconstruct sparseakgs

~ _ the adaptive gradient descent one. It also beldogs
min ||X || subjecttg =AX . (2) convex optimization class of algorithms. It is vesiynple

It is important to note that solutions of (1) ard) are and efficient algorithm reconstructing discretedim
the same if the signak and its transformX satisfy domain samples of the signal by optimizing the

restricted isometry property (RIP) [2]. concentration of sparse presentation of signal.

After the sparse presentation of signa& is  Implementation of algorithm follows [14]:
approximated according to (2), a reconstructed asigs
obtained as Step Q Form the signak.o(n), where (0) means that this

is the first iteration of the algorithm, defined as

x =WX . : ; o
' . ) , x©(n)=x(n) for available samples, and 0 for missing
When the reconstructed signal is obtained, th§'amples.

reconstruction quality can be measured using,Xample,

the mean absolute error of the reconstructed signal Step T Two signalsx(n) and x.2(n) for each missing

ZNf [x(n)—=x (n| sample atn; , in each next iteration are formed as:
n=t . 3) 0 _ ) _
N X1 (M) =% (N+Ad(n-n) x5 (n)=x%()-Ad(n-n)
wherek is the iteration number.

MAE =

I1l. ALGORITHM DEFINITIONS

As it has been mentioned in Section |, there areymaStep 2 The dlﬁgrentlal of t_he signal .transform (here th
FT) measure is then estimated as:

classes of algorithms that deal with sparse signals
reconstruction. Algorithms that belong to the coave

optimization class are the widely used ones. Heeawill i(Z‘DFT[X(P(”)]“Z‘ DFT[ ®9( 0])
deal with two types of algorithms that solve convex g(n) = N
optimization problems. They will be presented next. 2A
A. l;-magic Step 3 Form a gradient vectd® with the same length as

Software packet;-magic is a tool intensively used to the signalx(n). At the positions of the available samples,
solve the CS reconstruction problems. This algorith this vector has valu&(n) = 0. At the positions of the
belongs to the class of interior point algorithritsis a missing samples its values ay@), calculated by (4).
primal dual interior point method for linear progmaning
[13, chapter 11]. The standard form of a lineaigpam is:  Step 4 Correct the values of(n) iteratively by

min(c,,X) subject ty = AX X“D(n) = x(n-pQqn
’ whereyu is a step size that affects the performancesef th
f(X)<0 )
: algorithm (the error and the speed of convergence).
N K _ . By repeating the presented iterative procedure, the
yxhereX_ER, y=R" A'is KX’\_' matrix, and each of; , missing values will converge to the true signaluesl
i=1,...,mis a linear functional: which produce a minimal concentration measure & th
f,(X)=(g,X)+d transformation domain.

for somec;eR", d;eR. At the optimal pointX , there will IV. EXPERIMENTAL RESULTS
exist dual vectorsv* eR¢, and A* eR™ that satisfy Karush- Consider a signal

Kuhn-tucker conditions: K
x(n)=>Y"_ Acos(2rkn/N+g) (5)

C,+ATY +in*q =0, with N = 128 Sparsity (number of signal components) of
i this signals=2K is changed from 2 tdN/2. Randomly

chosen amplitudes, frequencies and phases werénwith

1< A<2, 1<k <63 and ls¢g<2r. Results are

AX = Y, averaged in 100 realizations for each combinatibthe
sparsitys and the number of missing samplés

A f(X)=0, i=1..m,

£(X)<0, i =1,..m

] ] ~ ) Example 1:Results shown in Fig. 1. present the MAE
Algorithm finds search vectoK (optimal dual vector) by |ogarithm as a function of the sparsitand the number of
solving the system of nonlinear equations. At tiierior  4yajlable sampleM. White color indicates the region
where the algorithms were not able to reconstrhet t



signal in a such way thAE<0.01 It is obvious that the
reconstruction was performed only if the conditidr2s
was satisfied [1], [10]. As we can see from graphibe
adaptive gradient algorithm has precisely recongstdi
missing samples in a wide region. The achievedigitat
is higher than with thé-magic algorithm. As it has been
shown in [14], this algorithm has the option toaestruct
the signal samples with the computer precisiono Alds
very important to note that this algorithm has ssstully
reconstructed signal in cases whirmagic could not
reconstruct signal wittMAE<0.01 (blue colored area in
the top graphic is larger than the one in the Ilmotto
graphic). In almost all cases where the adaptialignt
algorithm has performed reconstruction, the logamitof
MAE was about -6 corresponding to low erhE=10°.
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Fig. 1. Logarithm of MAE as a function of the sprs
and the number of available sampliégor the adaptive
gradient algorithm (top) and themagicalgorithm
(bottom). White color corresponds to the region rehe
there was not reconstruction with algorithms
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Fig. 2. Time as a function of sparsggnd number of
available samplel! for adaptive gradient algorithm (top)
andl;-magicalgorithm (bottom). White color corresponds

to the region where there was not reconstructioth w

algorithms

Top graphic of Fig.3. presents comparison in spafed
convergence of two mentioned algorithms. White colo
indicates region where there was no reconstrudtidroth
cases. Positive values correspond to situation when
magic algorithm has faster convergence, while negative
values correspond to the situation when the adaptiv
gradient algorithm has faster convergence. It igartant
to note that in both of these two situations gratie
algorithm had better accuracy (Fig.1.). Bottom giamf
Fig.3. is just an illustration which shows regionkere
each of algorithms had faster convergence. As wesea,
for large number of available samples, the adaptive
gradient algorithm produces faster reconstructiahijle
the situations corresponding to a small sparsigyaar the
side ofl;-magicalgorithm, since it had faster convergence.
Regions denoted by blue and red circles correspmiide

Example 2:0ne more very important parameter in eacBituation when the adaptive gradient algorithm pioedi

algorithm is the speed of convergence. We haveyaedl
this parameter for both algorithms. We can see theat
reconstruction was performed in less than 0.1dl icazes

when successful reconstruction was performed. Inyma

cases, time was significantly lower (order of 0.02poth
algorithms. Results shown in Fig.2 are presentedtfe
cases when a successful reconstruction was achieitied
any of the algorithm.

the signal reconstructed, while themagic hadn't orl;-
magic had and gradient hadn’t perform reconstruction,
respectively.

V. CONCLUSION

Accuracy of the reconstructed signal and the speed
convergence for the adaptive gradient and lthmagic
algorithm are considered. Both of algorithms amfithe
class of convex optimization algorithms. Cases wthen
MAE of reconstructed signal was below 0.01 are
considered as successful reconstruction cases. The
adaptive gradient algorithm is very simple and beger



accuracy in all cases when successful reconstruetias

performed. The adaptive gradient algorithms hadefas

convergence in some regions, as well.

Speed comparison
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Fig. 3. Speed comparison of the adaptive gradiedtiae

I;-magicalgorithms. Positive values on the top graphic

correspond to the situation when thenagicalgorithm

was faster. White color corresponds to the regibere

there was no reconstruction with none of algorghm
both cases.
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