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On the ISAR Image Analysis and Recovery with
Unavailable or Heavily Corrupted Data
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1 Abstract—Common ISAR radar images and signals can be
reconstructed from much fewer samples than the sampling theo-
rem requires since they are usually sparse. Unavailable randomly
positioned samples can result from heavily corrupted parts of
the signal. Since these samples can be omitted and declared as
unavailable, the application of the compressive sensing methods
in the recovery of heavily corrupted signal and radar images is
possible. A simple direct method for the recovery of unavailable
signal samples and the calculation of the restored ISAR image
is reviewed. An analysis of the noise influence is performed. For
fast maneuvering ISAR targets the sparsity property is lost since
the ISAR image is blurred. A nonparametric quadratic time-
frequency representations based method is used to restore the
ISAR image sparsity. However, the linear relation between the
signal and the sparsity domain transformation is lost. A recently
proposed gradient recovery algorithm is adapted for this kind of
analysis. It does not require a linear relation of the signal and its
sparsity domain transformation in the process of unavailable data
recovery. The presented methods and results are tested on several
examples proving the expected accuracy and improvements.

Keywords: Radar imaging, ISAR, time-frequency analysis,
noisy signal, sparse signal, compressive sensing.

I. I NTRODUCTION

In inverse synthetic aperture radar (ISAR) a high resolution
image of a target is obtained by using the two-dimensional
Fourier transform (FT) of received (and processed) signal.
The ISAR image of a point target is a highly concentrated
two-dimensional point spread function whose position corre-
sponds to the target’s range and cross-range. For a number of
scattering points, the radar image consists of several peaks
at the range and cross-range positions [1]-[6]. Usually the
number (area) of nonzero values in the ISAR image is small
as compared to the total number of signal samples. Thus, we
may say that a common signal in ISAR is sparse in the two-
dimensional Fourier domain. As such it can be reconstructed
from much fewer samples than the sampling theorem requires.
Unavailable, randomly positioned samples could also result
from heavily corrupted parts of the signal, that are omitted and
declared as unavailable, before the ISAR image recovery and
calculation is done. Measurements and physical constraints of
the target and radar interferences may also cause that only
some of the randomly positioned data can be received and
measured. The fact that the two-dimensional FT domain is
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the domain of the ISAR signal sparsity is used in signal
recovery. This fact allows application of the compressive
sensing (CS) methods [7]-[17] in the ISAR imaging [2],[18]-
[24]. A simple method for the unavailable radar data recovery
and the ISAR image calculation is reviewed in the paper.
This method belongs to the class of the orthogonal matching
pursuit recovery CS methods, [9]-[13]. An analysis of the
noise influence on this radar image is done. A simple and
accurate relation for the output signal-to-noise ratio is derived.

For fast maneuvering ISAR targets, radar image can be
spread over the two-dimensional FT domain [1], [5], [25]-
[28]. Then a large number of the two-dimensional FT values
are nonzero, covering a significant part of the radar image.
In this case the sparsity property of the signal is lost. One
possibility to restore this property is to use parametric trans-
forms to compensate and refocus the ISAR image, making it
sparse again [1], [25], [28]-[33]. However, a large number of
parameters should be used for almost each scattering point in
the case of a general nonuniform motion. Good results can be
achieved using these techniques, but at the expense of a high
computational load. This kind of parametric calculation is even
more complex for the reduced set of available signal samples,
when the CS methods are going to be used. Another way to
refocus the image is based on the quadratic time-frequency
representations [1], [31], [34], [35]. A representation which
can achieve high concentration, like in the Wigner distribution
case, at the same time avoiding the cross-terms, is the S-
method, [31], [36], [37]. This method is nonparametric and
computationally quite simple. It requires just a few additions
and multiplications on the already calculated ISAR image
using the two-dimensional FT. However, the S-method relation
to the signal is not linear. Therefore, many conventional CS
based recovery techniques, including the one reviewed in this
paper, can not be used. They are based on the direct linear
reconstruction relation between the signal and the transform
in the domain of signal sparsity. This is not the case in
the quadratic signal representations. It was the reason why
the recently proposed method for recovery of missing sam-
ples/measurements [17] is adapted for the problem formulation
in this paper. This method belongs to the class of gradient
methods [16]. Its application does not require a direct linear
relation of the signal to its sparsity transformation domain in
the process of recovery of unavailable signal values.

The presented methods and results are illustrated and tested
on several examples proving the expected efficiency.

The manuscript is organized as follows. A brief review of
the signal model in the considered ISAR systems is given
in Section II. A reconstruction algorithm for the radar signal
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with unavailable data is presented in Section III, along with the
analysis of noise influence in Section IV. The gradient method
for the reconstruction of the ISAR images, corresponding
to nonuniform motion is presented in Section V. Examples
illustrate the accuracy of the proposed methods.

II. RADAR SIGNAL MODEL

Consider a linear frequency-modulated continuous-wave
(FM-CW) radar. Assume that it transmits signal in a form
of series ofM chirps [38]. The received signal (scattered
from a target) is delayed with respect to the transmitted signal
for td(t) = 2d(t)/c, whered(t) is the target distance from
the radar andc is the speed of light. A deramping-based
architecture is assumed, with a replica of the transmitted signal
being mixed with the returned echoes. The received signal,
after an appropriate demodulation, compensation, and residual
video phase filtering, is

q(m, t) = σejΩ0
2d(t)

c e−j2πBfr(t−mTr)
2d(t)

c (1)

where σ is the reflection coefficient of the target, whileΩ0

is the radar operating angular frequency. The repetition time
of a single chirp is denoted byTr = 1/fr, while the number
of samples within each chirp isN . The coherent integration
time (CIT) is Tc = MTr. Index m corresponds to the chirp
index (slow time). The received signal for a system of point
scatterers can be modeled as a sum of the individual point
scatterer responses, [1]. The Doppler part in the received signal
of a point target is

s(t) = σej2d(t)Ω0/c. (2)

The range part of the received signalexp(−j2πBfr(t −
mTr)2d(t)/c) reduces to exp(j2πγn/N) with γ =
−BfrTsN(2d(t)/c) and t − mTr = nTs. The sampling
interval within a chirp is denoted byTs = Tr/N and n is
the index of signal sample within one chirp (fast-time). The
two-dimensional FT of the discrete received and processed
signalq(m,n) is

Q(k, l) =
M−1∑

m=0

N−1∑

n=0

q(m,n)e−j( 2πmk
M + 2πnl

N ), (3)

where the indicesk and l are the discrete two-dimensional
FT frequencies. They are proportional to the cross-range and
range respectively. Illustration of the discrete values ofq(m,n)
within one revisit is presented in Fig. 1.

For a target which consists ofK scattering points, the
resulting signal can be written as

q(m, t) =
∑K

i=1σie
jΩ0

2di(t)
c e−j2πBfr(t−mTr)

2di(t)
c

whereσi is the reflection coefficient of theith scattering point
anddi(t) is its distance to radar.

III. U NIFORM TARGET MOTION WITH

UNAVAILABLE /CORRUPTEDDATA

In the simplest case, when the target motion may be
considered as uniform within the CIT, the distance of theith
scattering point to radar can be written as

di(t) ∼= d0 + vit ∼= d0 + vimTr.
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Fig. 1. Illustration of one revisit (chirp series) discretization in coordinates
m (chirp index, slow time) andn (time within one chirp, fast time), along
with a real time. The case ofM = 8 chirps in one revisit andN = 8
samples within chirp is presented. The CIT is64 samples. Unavailable or
heavily corrupted data are marked by red.

Since the distance between the radar and target is large, then
di(t) =

√
(d0 + xi(t))2 + y2

i (t) ∼= (d0 + xi(t)), wherexi(t)
and yi(t) are the range and cross-range coordinates of the
ith scattering point with respect to the center of target (on
the line-of-sight). The range coordinatexi(t) is related to its
original position (xi0, yi0) by a rotation transformxi(t) =
xi0 cos(ωRt) + yi0 sin(ωRt) ∼= xi0 + yi0ωRt. After distance
compensation all changes in the distancedi(t) reduce to the
movements along the line-of-sight, defined byxi(t). A method
for distance compensation in the case of reduced set of data
is presented in [2].

The received signal, from theith scattering point, after the
distance compensation, is

qi(m,n) = σie
jΩ02viTrm/cej2πγin/N

= σie
j2πβim/Mej2πγin/N ,

where vi = yi0ωR, βi = 2Ω0yi0ωRTr/c and γi =
−BfrTsN(2di(t)/c) are the constants proportional to the
velocity (cross-rangeyi0) and range (after distanced0 com-
pensationγi = −2Bx0i/c since Ts = Tr/N = 1/ (frN)).
The total signal forK scattering points is

q(m,n) =
∑K

i=1qi(m,n).

Assume that some samples or blocks of samples of the re-
ceived radar signal are either unavailable or heavily corrupted
so that they are omitted from the analysis [15]. Assume that
the blocks of omitted signal samples are randomly positioned.
The two-dimensional FT of this signal is then

Q̂(k, l) =
M−1∑

m=0

∑

n∈NA(m)

q(m,n)e−j( 2πmk
M + 2πnl

N ). (4)

It can happen that the unavailable/corrupted data are: all within
one chirp or spread over two or more chirps, including the
possibility that a few chirps in a row are affected in this way,
Fig. 1. These cases are included by using the notationn ∈
NA(m) whereNA(m) is the set of available samples within
themth chirp. For somem it could also happen thatNA(m) =
∅, i.e., that there are no available samples within that chirp.
The total number of available samples is1 � NA ≤ MN .
Consider one scattering point and two cases [27]:
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(1) For k = βi and l = γi we will have

Q̂(k, l) =
M−1∑

m=0

∑

n∈NA(m)

σi = σiNA (5)

whereNA is the total number of available samples.
(2) For k 6= βi or l 6= γi we have

Q̂(k, l) =
M−1∑

m=0

∑

n∈NA(m)

σie
jφi(n,m,k,l) = Ξi(k, l). (6)

The variableΞi(k, l) defined by (6) can be considered as
random since the positions ofNA terms used in the second
summation are random, forn ∈ NA(m) andφi(n,m, k, l) =
(2πm(k − βi)/M + 2πn(l − γi)/N). For a large number of
randomly positioned unavailable samples1 � NA � NM
the value ofΞi(k, l) is a sum of vectors with quasi arbitrary
phases. It can be considered as a complex-valued variable
(missing samples noise) with Gaussian distributed real and
imaginary parts (as shown in [40]). Its variance is

var{Q̂(k, l)} = NA
NM − NA

NM − 1
σ2

i . (7)

Therefore, forK scattering points we may write [40]

E{Q̂(k, l)} =
K∑

i=1

σiNAδ(k − βi, l − γi) (8)

var{Q̂(k, l)} = NA
NM − NA

NM − 1

K∑

i=1

σ2
i (1 − δ(k − βi, l − γi)) .

A. Reconstruction Algorithm

For a sufficiently small ratioρ of the standard deviation
coefficient (7) and a component mean valueσiNA

ρ =

√
NM − NA

NA(NM − 1)
(9)

correct detection of the signal component positions is achieved
[40]. This ratio, with a clear probabilistic meaning, is the
(Welch) bound for the coherence indexμ ≥ ρ of matrix
with available samples, used to define the reconstruction
condition bound within the spark framework [2]. The num-
ber of componentsK can be easily included for the worst
case of approximately equal values ofσi. Then K(NM −
NA)/[NA(NM − 1)] should be sufficiently small [40], [41].
When these conditions are satisfied the received signal and the
ISAR image recovery can be done using the following simple
and computationally efficient algorithm.

Algorithm:
(i) Calculate the initial transform estimatêQ(k, l) by using

the available/remaining signal values and (4) or in matrix form

Q̂= Φy, (10)

where y is the vector of available samplesq(m,n), n ∈
NA(m)

y = [q(m,n) | n ∈ NA(m) ]T .

Note that the two-dimensional dataq(n,m) are transformed
into a column vectory and Φ is the corresponding transfor-
mation matrix. It is used to producêQ(k, l) arranged into a
column vectorQ̂.

(ii) Set the resulting transform valuesQ(k, l) to zero at all
positions (ki, li) except the highest̂K values in the initial
estimateQ̂(k, l), i.e.,

Q(k, l) = 0 for (k, l) 6= (ki, li), i = 1, 2, ..., K̂ (11)

(ki, li) = arg
i=1,2,...,K̂

{max{sort{|Q(k, l)|}}}.

This criterion is not sensitive to the assumed number of
nonzero coefficientsK̂ as far as all nonzero positions of
the original transform are detected and the total numberK̂
of transform values inQ̂(k, l) is lower than the number of
available samples, i.e.,K ≤ K̂ ≤ NA. All K̂ − K transform
values that are zero in the original signal will be found as
zero-valued in the algorithm.

(iii) The unknownK̂ transform coefficients could be then
easily calculated by solving the set ofNA equations for
available instantsn ∈ NA(m), at the detected nonzero can-
didate positions(ki, li), i = 1, 2, ..., K̂. The linear system
for unknownsQ(ki, li) is obtained using the inverse two-
dimensional FT forNA available signal values,

1
MN

∑K̂
i=1QK̂(ki, li)e

j(
2πmki

M +
2πnli

N ) = q(m,n), (12)

for 0 ≤ m ≤ N − 1, n ∈ NA(m).

System (12) is a system ofNA linear equations with onlŷK
unknown transform valuesQ(ki, li) denoted byQK̂(ki, li).
This linear system can be written in a matrix form as

ΨQK̂= y, (13)

where:QK̂ is a vector whose elements are unknownsQ(ki, li),
i = 1, 2, ..., K̂, Ψ is the corresponding coefficients matrix,
andy is a vector whose elements are available signalq(m,n)
samples. In general, for̂K < NA the system is solved in the
least square sense as

QK̂ =
(
ΨHΨ

)−1
ΨHy. (14)

where H denotes the Hermitian transpose operation. The
reconstructed coefficientsQ(ki, li), i = 1, 2, ..., K̂, (vector
QK̂ ) are equal to the transform coefficients of the original
signal for all detected candidate frequencies. If some transform
coefficients, whose true value should be zero, are included
(whenK < K̂) the resulting system will produce their correct
(zero) values [41].

The condition that the system (12), witĥK unknowns, has
a unique solution is that there are at leastK̂ independent
equations, i.e., thatrank(Ψ) ≥ K̂. Note that this unique
solution, in theory does not exclude possibility that another
set of QK̂ may exist satisfying the same set of available
samples. This will be commented later. If system (12) has
the solution and all true nonzero coefficientQ(k, l) positions
are included based on estimate (4) and (11) and the ratio (9)
is sufficiently small (includingK) then the recovery in this
sense is achieved. The fact that all signal components are
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included can be easily checked after the calculation is done, by
calculating the mean squared error between the reconstructed
samples and the available samples, at the positions of the
available samplesn ∈ NA(m)

MSE =
1

NA

M−1∑

m=0

∑

n∈NA(m)

|q(m,n) − qR(m,n)|2 , (15)

where

qR(m,n) =
1

MN

M−1∑

k=0

N−1∑

l=0

QR(k, l)ej( 2πmk
M + 2πnl

N )

and QR(k, l) are the reconstructed coefficients. The full set
of reconstructed coefficients consists of the set of zero-valued
coefficientsQR(k, l) = 0 for (k, l) 6= (ki, li), i = 1, 2, ..., K̂
(according to (11)) and the reconstructed values of non-
zero candidate coefficientsQR(k, l) = QK̂(k, l) for (k, l) =
(ki, li), i = 1, 2, ..., K̂ (according to (12)).
Comments:

Large K̂, close toNA, will increase the probability that
the signal recovery is achieved in one step. However, for
large K̂ computational complexity is increased. In the case
of additional input noise in available samples, a value ofK̂
as close to the true signal sparsityK as possible will reduce
the noise influence on the reconstructed signal. This will be
shown later. If the algorithm fails to detect all components
with initially assumedK̂ (the reconstruction accuracy of the
available samples defined by (15) can be used to detect this
event) the procedure should be repeated after the detected
components are reconstructed and removed. In such cases the
iterative procedure should be used.

In theory, after the zero MSE is achieved and a sparse
solution, satisfying the available samples is obtained, check
of its uniqueness should be done. In simulation it is done by
calculating the MSE over all signal samples after the recon-
struction. The restricted isometry property (RIP) [14] defines
the condition that the resulting reconstruction of a specific
signal from the reduced set of samples is unique. However,
its practical application is not computationally feasible. After
(12) is solved andK nonzero valuesQ(ki, li) are found
satisfyingMSE = 0 this analysis would require a combina-
torial check if any other set ofK (or less) nonzero valued
Q(k, l) can produce the same result for giveny. Another
approach to check the uniqueness of the obtained solution is
based on the spark and coherence index analysis [2]. These
results are pessimistic for applications since they include
zero probability events. The spark based relation would be
obtained within the presented framework if we assume that
the missing sample noises of different scattering points of the
same (unity) reflection coefficientsσi are added up in (6) with
the same phase to produceΞi(k, l)K at some point(k, l).
Variable Ξi(k, l) should also assume its maximal possible
value denoted byμNA = maxi,k,l {|Ξi(k, l)|} (calculated
over all possible(βi, γi) and all possible positions(k, l))2.

2EqualityμNA = |Ξi(k, l)| holds for alli, k, l for matrices of very specific
structure called complex equiangular tight frames [44]. Even in that case the
phase of variousΞi(k, l) is not the same and for a large number of signal
components with different phases the probabilistic approach would be suitable.

It should also be assumed that(K − 1) remaining missing
sample noise components at the component position(βi, γi)
assume the same maximal valueμNA and that all of them
subtract in phase from the signal mean valueNA at (βi, γi).
Condition for correct detection of a component at(βi, γi) is
then NA − NAμ(K − 1) > NAμK or K < 1

2 (1 + 1/μ).
This is a quite pessimistic bound forK since it uses the
worst case valuemaxi,k,l {Ξi(k, l)} of any possible signal
in a calculation for a specific signal. Its also assumes that
all noise components are added up (or subtracted) in phase
as well as that the component amplitudesσi are the same.
Therefore, for a high degree of randomness, a probabilistic
approach indicated at the beginning of this subsection may be
more suitable for the analysis [40], [41]. A posteriori check
of the solution uniqueness can also be done [43].
Iterative procedure:

If the signal contains components with significantly different
amplitudes, ratio (9) can be small only with respect to the
largest components. Lower amplitude components can not be
initially detected. Then the iterative procedure should be used.
Algorithm for the iterative procedure is:
-The largest component at(k1, l1) in (4) is detected. The
transform valuesQ(k, l) are set to zero at all positions(k, l)
except at the position of the highest one at(k1, l1). This
component is reconstructed using (12) witĥK = 1 and
subtracted from the signal.
-The remaining signal is used to calculate (4) again. The high-
est value position(k2, l2) is found, and signal is reconstructed
at two frequency points{(k1, l1), (k2, l2)} using (12) with
K̂ = 2. The reconstructed signal is removed from the original
signal and (4) is calculated with the remaining signal.
-Procedure is continued in this way until the reconstruction
accuracy of the available samples is bellow the required
accuracy level. The accuracy is defined with (15) as difference
of K̂ components at positions{(k1, l1), (k2, l2), ..., (kK̂ , lK̂)},
and the given available signal valuesn ∈ NA(m).
-Number of iterations in this procedure can be significantly
reduced if we combine it with the first approach by grouping,
for example, K̂ = 3 or K̂ = 4 components of similar
amplitudes in each step.
Example 1: A signal withK = 16 randomly positioned
scattering points

q(m,n) =
∑16

i=1σie
j2πβim/Mej2πγin/N ,

with M = N = 64 is considered with87.5% unavailable sam-
ples. A set of random positive values of scattering coefficients
σi is taken. A half of the random amplitudes (K/2 = 8) is
taken to produce the resulting ISAR image values around0
[dB] range, while a half of the random scattering coefficients
are reduced to a level of about−40 [dB] range. The two-
dimensional FT (ISAR image) of the original signal, if all
signal samples were available, is presented in Fig.2(a). The
initial two-dimensional FT of the signal is calculated using
(4) with NA = 0.125MN available samples, Fig.2(b). It is
presented in Fig.2(c). The largest̂K = 10 values inQ̂(k, l)
are taken as candidates for the nonzero coefficients. In this
step small signal components were masked by the noise from
large values (described by (6)). Therefore the reconstruction
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of small components is done using the procedure (12)-(14).
The reconstructed signal is subtracted from the original signal
and the procedure is repeated. The result from this iterative
procedure is presented in Fig.2(d). The difference between
the available signal values and the reconstructed signal values,
at the same positions, is within the computer precision. This
difference (measured by (15)) is used as the stopping criterion.
Check of the solution is done after reconstruction as well, by
calculating the MSE over all signal samples, to exclude the
possibility that the reconstructed signal is equal to the original
one at the available signal sample positions only.

The recovery is also tested using various numbers of the
scattering pointsK and various numbers of available samples
NA. In this case the stopping criterion was also the MSE value
at the positions of the available samples. Statistical results
are obtained by averaging over100 independent realizations
with random scattering coefficients, frequency positions, and
positions of the available samples, Fig.3. We can conclude that
the number of scattering points which can be recovered in this
case, with a high probability, usingNA randomly positioned
signal values is of an order ofK ∼ NA/5, corresponding to
K(NM − NA)/[NA(NM − 1)] < 1/5.

From Fig.3 it is obvious that, for a given number of available
samples, for example,NA = 256, the MSE is at the computer
precision level in all 100 realizations for the number of
components belowK = 48. Also there was no successful
reconstruction forK > 100. Between these two values, for
signals with a number of components50 < K < 100,
obviously there were some reconstruction and some non-
reconstruction realizations.

IV. I NFLUENCE OFADDITIVE INPUT NOISE

Assume now that an input additive noiseε(n) exists in
the available data. Note that the noise due to missing values
influences the results in the sense presented in the previous
section. When the recovery is achieved accuracy of the result
is related to the input additive noise in signal samples. It de-
pends on the number of available signal samples and nonzero
transform coefficients (sparsity) as it will be shown next. The
reconstruction equations (12) for noisy available data are

q(m,n) + ε(m,n) =
1

MN

∑K̂
i=1QK̂(ki, li)e

j(
2πmki

M +
2πnli

N ),

(16)

for 0 ≤ m ≤ N − 1, n ∈ NA(m).

The transform indices can take a value from the set of detected
values(k, l) ∈ {(k1, l1), (k2, l2), ..., (kK̂ , lK̂)}. A matrix form
of equations (16) is

y + ε = ΨQK̂ .

This is a system ofNA linear equations withK̂ unknowns
QK̂(ki, li) in vectorQK̂ . The solution is

ΨH(y + ε) = ΨHΨQK̂

QK̂ =
(
ΨHΨ

)−1
ΨH(y + ε)

QK̂ = QKS + QKN . (17)
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Fig. 2. (a) A two-dimensional Fourier transform of the considered radar
signal (ISAR image). (b) Radar signal with 12.5% of available/uncorrupted
samples (unavailable/corrupted samples are presented in black). (c) The two-
dimensional Fourier transform calculated using the available samples of the
radar signal. (d) The reconstructed ISAR image. (e) A two-dimensional
Fourier transform of the considered radar signal (ISAR image) in logarithmic
scale. (f) The reconstructed ISAR image in logarithmic scale. (g)-(h) Graphs
from (e)-(f), respectively, from the zero-angles view to compare the amplitudes
in logarithmic scale.
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The true transform coefficients and the noise influence to the
reconstructed transform are

QKS =
(
ΨHΨ

)−1
ΨHy,

QKN =
(
ΨHΨ

)−1
ΨHε.

If all signal samples were available, the input signal-to-noise
(SNR) ratio, would be

SNRi = 10 log

∑M−1
m=0

∑N−1
n=0 |q(m,n)|2

∑M−1
m=0

∑N−1
n=0 |ε(m,n)|2

= 10 log
Es

Eε
.

(18)
Assume that the noise energy in the available samples is

EεA =
M−1∑

m=0

∑

n∈NA(m)

|ε(m,n)|2 . (19)

The true scattering coefficient (component amplitude) in the
signal transform at the position(ki, li), in the case if all
signal samples were used, would beMNσi. To compensate
the resulting transform for the known bias in amplitude (5)
when only NA available samples are used, the coefficient
should be multiplied byMN/NA. In a full recovery, a signal
transform coefficient is equal to the coefficient of the original
signal with all signal samples being used. The noise in the
transform coefficients is multiplied by the same factor of
MN/NA. Therefore, the energy of noise in the reconstruction
algorithm is increased toEεA(MN/NA)2. The SNR in the
fully recovered signal is

SNRf = 10 log

∑M−1
m=0

∑N−1
n=0 |q(m,n)|2

M2N2

N2
A

∑M−1
m=0

∑
n∈NA(m) |ε(m,n)|2

(20)

Since only K̂ out of MN coefficients are used in the
reconstruction the energy of the reconstruction error is reduced
for the factor ofK̂/(MN) as well. The energy of noise in the
recovered signal is

EεR =
K̂

MN

M2N2

N2
A

M−1∑

m=0

∑

n∈NA(m)

|ε(m,n)|2 .

The SNR in the recovered signal is

SNR = 10 log

∑M−1
m=0

∑N−1
n=0 |q(m,n)|2

K̂NM
N2

A

∑M−1
m=0

∑
n∈NA

|ε(m,n)|2
. (21)

Since the variances of noise in all samples and the available
samples are the same then

1
NA

M−1∑

m=0

∑

n∈NA(m)

|ε(m,n)|2 =
1

MN

M−1∑

m=0

N−1∑

n=0

|ε(m,n)|2

(22)
Thus, the SNR in the recovered signal, according to (21), (22)
and (18), is

SNR = SNRi − 10 log

(
K̂

NA

)

. (23)

We may conclude that in the case of additive input noise in
the available signal samples, the output SNR will be increased
if the numberK̂ is as small as possible, for a given number

of available samplesNA. In an ideal case, with respect to
the additive noise, value of̂K should be equal to the signal
sparsityK̂ = K.
Example 2: Consider a noisy signal from Example 1 with
K = 10 signal components. Assume that an additive complex-
valued Gaussian noise exists, with the input SNR equal to

SNRi = 9.05 [dB]

andNA = MN/8. SinceK = 10 in the previous example we
used estimated valuêK = 14 for the calculation. According
to (23) the output SNR is

SNR = SNRi − 10 log
(
K̂/NA

)

= 9.05 + 15.81 = 24.86 [dB].

The improvement in SNR is15.81 [dB]. This result is statis-
tically checked. The statistical result is obtained by averaging
over 100 realizations with random scattering coefficients and
positions. The obtained statistical value of the output SNR is

SNR(stat) = 24.53 [dB].

Agreement with the theory is almost exact, within the statis-
tical confidence for the number of performed realizations.

If the number of components were estimated exactly asK̂ =
10, then the SNR values would be obtained as

SNR = 26.32 [dB]

SNR(stat) = 26.26 [dB].

The SNR value for K̂ = 10 would be higher for
10 log(14/10) = 1.46 [dB] than in the case withK̂ = 14.
In the iterative realizations, the case ofK̂ = 14 would occur
if there were4 false detected components (maxima) before the
signal reconstruction is achieved.

V. NONUNIFORM TARGET MOTION

For fast moving targets and complex motions, the target
over all M chirps, in one revisit, cannot be considered as
the one with constant velocity motion. Then a higher-order
approximation of theith scattering point distance

di(t) ∼= d0 + v0it + ait
2/2 + . . . ,

should be used withvi(t) = v0i+ait+. . . . If we assume that
vi(t) = v0i + ait, then the Doppler shift is a linear function
of time. Its rate isai. Instead of a delta pulse concentrated at
one frequency, corresponding tov0i, we will obtain a FT of a
linear frequency-modulated signal (or higher-order frequency-
modulated signal), whose instantaneous frequency changes are
proportional to the velocityvi(t) changes. The radar image,
based on this form, is centered at the same position as the
FT image, but with the spreading term in the cross-range
(Doppler) direction of the formexp

(
j 2Ω0

c ( 1
2!d

′′
i (0)t2 + ...)

)

due to the target motion. The discrete domain signal is [31]

qi(m,n) = σie
j2πβim/Mejαim

2/2+...ej2πγin/N ,

Qi(k, l) = (2π)2 σiδ(k − βi, l − γi) ∗k FT{ejαim
2/2+...}

whereαi = 2Ω0T
2
r d′′i (0)/c and ∗k is the convolution in the

discrete cross-range domain, whileδ(k, l) = 1 for k = l = 0
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and δ(k, l) = 0 elsewhere. This spread can be significant
and the resulting ISAR image is not sparse or sparsity is
significantly degraded.

If the two-dimensional FT is corrected according to the S-
method [31], [36], [37], along the cross-range direction, then
the resulting image will be

SMi(k, l) = (2π)2 σ2
i δ(k − βi, l − γi).

It is sparse again and does not depend ond′′i (0). Under certain
conditions this representation is free of cross-terms among
different scattering points, producing

SM(k, l) = (2π)2
K∑

i=1

σ2
i δ(k − βi, l − γi).

As in the most of the literature, it has been assumed that
the range migrations are not significant as compared to the
Doppler migrations. The range migrations are related to much
smaller time interval than the Doppler migrations. Thus, a
quadratic phase along the Doppler axis only are considered.
In the case that the range migration should be taken into
account [39], then an additional application of the presented
method to the range direction is straightforward by using two-
dimensional S-method (SM). It has been done in [31].

The S-method based ISAR image can be easily realized in
a recursive way starting from

SM0(k, l) = |Q(k, l)|2 , (24)

with SM0(k) being the standard two-dimensional FT based
radar image. The S-method based presentation can be achieved
starting with the already obtained FT-based radar image
Q(k, l), with an additional simple calculation according to

SML(k, l) = SML−1(k, l) + 2Re{Q(k + L, l)Q∗(k − L, l)}

or

SML[q(m,n)] = SML(k, l) (25)

= |Q(k, l)|2 + 2
L∑

z=1

Re{Q(k + z, l)Q∗(k − z, l)}.

The signal sampling interval in the S-method is the same as
in the FT [36].

In this way, using the S-method, we will restore signal
sparsity in the ISAR image domain. However we have lost
the possibility to use a direct linear relation between the signal
and the sparsity domain transformation. For a reduced set of
NA < MN available signal samples,n ∈ NA(m) the problem
statement is now

min ‖SML(k, l)‖0 subject to unchanged values iny. (26)

wherey is the vector of the available signal samplesq(m,n),
n ∈ NA(m) and‖SML(k, l)‖0 is the number of nonzero val-
ues inSML(k, l). The simple counting of nonzero coefficients
by using the zero-norm is, in theory, the best optimization
function. Finding the unavailable signal value to produce
the minimal number of nonzero coefficients in the resulting
presentation is an obvious optimization criterion. However,
this criterion is very sensitive to small values inSML(k, l).

Also the gradient solutions are not possible with the zero-norm
functions, since they are completely flat for any nonoptimal
value. Thus only combinatorial approach could used. It is NP
hard and computationally not feasible problem. That is why
the norm-one is used in the standard CS methods instead of
the norm-zero. In the S-method formulation the norm which
will correspond to the commonly used norm-one of the FT is

min ‖SML(k, l)‖1/2 subject to unchanged values iny.
(27)

with

‖SML(k, l)‖1/2 =
∑N−1

k=0

∑N−1
l=0 |SML(k, l)|1/2

.

This form forL = 0 reduces to the norm-one of the FT, since

N−1∑

k=0

N−1∑

l=0

|SM0(k, l)|1/2 =
N−1∑

k=0

N−1∑

l=0

|Q(k, l)| = ‖Q(k, l)‖1

Minimization of
∑N−1

k=0

∑N−1
l=0 |SML(k, l)|1/2 has already

been used for the time-frequency optimization in [42]. It is
known that, under certain conditions, the norm-one produces
the same result as the norm-zero in the problem formulation
(26) for the cases when signal transformation is linear (for
L = 0), [7], [8]. A simple gradient algorithm to iteratively
calculate the missing signal values, while keeping available
samplesq(m,n) unchanged, [17], is adapted for the problem
formulation (27). It is presented next.

A. Gradient Algorithm

This gradient algorithm is inspired by the adaptive signal
processing methods with an adaptive step size. It is a gradient
descent algorithm where the missing samples are corrected
according to the gradient of the sparsity measure correspond-
ing to norm-one. The missing values converge to the point
of a minimal sparsity measure of the signal representation. In
common CS algorithms the signal coefficients in the domain
of sparsity are the reconstruction goal. In this algorithm the
missing samples/measurements are the reconstruction aim.

The algorithm for missing samples reconstruction is imple-
mented as follows:

Step 0: Sets = 0, p = 0 and form the initial signaly(0)(m,n)
defined for all m andn as:

y(0)(m,n) =

{
q(m,n) for available samples,n ∈ NA(m)
0 for n /∈ NA(m)

,

The initial value for an algorithm parameterΔ is estimated as

Δ = max
n∈NA(m)

|q(m,n)|. (28)

Step 1: Setyr(m,n) = y(p)(m,n). This signal is used in Step
3 in order to estimate reconstruction precision.
Step 2.1: Setp = p + 1. For each missing sample at(ni,mi)
for n /∈ NA(m) form the signalsy1(m,n) andy2(m,n):

y1(m,n) = y(p)(m,n) + Δδ(n − ni,m − mi)

y2(m,n) = y(p)(m,n) − Δδ(n − ni,m − mi). (29)
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Step 2.2: Estimate differential of the signal transform measure
denoted byM{T [yi(m,n)]}

g(mi, ni) =
M{T [y1(m,n)]} −M{T [y2(m,n)]}

N
(30)

where in our caseM{T [yi(m,n)]} = ‖SMi,L(k, l)‖1/2 and
SMi,L(k, l) = SML[yi(m,n)] are the S-methods ofy1(m,n)
andy2(m,n), respectively, calculated withL correction terms.
If the DFT of signal were the sparsity domain we would use
M{T [yi(m,n)]} = ‖DFTi(k, l)‖1, [45].
Step 2.3: Form a gradient matrixGp with the same size
as the signalq(m,n). At the positions of available samples
n ∈ NA(m), this matrix has the valueGp(m,n) = 0. At
the positions of missing samplesni /∈ NA(m) its values are
Gp(m,n) = g(mi, ni), calculated by (30).
Step 2.4: Correct the values ofy(m,n) iteratively by

y(p)(m,n) = y(p−1)(m,n) − Gp(m,n), (31)

Step 3: If the maximal allowed number of iterationsPmax is
reached stop the algorithm. Otherwise calculate

Trsh =

∑M−1
m=0

∑
n/∈NA(m) |yr(m,n) − y(p)(m,n)|2

∑M−1
m=0

∑
n/∈NA(m) |y

(p)(m,n)|2
.

Value of Trsh is an estimate of the reconstruction error to
signal ratio, calculated for missing samples only. IfTrsh

is above the required precision threshold (for example, if
Trsh > 0.001), the calculation procedure should be repeated
with smaller Δ. For example, set newΔ value asΔ/

√
10,

increment the step counters = s + 1, and go to Step 1.
Step 4: Reconstruction with the required precision is ob-
tained inp iterations or when the maximal allowed number
of iterations Pmax is reached. The reconstructed signal is
qR(m,n) = y(m,n) = y(p)(m,n).

Comments on the algorithm:
- Inputs to the algorithm are the signal sizeM ×N , set of

available signal samplesNA, available signal valuesq(mi, ni),
ni ∈ NA(m), the maximal allowed number of iterationsPmax

and the required precision used in Step 3. The algorithm output
is the reconstructed signal matrixqR(m,n) = y(m,n). If the
input signal is complex-valued then the real and imaginary
parts of signal samples are changed independently.

- The gradient algorithm using the norm-one and a large
number of variables (missing signal values), as approaching
to the optimal point, will produce a solution close to the exact
signal samples, with a precision related to the algorithm step
Δ. The precision is improved by using adaptive stepΔ. A
value ofΔ equal to the signal magnitude (28) is used in the
starting iteration. When the optimal point is reached then the
algorithm will not improve the reconstruction precision any
more, for a given algorithm stepΔ. When this case (in Step
3) is detected the stepΔ is reduced, and the same calcula-
tion procedure is continued from the reached reconstructed
signal values. In several steps, the algorithm can approach the
true signal values with a required precision. By performing
presented iterative procedure, if there is a sufficient number
of available samples, it is expected that the missing values
will converge to the true signal values, producing the minimal
sparsity measure in the ISAR image domain, [17],[43].
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Fig. 4. All signal samples (chirps) available: (a) The Fourier transform based
presentation. (b) The S-method with three correction terms,L = 3. (c) The
S-method with five correction terms,L = 5 . (d) The Wigner distribution
based presentation (the S-method withL = 63). Horizontal lines (red, green,
blue) present the level of the true squared amplitudes of the components.

Example 3: A signal corresponding to the Doppler part of a
radar signal is considered first. Its form is

q(m, 0) =
6∑

i=1

σie
j2πβim/Mejαim

2/2

= 2
√

0.6 cos(52mπ/64 − 2.2π(m/64)2)

+ 2
√

1/2 cos(10mπ/64 + 2π(m/64)2)

+ 2
√

1/4 cos(32πm/64 − 0.75π(m/64)2)

with −64 ≤ m ≤ 63 and σi ∈ {
√

0.6,
√

0.6,
√

0.5,√
0.5,

√
0.25,

√
0.25}, βi ∈ {26, −26, 5, −5, 16, −16}

and αi ∈ {−1.1π/1024, 1.1π/1024, π/1024, −π/1024,
−0.375π/1024, 0.375π/1024}, for i = 1, 2, ..., 6. The
representations with all available samples are presented in
Fig.4. The FT based presentation (radar image) is shown in
Fig.4(a) for L = 0 since SM0(k, 0) = |Q(k, 0)|2. We can
see that although there are just6 scattering points the number
of nonzero (significant) values inSM0(k) is above40. The
sparsity condition is heavily degraded. Adding just a few of
the correction terms, according to (25), and calculating the
S-method based presentation the sparsity in ISAR image is
restored. Presentations withL = 3 andL = 5 in the S-method
are shown in Fig.4(b)-(c). Note that the Wigner distribution,
WD(k, 0) = SM63(k, 0), although well concentrated for the
components, can not be used due to emphatic cross-terms
which degrade the sparsity, Fig.4(d).

Consider next the same signal with45 missing signal values
(missing chirps). Here, the S-method is calculated withL =
5 and the gradient based reconstructed algorithm is applied.
The S-method, assuming all missing values are set to0, is
presented in Fig.5(a) for the initial iteration. The next iteration
steps according to the presented iterative algorithm (denoted
by step counters), improve the presentation toward the case
as if all data were available, Fig.5(b)-(d) fors = 2, 4, and16.

Example 4: A simulated setup is considered using radar
operating at the frequencyf0 = 10.1 GHz, Ω0 = 2πf0, band-
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Fig. 5. The S-method presentation (radar image) with missing/corrupted 1/3
of the signal samples (chirps): (a) Initial S-method presentations = 0, and
the reconstructed S-method in the next iterations (b)-(d) withs = 2, s = 4,
ands = 16, respectively.

width of linear frequency-modulated chirpsB = 300 MHz,
and the coherent integration timeTc = 2 s. The pulse
repetition time isTr = Tc/256 with the sampling inter-
val Ts = Tr/64. The target is at2 km distance from the
radar, and rotates atΩR = 4π/180 rad/s= 4 o/s. The non-
linear rotation with frequencyΩ = π rad/s is superimposed,
ΩR(t) = ΩR+A sin(Ωt), and amplitudeA = 1.25π/180 rad/s
corresponds to the total change in angular frequencyΩR for
2.5π/180 rad/s. Note that here the range and the cross-range
resolutions areRrange = c/(2B) = 0.5 m, andRcross−range =
πc/(Ω0TcΩR) = 0.106 m (calculated forTc = 2 s with
ΩR

∼= 4π/180 rad/s, neglecting effects of the nonlinear ro-
tation). It has been assumed that there are16 scattering points
at the positions(xi, yi) ∈ {(−5,−2.5), (−5, 0.5), (−5, 3),
(−3.5,−1.5), (−3.5, 2.5), (−2.5,−3), (−2.5, 0), (−2.5, 4),
(0,−3), (0, 0), (0, 3), (2,−3), (2, 2), (3.5,−3.5), (3.5,−0.5),
(3.5, 2.5)}. The scattering coefficients of14 scattering points
are of order1, while 2 scattering points, at(−2.5, 0) and
(2,−3), are with scattering coefficients lower for an order
of −12 [dB] than the rest of points. First, the case with all
available data is considered. The ISAR image based on the
two-dimensional FT is presented in Fig.6(a). The S-method
based ISAR image withL = 3 and L = 6 is shown in
in Fig.6(b)-(c). It can be seen that just a few correction
terms to the FT based ISAR image significantly improve the
concentration. The Wigner distribution (the S-method with
L = 64) is highly concentrated. However it suffers from the
cross-terms, Fig.6(d). The range and cross-range coordinate
axes are scaled with the resolution parameters to present range
and cross-range in meters. The nonuniform motion could be
reduced by reducing the CIT. This kind of reduction would
also lead to a reduced resolutionRcross−range. In our example
the total number of cross range bins is already too small that
this approach could be used.

The case with50% of the data being unavailable (or
removed due heavy corruption) is considered next. The ISAR
image calculated by using the two-dimensional FT is presented

Fourier transform
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Fig. 6. The ISAR image based on: (a) The two-dimensional Fourier
transform. (b) The S-method withL = 3. (c) The S-method withL = 6. (d)
The Wigner distribution (the S-method withL = 64). All data are available.

in Fig.7(a). As we can see the image sparsity is low. Since a
large amount of the data is missing this image can not be
improved by a direct application of the S-method since the
missing data behave as a noise (Section II.A). The S-method
based image withL = 6 is shown in Fig.7(b). The same holds
for the Wigner distribution (the S-method withL = 64) given
in Fig.7(c). However, the original image calculated with the
S-method is highly sparse. Therefore the unavailable data can
be reconstructed by minimizing the S-method subject to the
available data, equation (27). The gradient based method is
used to solve this minimization problem. The reconstructed S-
method is almost the same as the S-method of the signal with
all available data. It is presented in Fig.7(d). Two scattering
points with small coefficients are hardly visible in 7(d). In or-
der to provide their visible presentation14 stronger scattering
points are removed along with their neighborhood (strongest
side lobes), Fig.8(a). The remaining part of the image is shown
in Fig.8(b).

Example 5: Data based on the delta-wing experiment, de-
scribed in [46], are considered in this example. The experiment
was conducted by using an X-band radar operating at a center
frequency of10.1 GHz with 300 MHz bandwidth and a range
resolution of0.5 m. Three sets of data are analyzed in this
example. Two sets are from the experiment simulator, while
the third set are measured data. The pulse repetition time
is Tr = 1/2000 = 0.5 ms. The total data set used in
this example contains samples for2048 range profiles with
50 bins. The target was a delta-wing shaped apparatus. It
consisted of six-scatterer model. The target model has a length
of 5 m on each of its three sides of regular triangle. The
delta-wing is at a range of2 km and was rotating at3 o/s.
The nonlinear rotation with a maximal1o/s. deviation in the
rotation speed is superimposed. The range and the cross-range
resolutions areRrange = c/(2B) = 0.5 m, andRcross−range =
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Fig. 7. The ISAR image based on: (a) The two-dimensional Fourier
transform. (b) The S-method withL = 6. (c) The Wigner distribution. (d)
The S-method based on the reconstructed signal in two steps (s = 2). Only
50% of randomly positioned available data are used in the reconstruction.
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Fig. 8. (a) Reconstructed normalized image with colorbar values. (b)
The same image after 14 the most significant scattering points are removed
(detected and zero-valued) along with their surrounding side-lobes.

πc/(Ω0TcΩR) = 0.2770 m (calculated neglecting effects of
the nonlinear rotation). The ISAR images obtained using the
data without and with nonuniform motion are shown in Fig.9.
Data within the interval of50 range bins (where the target
was located) are shown only. Image in actual range and cross-
range values in meters is presented in the last figure. Data in
Fig.9(a)-(f) correspond to the case when the nonlinear motion
is not superimposed. Then there is no significant velocity
nonlinearities and the FT based analysis produces satisfactory
results. In the second case, when nonlinear motion is included,
Fig.9(g)-(j), these nonlinearities make the FT based ISAR
image unreadable. The S-method in this case improves the
presentation and enables clear 6 point target identification.
Images calculated based on full data set, Fig.9(a), are shown
in left column of Fig.9. Images obtained from a reduced data
set of 12.5% of the signal values, Fig.9(b), are presented in
right column in Fig.9.

Results based on the measured data from this experiment are
presented in Fig.9(k)-(n). The full set data based images are

shown in Fig.9(k) and (m), while the results with unavailable
samples are presented in Fig.9(l) and (n), for the FT based
image and the S-method based image, respectively. The
measured delta-wing data set was collected usingTr = 1/2000
s. Each range profile is generated in0.5 ms and each profile
had 41 bins. The total data set contains60000 samples. The
delta-wing was at a range of2 km and was rotating at2
o/s. Only the data corresponding to the interval of61 range
bins (there the target was located) are used for calculation and
presentation in Fig.9(k)-(n).

In order to illustrate influence of the assumed number of
componentsK in the case of a direct reconstruction, with
the FT (Section III) the calculations for data from Fig.9(a)-
(f) are repeated withK = 3, K = 9, K = 12, K = 24,
K = 96 and K = 256. They are shown in Fig.10. For too
small value ofK = 3 some of the scattering points are not
reconstructed. This can easily be detected by calculating the
MSE using available signal positions. equation (15).

A random position of the available samples has been
assumed in Fig.9(b). Another possible scenario is that data
blocks of a random duration are unavailable/corrupted, like in
Fig.11(b). The reconstruction results in this case are presented
in Fig.11(d). The results are similar to the case of random
missing data as far as the randomness of data used in initial
calculation is present in at least one direction, in order to
provide random structure of variable in (6).

VI. CONCLUSION

An analysis of the ISAR image reconstruction in the case
of a large number of unavailable or heavily corrupted data is
presented. A simple method that can produce reconstruction
in the case of uniform motion is reviewed, along with a simple
an accurate analysis of the noise influence to the results. In the
case of fast and complex target manoeuvring the ISAR image
is blurred and the sparsity property is lost. For a large number
of scattering points a parametric approach to refocus the image
and reconstruct the signal with large number of missing data
would be computationally extensive. A simple nonparametric
method is used here to refocus image. Since it belongs
to the class of quadratic time-frequency representations, a
direct linear relation between the sparsity domain and the
signal can not be established. Thus, the reconstruction task
is appropriately reformulated. An adapted form of gradient
algorithm is used to recover the ISAR image of the quality
as in the case if all data were available. The efficiency of the
proposed methods is illustrated on several numerical examples.
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award of Montenegro in 1997, for scientific achievements. He was a member
the IEEE SPS Technical Committee on Theory and Methods, an Associate
Editor of the IEEE Transactions on Image Processing, the IEEE Signal
Processing Letters, IEEE Transactions on Signal Processing, and numerous
special issues of journals. Prof. Stanković is a member of Editorial Board
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