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! Abstract—Common ISAR radar images and signals can be the domain of the ISAR signal sparsity is used in signal
reconstructed from much fewer samples than the sampling theo- recovery. This fact allows application of the compressive
rem requires since they are usually sparse._UnavallabIe randomly sensing (CS) methods [7]-[17] in the ISAR imaging [2],[18]-
positioned samples can result from heavily corrupted parts of 241 A simpl thod for th ilabl dar dat
the signal. Since these samples can be omitted and declared ai ]. A simple m_e od for the u_navgu a e_ radar ) ala recovery
unavailable, the application of the compressive sensing methods@nd the ISAR image calculation is reviewed in the paper.
in the recovery of heavily corrupted signal and radar images is This method belongs to the class of the orthogonal matching
possible. A simple direct method for the recovery of unavailable pursuit recovery CS methods, [9]-[13]. An analysis of the
signal samples and the calculation of the restored ISAR image noise influence on this radar image is done. A simple and

is reviewed. An analysis of the noise influence is performed. For t |ation for th tout si It . tio is derived
fast maneuvering ISAR targets the sparsity property is lost since accurate relation for the output signal-to-noise ratio Is derived.

the ISAR image is blurred. A nonparametric quadratic time- For fast maneuvering ISAR targets, radar image can be
frequency representations based method is used to restore thespread over the two-dimensional FT domain [1], [5], [25]-

ISAR image sparsity. However, the linear relation between the [28]. Then a large number of the two-dimensional FT values
signal and the sparsity domain transformation is lost. A recently are nonzero, covering a significant part of the radar image.

proposed gradient recovery algorithm is adapted for this kind of . . . .
analysis. It does not require a linear relation of the signal and its In this case the sparsity property of the signal is lost. One

sparsity domain transformation in the process of unavailable data POssibility to restore this property is to use parametric trans-
recovery. The presented methods and results are tested on severafforms to compensate and refocus the ISAR image, making it

examples proving the expected accuracy and improvements. sparse again [1], [25], [28]-[33]. However, a large number of
Keywords Radar imaging, ISAR, time-frequency analysis, parameters should be used for almost each scattering point in
noisy signal, sparse signal, compressive sensing. the case of a general nonuniform motion. Good results can be
achieved using these techniques, but at the expense of a high

computational load. This kind of parametric calculation is even
l. INTRODUCTION more complex for the reduced set of available signal samples,

In inverse synthetic aperture radar (ISAR) a high resolutiodhen the CS methods are going to be used. Another way to
image of a target is obtained by using the two-dimensiongfocus the image is based on the quadratic time-frequency
Fourier transform (FT) of received (and processed) sign&gpresentations [1], [31], [34], [35]. A representation which
The ISAR image of a point target is a highly concentratefn achieve high concentration, like in the Wigner distribution
two-dimensional point spread function whose position corréase, at the same time avoiding the cross-terms, is the S-
sponds to the target's range and cross-range. For a numbef6thod, [31], [36], [37]. This method is nonparametric and
scattering points, the radar image consists of several pe&R§nputationally quite simple. It requires just a few additions
at the range and cross-range positions [1]-[6]. Usually tigd multiplications on the already calculated ISAR image
number (area) of nonzero values in the ISAR image is Sm&ﬁlng the two-dimensional FT. However, the S-method relation
as compared to the total number of signal samples. Thus, {@ethe signal is not linear. Therefore, many conventional CS
may say that a common signal in ISAR is sparse in the twBased recovery techniques, including the one reviewed in this
dimensional Fourier domain. As such it can be reconstructB@pPer, can not be used. They are based on the direct linear
from much fewer samples than the sampling theorem requirgg(;onstruction relation between the signal and the transform
Unavailable, randomly positioned samples could also resiiit the domain of signal sparsity. This is not the case in
from heavily corrupted parts of the signal, that are omitted afige quadratic signal representations. It was the reason why
declared as unavailable, before the ISAR image recovery dh§ recently proposed method for recovery of missing sam-
calculation is done. Measurements and physical constraintsP#s/measurements [17] is adapted for the problem formulation
the target and radar interferences may also cause that oflythis paper. This method belongs to the class of gradient
some of the randomly positioned data can be received am@thods [16]. Its application does not require a direct linear

measured. The fact that the two-dimensional FT domain figlation of the signal to its sparsity transformation domain in
the process of recovery of unavailable signal values.
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with unavailable data is presented in Section I, along with the s}
analysis of noise influence in Section IV. The gradient method sl
for the reconstruction of the ISAR images, corresponding
to nonuniform motion is presented in Section V. Examples s}

illustrate the accuracy of the proposed methods. , SCeseedl v

Il. RADAR SIGNAL MODEL ol

Consider a linear frequency-modulated continuous-wave
(FM-CW) radar. Assume that it transmits signal in a form
of series of M chirps [38]. The received signal (scattere&ig- 1. lllustration of one revisit (chirp series) discretization in coordinates

. . . . (chirp index, slow time) and: (time within one chirp, fast time), along
from a target) is delayed with respect to the transmitted SIONAIR 5 real tme. The cace off — 8 chirps in one revisit andV. — &
for tq(t) = 2d(t)/c, whered(t) is the target distance from samples within chirp is presented. The CIT@$ samples. Unavailable or
the radar andc is the speed of light. A deramping-basedeavily corrupted data are marked by red.
architecture is assumed, with a replica of the transmitted signal

being mixed with the returned echoes. The received signal,

after an appropriate demodulation, compensation, and residgf{ce the distance between the radar and target is large, then

video phase filtering, is di(t) = /(do + z:(£))% + y2(t) = (do + 2(t)), where; ()
g(m, t) = gei 240 —j2r B, (t—mT,) 2% 1) gnd ;i (t) are thg range and cross-range coordinates of the

ith scattering point with respect to the center of target (on

whereo is the reflection coefficient of the target, whif&, the line-of-sight). The range coordinate(t) is related to its

is the radar operating angular frequency. The repetition tirggiginal position (zi0,yi0) by a rotation transforme;(t) =

of a single chirp is denoted by, = 1/ f,, while the number 240 cos(wrt) + yio sin(wrt) = 20 + yiowrt. After distance

of samples within each chirp i&/. The coherent integration compensation all changes in the distancg) reduce to the

time (CIT) is T. = MT;.. Indexmn corresponds to the chirp movements along the line-of-sight, definedyt). A method

index (slow time). The received signal for a system of poifhr distance compensation in the case of reduced set of data

scatterers can be modeled as a sum of the individual poj@tyresented in [2].

scatterer responses, [1]. The Doppler part in the received signatnhe received signal, from thih scattering point, after the

of a paint target is distance compensation, is
___32d(£)Q0/c

S(t) = oe’ 0/¢, (2) Qi(m7n) — O'i€j902viTTm/C€j2ﬂ'%n/N
The range part of the received signatp(—;27Bf,.(t — — . ed2mBim/M ,j2nyin/N
mT,)2d(t)/c) reduces to exp(j2ryn/N) with ~ = ! ’
—BfT,N(2d(t)/c) andt — mT, = nT,. The sampling where v; = yiwr, B = 2QyiowrT:/c and y; =
interval within a chirp is denoted by = T,./N andn is  _pBy T,N(2d;(t)/c) are the constants proportional to the
the index of signal sample within one chirp (fast-time). Th@e|ocity (cross-rangey;o) and range (after distanag com-

real time J
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two-dimensional FT of the discrete received and processggnsationy; = —2Buq;/c sinceT, = T,/N = 1/ (f,N)).
signalq(m,n) is The total signal forK scattering points is
M—-1N-1
o 2mm n K
QD)= > " qlm,m)e7HHHED - (3) q(m,n) = ¥ 14i(m; ).

m=0 n=0

where the indices: and [ are the discrete two—dimensionalAS.Sume that some samples or blocks of samples of the re-

. . cejved radar signal are either unavailable or heavily corrupted
FT frequencies. They are proportional to the cross-range an : ;
. ! ! SO that they are omitted from the analysis [15]. Assume that
range respectively. lllustration of the discrete valueg(af, n)

within one revisit is presented in Fig. 1. the blocks of omitted signal samples are randomly positioned.

For a target which consists oK scattering points, the The two-dimensional FT of this signal is then
resulting signal can be written as

M-1
~ . _ »(21rmk-,+21rnl)
K 1002948 0Bt () 245(8) Qk, 1) = E E q(m,n)e 7\ "m N (4)
q(m,t) :Zizlo—ie] 0TeT eI tmm ) T m=0 neN4 (m)

whereg; is the reflection coefficient of thih scattering point
andd;(t) is its distance to radar.

It can happen that the unavailable/corrupted data are: all within
one chirp or spread over two or more chirps, including the
lIl. UNIFORM TARGET MOTION WITH possibility that a few chirps in a row are affected in this way,
UNAVAILABLE /CORRUPTEDDATA Fig. 1. These cases are included by using the notation
whereN,4 (m) is the set of available samples within
chirp. For somen it could also happen th&t4(m) =
o, i.e., that there are no available samples within that chirp.
The total number of available sampleslis<k N4 < MN.
di(t) = do + vit =2 do + v;mT,. Consider one scattering point and two cases [27]:

In the simplest case, when the target motion may t?ﬁﬁe\%r)w
considered as uniform within the CIT, the distance of itre
scattering point to radar can be written as



(1) Fork = 3; andl = ~; we will have Note that the two-dimensional datdn,m) are transformed
M1 into a column vectoly and ¢ is the corresponding transfor-
Yk, 1) = o= 0N 5) Mation matrix. It is used to produd@(k,!) arranged into a

Q(k,1) Z Z 4 ®) column vectorQ.

m=0 neNy(m
€N4(m) (i) Set the resulting transform value&3(k, ) to zero at all

where N, is the total number of available samples. positions (k;,1;) except the highesKk values in the initial
(2) Fork # 3; or |l # ~; we have estimateQ(k, 1), i.e.,
M1 Q(k,1) =0 for (k1) # (ki,l;),i=1,2,..., K  (11)

Q)= > g%l —=Zi(k,1). (6)

m=0 neN A (m) (ki,li) = arg  {max{sort{

QK. D)I}}}
i=1,2,....K
The variable=;(k,[) defined by (6) can be considered ashjs criterion is not sensitive to the assumed number of
random since the positions ¥, terms used in the secondnonzero coefficientsk as far as all nonzero positions of
summation are random, for € Na(m) and ¢;(n,m, k,1) = the original transform are detected and the total numier
(2mm(k — ;) /M + 2an(l — ;) /N). For a large number of of transform values inQ(k,1) is lower than the number of
randomly positioned unavailable samples<t Ny << NM  ayailaple samples, i.eK < K < N4. Al K — K transform
the value of=;(k, () is a sum of vectors with quasi arbitraryyajyes that are zero in the original signal will be found as
phases. It can be considered as a complex-valued variaig, vajued in the algorithm.
(missing samples noise) with Gaussian distributed real andjij) The unknown K transform coefficients could be then
imaginary parts (as shown in [40]). Its variance is easily calculated by solving the set df4 equations for
. NM — N4 available instants: € N4(m), at the detected nonzero can-
var{Q(k,1)} = Na NM —1 ¢ (") didate positions(k;,1;), « = 1,2,..., K. The linear system
for unknowns Q(k;,l;) is obtained using the inverse two-
dimensional FT forN 4 available signal values,
2mnl;

K A 2mmk; i
E{Q(k.D} =) oiNad(k — fi.l =) (8) ﬁzfil%(ki,zoeﬂT* v =g(m,n),  (12)

=t for0<m<N-—1, neNy(m).

Therefore, forK scattering points we may write [40]

K

. NM — N4 ) X
var{Q(k, 1)} = Na NM —1 Z"i (1 =0(k = Bi,l = 7)) - system (12) is a system of 4 linear equations with only&
= unknown transform value€)(k;,l;) denoted byQ (i, l;).

This linear system can be written in a matrix form as
A. Reconstruction Algorithm

For a sufficiently small ratigp of the standard deviation TQi=y, (13)
coefficient (7) and a component mean valyév 4 where:Q . is a vector whose elements are unknowjis;, /;),
i=1,2..,K, ¥is the corresponding coefficients matrix,
p= NM — Na ) andy is a vector whose elements are available sigal, n)
Na(NM —1) samples. In general, fak < N4 the system is solved in the

. . " : . _least square sense as
correct detection of the sighal component positions is achleveg1 g

[40]. This ratio, with a clear proba_bilistic meaning, ig the Q; = (\lep)*l\pHy. (14)
(Welch) bound for the coherence index > p of matrix
with available samples, used to define the reconstructigfhere H denotes the Hermitian transpose operation. The
condition bound within the spark framework [2]. The numteconstructed coefficient®(k;,l;), i = 1,2,..., K, (vector
ber of componentss can be easily included for the worstQx) are equal to the transform coefficients of the original
case of approximately equal values @f. Then K(NM — signal for all detected candidate frequencies. If some transform
Na)/[N4(NM —1)] should be sufficiently small [40], [41]. coefficients, whose true value should be zero, are included
When these conditions are satisfied the received signal and (Ween K < K) the resulting system will produce their correct
ISAR image recovery can be done using the following simpf&ero) values [41]. X
and Computationa”y efficient a|gorithm_ The condition that the system (12), wifki ynknowns, has
Algorithm: a unique splution is that there are at IeaIétindgpeanent
(i) Calculate the initial transform estimatg(k, ) by using eqluz:_nons_, 'j[ﬁ" thagank@)t = [I(.d Note th;;[_tthf; Ltmlquteh
the available/remaining signal values and (4) or in matrix fory, oM. 1N theory does not exciude possibiity that another
set of Q, may exist satisfying the same set of available
Q= oy, (10) samples. This will be commented later. If system (12) has
the solution and all true nonzero coefficigtk, !) positions
where y is the vector of available samplegm,n), n € are included based on estimate (4) and (11) and the ratio (9)
Na(m) is sufficiently small (includingK) then the recovery in this

y = [g(m,n)| ne€Nyg(m)]*. sense is achieved. The fact that all signal components are



included can be easily checked after the calculation is done, Ibyshould also be assumed th@k — 1) remaining missing
calculating the mean squared error between the reconstructathple noise components at the component positimny;)

samples and the available samples, at the positions of #esume the same maximal valu&', and that all of them
available samples € N 4(m) subtract in phase from the signal mean valNig at (5;, ;).
| M Condition for correct detection of a component(at, ;) is
_ _ 2 then Ny — Napu(K — 1) > NapK or K < (14 1/p).

MSE Ny 2 > labmm) = an(m.ml",  (19) This is a quite pessim)istic bound fdk since (it useé; 2he

m=0 neN4 (m) . .
4 worst case valuenax;j; {Z;(k,l)} of any possible signal

where in a calculation for a specific signal. Its also assumes that
1 Ml S all noise components are added up (or subtracted) in phase

gr(m,n) = MN Z Z QR(kJ)eﬂ(T+T) as well as that the component amplitudesare the same.
k=0 (=0 Therefore, for a high degree of randomness, a probabilistic

and Qg(k,1) are the reconstructed coefficients. The full setpproach indicated at the beginning of this subsection may be
of reconstructed coefficients consists of the set of zero-valuetbre suitable for the analysis [40], [41]. A posteriori check
coefficientsQr(k,1) =0 for (k1) # (ki, 1), i = 1,2, ..., K of the solution uniqueness can also be done [43].

(according to (11)) and the reconstructed values of noherative procedure:

zero candidate coefficien@r(k,l) = Qx (k1) for (k,1) = If the signal contains components with significantly different
(ki) 1), i=1,2, ..., K (according to (12)). amplitudes, ratio (9) can be small only with respect to the
Comments: largest components. Lower amplitude components can not be

Large K, close to N4, will increase the probability that initially detected. Then the iterative procedure should be used.
the signal recovery is achieved in one step. However, fétgorithm for the iterative procedure is:
large K computational complexity is increased. In the casdhe largest component dtii,/;) in (4) is detected. The
of additional input noise in available samples, a valuekof transform values)(k,!) are set to zero at all positior(#, {)
as close to the true signal spars#y as possible will reduce except at the position of the highest one (&t, /). This
the noise influence on the reconstructed signal. This will B®mponent is reconstructed using (12) with = 1 and
shown later. If the algorithm fails to detect all componentsubtracted from the signal.
with initially assumedK (the reconstruction accuracy of the-The remaining signal is used to calculate (4) again. The high-
available samples defined by (15) can be used to detect t# value positiorik,, 1) is found, and signal is reconstructed
event) the procedure should be repeated after the deted@édwo frequency points(k1,l1), (kg,12)} using (12) with
components are reconstructed and removed. In such casesihe 2. The reconstructed signal is removed from the original
iterative procedure should be used. signal and (4) is calculated with the remaining signal.

In theory, after the zero MSE is achieved and a spargerocedure is continued in this way until the reconstruction
solution, satisfying the available samples is obtained, cheakcuracy of the available samples is bellow the required
of its uniqueness should be done. In simulation it is done tgcuracy level. The accuracy is defined with (15) as difference
calculating the MSE over all signal samples after the recoaf KX components at positiongk:, 1), (k2,l2), ..., (kz,lz)}
struction. The restricted isometry property (RIP) [14] defingand the given available signal valuess N4 (m).
the condition that the resulting reconstruction of a specifitlumber of iterations in this procedure can be significantly
signal from the reduced set of samples is unique. Howevegduced if we combine it with the first approach by grouping,
its practical application is not computationally feasible. Aftefor example, K = 3 or K = 4 components of similar
(12) is solved andK nonzero valuesQ(k;,l;) are found amplitudes in each step.
satisfying M SE = 0 this analysis would require a combinaExample 1: A signal withK = 16 randomly positioned
torial check if any other set of¢ (or less) nonzero valued scattering points
Q(k,l) can produce the same result for given Another g(m,n) = 216 o @I 2mBim /M gj2myin/N
approach to check the uniqueness of the obtained solution is ’ =1 i ’
based on the spark and coherence index analysis [2]. Thegth M = N = 64 is considered witl37.5% unavailable sam-
results are pessimistic for applications since they inclugides. A set of random positive values of scattering coefficients
zero probability events. The spark based relation would be is taken. A half of the random amplitude&’(2 = 8) is
obtained within the presented framework if we assume thiaken to produce the resulting ISAR image values arotind
the missing sample noises of different scattering points of tk@B] range, while a half of the random scattering coefficients
same (unity) reflection coefficients are added up in (6) with are reduced to a level of about40 [dB] range. The two-
the same phase to produég(k,!)K at some point(k,l). dimensional FT (ISAR image) of the original signal, if all
Variable Z;(k,1) should also assume its maximal possibleignal samples were available, is presented in Fig.2(a). The
value denoted byuN4 = max;;{|Zi(k,1)|} (calculated initial two-dimensional FT of the signal is calculated using
over all possible(3;,7;) and all possible positiongk,))?. (4) with N4 = 0.125M N available samples, Fig.2(b). It is

presented in Fig.2(c). The large&t = 10 values inQ(k,1)

“EqualityuNa = |Zi(k, )| holds for alli, k, L for matrices of very specific are taken as candidates for the nonzero coefficients. In this
structure callgd complex_eqmangular tight frames [44]. Even in that case t {3 . .
phase of various; (k1) is not the same and for a large number of signaptleP Small signal components were masked by the noise from
components with different phases the probabilistic approach would be suitab&rge values (described by (6)). Therefore the reconstruction



of small components is done using the procedure (12)-(14).

The reconstructed signal is subtracted from the original signal

and the procedure is repeated. The result from this iterative
procedure is presented in Fig.2(d). The difference between
the available signal values and the reconstructed signal values,
at the same positions, is within the computer precision. This

difference (measured by (15)) is used as the stopping criterion.
Check of the solution is done after reconstruction as well, by

calculating the MSE over all signal samples, to exclude the

possibility that the reconstructed signal is equal to the original

one at the available signal sample positions only.

The recovery is also tested using various numbers of the
scattering pointd< and various numbers of available samples
Ny4. In this case the stopping criterion was also the MSE value
at the positions of the available samples. Statistical results
are obtained by averaging ovéf0 independent realizations
with random scattering coefficients, frequency positions, and
positions of the available samples, Fig.3. We can conclude that
the number of scattering points which can be recovered in this :1
case, with a high probability, usingy, randomly positioned
signal values is of an order df ~ N4/5, corresponding to
K(NM — Na)/[INA(NM —1)] < 1/5.

From Fig.3 it is obvious that, for a given number of available
samples, for exampléy, = 256, the MSE is at the computer

@8] - .. [dB]

precision level in all100 realizations for the number of OftaBl - - B OflaBl - -
components below = 48. Also there was no successful 20l : 20| - :
reconstruction fork’ > 100. Between these two values, for
signals with a number of component® < K < 100, 40 ' 40
obviously there were some reconstruction and some non- ‘ 60 ‘
reconstruction realizations. o " p w2 " p
IV. INFLUENCE OFADDITIVE INPUT NOISE Fig. 2. (a) A two-dimensional Fourier transform of the considered radar

. .. . . . signal (ISAR image). (b) Radar signal with 12.5% of available/uncorrupted
Assume now that an input additive noisén) exists in  samples (unavailable/corrupted samples are presented in black). (c) The two-
the available data. Note that the noise due to missing valuésensional Fourier transform calculated using the available samples of the

influences the results in the sense presented in the previ{fﬁf'@r signal. (d) The reconstructed ISAR image. (€) A two-dimensional
ourier transform of the considered radar signal (ISAR image) in logarithmic

section. When the recovery is achieved accuracy of the residlfie. () The reconstructed ISAR image in logarithmic scale. (g)-(h) Graphs
is related to the input additive noise in signal samples. It d&em (e)-(f), respectively, from the zero-angles view to compare the amplitudes

pends on the number of available signal samples and nonzgriggarithmic scale.
transform coefficients (sparsity) as it will be shown next. The
reconstruction equations (12) for noisy available data are

b
MN

. 2mmk; 27rnli) 50
N )

g(m,n) +e(m,n) = Zfile(ki,li)eJ( b4

MSE in [dB]

(16)

50

for0<m < N—-1, neNy(m). ool

The transform indices can take a value from the set of detected -1s0 }
values(k, 1) € {(k1,01), (k2,12), ..., (kg,lx)}. A matrix form 200

of equations (16) is 250 |

y+e=9Q. -300

0 20 40 60 80 100 120
number of scattering points (signal sprasiy)

This is a system ofV, linear equations withX' unknowns

Qf((ki’li) in VEC'[OI’QR. The solution is Fig. 3.  Full recovery performance of the algorithm as function of the
H H number of scattering point& for some numbers of available sampls, .
v (y + 5) =¥ ‘I’Qf( Statistical results are obtained by averaging over 100 independent realizations
Ha—1 g with random signal amplitudes, frequency positions, and positions of available
Qi = (‘I’ ‘Il) U (y +e) samples.

Qi = Qks +Qxn. (17)



The true transform coefficients and the noise influence to tbé available samplesV,. In an ideal case, with respect to
reconstructed transform are the additive noise, value ok should be equal to the signal

e men—lon sparsityKk = K.
Qxs = (‘I’ ‘I') . ¥y, Example 2: Consider a noisy signal from Example 1 with
Qry = (THT)  whe. = 10 signal components. Assume that an additive complex-

Iued Gaussian noise exists, with the input SNR equal to
If all signal samples were available, the input signal-to- n0|se

(SNR) ratio, would be SNR; =9.05 [dB]
SNR: = 100 SM En 0 ' g(m,n)|? 10l Es and N4 = MN/8. SinceK = 10 in the previoys example_we
v 8 Z]M—Ol |€(m n)| - 8 E. used estimated valu® = 14 for the calculation. According

(18) to (23) the output SNR is
Assume that the noise energy in the available samples is SNR = SNR; — 101og (K/NA)

Eoq= Z Z le(m,n)|*. (19) =9.05 4 15.81 = 24.86 [dB].

m=0 neN4(m) The improvement in SNR i$5.81 [dB]. This result is statis-
The true scattering coefficient (component amplitude) in thigally checked. The statistical result is obtained by averaging
signal transform at the positiofk;,/;), in the case if all over 100 realizations with random scattering coefficients and
signal samples were used, would B&No;. To compensate positions. The obtained statistical value of the output SNR is
the resulting transfprm for the known bias in amplltudg.(S) SNRGH — 24 53 [dB].
when only N4 available samples are used, the coefficient
should be multiplied byA/ N/N 4. In a full recovery, a signal Agreement with the theory is almost exact, within the statis-
transform coefficient is equal to the coefficient of the origindical confidence for the number of performed realizations.
signal with all signal samples being used. The noise in thelf the number of components were estimated exactlifas
transform coefficients is multiplied by the same factor of0, then the SNR values would be obtained as
MN/N 4. Therefore, the energy of noise in the reconstruction _
algorithm is increased td. (M N/N4)?. The SNR in the S]:[i = 26.32 [dB]
fully recovered signal is SNREY = 26.26 [dB].

SMESN g(m,n)? The SNR value for K = 10 would be higher for
SNRy =10log M i p—E (20)  1010g(14/10) = 1.46 [dB] than in the case withk = 14.
neNa(m) In the iterative realizations, the case &f= 14 would occur

Since only K out of MN coefficients are used in thelf there werel false detected components (maxima) before the

reconstruction the energy of the reconstruction error is reducgiin@l reconstruction is achieved.
for the factor of /(M N) as well. The energy of noise in the

recovered signal is V. NONUNIFORM TARGET MOTION
5o M For fast moving targets and complex motions, the target
E.p = K M®N Z Z ) over all M chirps, in one revisit, cannot be considered as
MN N% ) the one with constant velocity motion. Then a higher-order

m=0 neNy(m ; ; / - ]
. . 5 _A approximation of theth scattering point distance
The SNR in the recovered S|gnal is

, di(t) = do + voit + ait?/2+ ...
M— 2 7 i 7 5
= Ve =vur M 1 Z | (m n)|2- (21)  should be used with; (t) = vo;+a;t+... . If we assume that
N3 neN, 1€ vi(t) = vo; + a;t, then the Doppler shift is a linear function
Since the variances of noise in all samples and the availablietime. Its rate isu;. Instead of a delta pulse concentrated at

samples are the same then one frequency, corresponding tg;, we will obtain a FT of a
Mol M1 N1 linear frequency-modulated signal (or higher-order frequency-
1 2 1 2 modulated signal), whose instantaneous frequency changes are
— e(m, =— e(m, . ' . .
Ny Z Z [e(m, n)] MN Z [e(m, n)] proportional to the velocity;(t) changes. The radar image,

(22) based on this form, is centered at the same position as the

Thus, the SNR in the recovered signal, according to (21), (22] image, but with the spreading term in the cross-range
and (18), is (Doppler) direction of the formexp (j %% (Ld/(0)¢% + ...))

c

due to the target motion. The discrete domaln S|gnal is [31]

qi(m’ n) _ O_Z_ej27rﬁim/lbfejaim2/2+...ej27r'yin/N’
; = 2 . — . A j@im2/2+...
We may conclude that in the case of additive input noise in @ik, 1) = (2m)" 0id(k = i, 1 = i)+ FT{e }
the available signal samples, the output SNR will be increasetiere o; = 2007,?d}/(0)/c and #;, is the convolution in the
if the numberK is as small as possible, for a given numbedliscrete cross-range domain, whié:,l) =1 for k=1=0

SNR = SNR; — 10log (ﬁ) . (23)
A



and §(k,1) = 0 elsewhere. This spread can be significamilso the gradient solutions are not possible with the zero-norm
and the resulting ISAR image is not sparse or sparsity fisnctions, since they are completely flat for any nonoptimal
significantly degraded. value. Thus only combinatorial approach could used. It is NP
If the two-dimensional FT is corrected according to the Syard and computationally not feasible problem. That is why

method [31], [36], [37], along the cross-range direction, thethe norm-one is used in the standard CS methods instead of
the resulting image will be the norm-zero. In the S-method formulation the norm which
SM;(k,1) = (%)2 026k — Bl — ). will correspond to the commonly used norm-one of the FT is

min || SMp(k, 1), , subject to unchanged values yn

It is sparse again and does not depend/6ff)). Under certain 27)

conditions this representation is free of cross-terms amo\%{h
different scattering points, producing
= N—-1N-1 1/2
K ISML(k, D12 = 2op=0 2oi=0 [SML(k, D"
SM(k,1) = (2m)* > o7d(k — Bisl — 7).

=1

As in the most of the literature, it has been assumed tha =1 ~¥-1 12 N-1N-1
the range migrations are not significant as compared to the® , > [SMo(k,D)"* = > > " |Q(k,1)| = |Q(k, D),

Doppler migrations. The range migrations are related to mucl=0 =0 k=0 1=0

smaller time interval than the Doppler migrations. Thus, Binimization of Z1\7—121\/—1 1S My (k l)|1/2 has already
k=0 2.1=0 )

quadratic phase along the Doppler axis only are con3|der%é.en used for the time-frequency optimization in [42]. It is

In the tcagg t?ﬁt the rzndgﬁ mllgratlorn thOU|df tbhe taken 'DE own that, under certain conditions, the norm-one produces
account [39], then an additional application of the presen e same result as the norm-zero in the problem formulation

”?eth"d. to the range direction is straightforward .by using tW??G) for the cases when signal transformation is linear (for
dlr_r|1_;3nS|Sonaltﬁ-rgebthodd(lssl\/lA)élt' has been gone ”.1| [31]'|. dL = 0), [7], [8]- A simple gradient algorithm to iteratively
€ S-method base Image can be eastly reallz€d Bculate the missing signal values, while keeping available

a recursive way starting from samplesg(m,n) unchanged, [17], is adapted for the problem
SMy(k,1) = \Q(k»l)|2» (24) formulation (27). It is presented next.

This form for L = 0 reduces to the norm-one of the FT, since

with SMy(k) being the standard two-dimensional FT based . _
radar image. The S-method based presentation can be achidveéradient Algorithm

starting with the already obtained FT-based radar imageThjs gradient algorithm is inspired by the adaptive signal
Q(k,1), with an additional simple calculation according to processing methods with an adaptive step size. It is a gradient
_ * descent algorithm where the missing samples are corrected
SMy (k,l) = SMp_1(k,1) + 2Re{Q(k + L, k—1L,l X k )

o(k,1) -1k D) {o )@ )} according to the gradient of the sparsity measure correspond-

or ing to norm-one. The missing values converge to the point
_ of a minimal sparsity measure of the signal representation. In

SML[qim’n)] = SMy(k,1) (25) common CS algorithms the signal coefficients in the domain

B 2 . of sparsity are the reconstruction goal. In this algorithm the
= |Q(k, D" + 2 ZRQ{Q(k +2,0)Q7(k -z, 1)} missing samples/measurements are the reconstruction aim.

) ) Z_Zl ) ) The algorithm for missing samples reconstruction is imple-
The signal sampling interval in the S-method is the same ggnted as follows:

in the FT [36].

In this way, using the S-method, we will restore signabtep 0: Set = 0, p = 0 and form the initial signay® (m, n)
sparsity in the ISAR image domain. However we have loggfined for all m andn as:
the possibility to use a direct linear relation between the signzl | q(m,n) for available samples; € N 4(m)
and the sparsity domain transformation. For a reduced setvof (7, n) = { 0 for n ¢ Na(m) ;
N4 < MN available signal samples, € N 4(m) the problem

statement is now The initial value for an algorithm parametéris estimated as
min ||SMp, (k,1)||, subject to unchanged valuesyn (26) A= Erélaic )\q(m,n)|. (28)
n Alm

wherey is the vector of the available signal samplgs:, n), _ ®) o . )
n € Na(m) and||SM; (k,1)||, is the number of nonzero val- SteP 1: S€yr(m, n) = y'*’(m, n). This signal is used in Step
ues inSMy, (k, 1). The simple counting of nonzero coefficients N Order to estimate reconstruction precision.

by using the zero-norm is, in theory, the best optimizationteP 2:1: Sep = p+ 1. For each missing sample @t;, m;)
function. Finding the unavailable signal value to produc@’ 7 & Na(m) form the signalsy, (m,n) andysz(m,n):

the minimal number of nonzero coefficients in the resulting
presentation is an obvious optimization criterion. However,
this criterion is very sensitive to small values $0\/;,(k,1). y2(m,n) =y (m,n) = Ad(n — nj,m —ms). (29)

y1(m,n) = y® (m,n) + Ad(n — ng,m — m;)



Step 2.2: Estimate differential of the signal transform measure L=0,  SM[q(m.0] L=3,  SM[q(m.0]

denoted byM {T[y;(m,n)]} o[ ' 058
0.6 - - - 0.6
MAT[y1(m,n)]} — M{T[y2(m,n) P ol T T
gl ng) = MOl MUl ) oy oo e T
I .
0 0
where in our caseM {T'[y;(m, n)]} = [[SM; L (k,1)]|, ,, and 02 : 02
SM; 1.(k,1) = SML[y;(m,n)] are the S-methods of, (m,n) 'o'é) 50 o o o 5 50 @)
andy»(m,n), respectively, calculated with correction terms. L=5,  SMja(mo] L=63,  SM,[amO]
If the DFT of signal were the sparsity domain we would use  ;r———————— 08l : ;
M{Tlyi(m, )} = | DT (k,0)], [45]. i —— T
Step 2.3: Form a gradient matri&, with the same size posd I I o LI
as the signal(m,n). At the positions of available samples o} l ‘ ‘ ot
n € Na(m), this matrix has the valug/,(m.n) = 0. At 92| oz| I
the positions of missing samples ¢ N,4(m) its values are N 0 50 50 0 50 ()
Gp(m,n) = g(m;, n;), calculated by (30).
Step 2.4: Correct the values gfm, n) iteratively by Fig. 4. All signal samples (chirps) available: (a) The Fourier transform based
) presentation. (b) The S-method with three correction terns; 3. (c) The
yP) (m,n) = y(p_l)(m7 n) — Gp(m,n), (31) S-method with five correction termd, = 5 . (d) The Wigner distribution

. . . . based presentation (the S-method with= 63). Horizontal lines (red, green,
Step 3: If the maximal allowed number of iteratioRs,.. IS blue) present the level of the true squared amplitudes of the components.

reached stop the algorithm. Otherwise calculate

M—
T Z:'rn:()1 ng¢N4 (m) ‘yr (mv TL) - y(p) (m7 TL) |2
rsh =—

=1 ) 2 Example 3: A signal corresponding to the Doppler part of a
2 m=0 LangNa(m) Y (M, 1) radar signal is considered first. Its form is

Value of T, is an estimate of the reconstruction error to 6

signal ratio, calculated for missing samples only. Tif,;, q(m,0) :Za-iejQﬂ'ﬁim/Jwejaimz/2

is above the required precision threshold (for example, if =1

T,sn, > 0.001), the calculation procedure should be repeated _ 2\/@608(5277”/64 — 2.21(m/64)?)

with smaller A. For example, set newA value asA/+/10, )

increment the step counter= s + 1, and go to Step 1. +21/1/2 cos(10mm /64 + 2 (m/64)*)
Step 4: Reconstruction with the required precision is ob- +24/1/4 cos(327m /64 — 0.757(1m/64)?)

tained inp iterations or when the maximal allowed number .
of iterations P, is reached. The reconstructed signal i¥ith —64 < m < 63 and o; € {V0.6, V0.6, V0.5,

gr(m.n) = y(m. 1) = y® (m, n). V05, V0.25, V0.25}, B; € {26, —26, 5, —5, 16, —16}
Comments on the algorithm: and o; € {-1.17/1024, 1.17/1024, m/1024, —m/1024,

- Inputs to the algorithm are the signal sizé x N, set of _0'3757T/10.24’ 0'37%/1024}.’ fori = L,2,..,6. The .
. . . 7 representations with all available samples are presented in
available signal samples,, available signal valuegmi, ni),  tio 4™ The FT based presentation (radar image) is shown in
n; € N4(m), the maximal allowed number of iteration%, .« 9.4 P 9

. o . - 2
and the required precision used in Step 3. The algorithm outpg:dg'd'(a) for L, = 0 since SMO(k’O) » |Q(k’.0)‘ . We can

. . . See that although there are jsscattering points the number
is the reconstructed signal mattjx(m,n) = y(m,n). If the

input signal is complex-valued then the real and ima inaPf nonzero (significant) values ifiMo (k) is aboved0. The
al?rts ofgsi nal sam ples are chanaed independentl 9 %arsity condition is heavily degraded. Adding just a few of
P g P 9 P - the correction terms, according to (25), and calculating the

- The gradient algorithm using the norm-one and a Iar%e—method based presentation the sparsity in ISAR image is

number of variables (missing signal values), as approachlrn tored. Presentations wifh— 3 and 7. — 5 in the S-method

tq the optimal pomt, wil prodgce a solution close to the exa%re shown in Fig.4(b)-(c). Note that the Wigner distribution,
signal samples, with a precision related to the algorithm StWD(k 0) = S Mgs(k,0), although well concentrated for the
A. The precision is improved by using adaptive st&p A ’ 63\%

: . . .. components, can not be used due to emphatic cross-terms
value of A equal to the signal magnitude (28) is used in th\(/avhich degrade the sparsity, Fig.4(d).

starting iteration. When the optimal point is reached then theConsider next the same signal with missing signal values

algorithm will not improve the reconstruction precision anYmissing chirps). Here, the S-method is calculated itk
more, for a given algorithm stef. When this case (in Step5 and the gradient based reconstructed algorithm is applied.

3) is detected the step is reduced, and the same calcula_—l_Be S-method, assuming all missing values are s, tis

tion procedure is continued from the reached reconstructe R A . . .
. . resented in Fig.5(a) for the initial iteration. The next iteration
signal values. In several steps, the algorithm can approach The . . . .
. i . . . steps according to the presented iterative algorithm (denoted
true signal values with a required precision. By performin

presented iterative procedure, if there is a sufficient numbgelf ;’tglﬁ) ggtl;n\fffr)é ggirlz\ﬁethl:ei pgeizf_?;?t;;?_tgwlfrgntg(136case
of available samples, it is expected that the missing values ' 719 o '

will converge to the true signal values, producing the minim&xample 4: A simulated setup is considered using radar
sparsity measure in the ISAR image domain, [17],[43]. operating at the frequencfy = 10.1 GH z, Qy = 27 fy, band-
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Fig. 5. The S-method presentation (radar image) with missing/corrupted 1/3
of the signal samples (chirps): (a) Initial S-method presentatien 0, and
the reconstructed S-method in the next iterations (b)-(d) with 2, s = 4,
ands = 16, respectively. range

range

Fig. 6. The ISAR image based on: (a) The two-dimensional Fourier
transform. (b) The S-method with = 3. (c) The S-method wittll = 6. (d)
The Wigner distribution (the S-method with = 64). All data are available.

width of linear frequency-modulated chirgd = 300 MHz,

and the coherent integration timé&, = 2s. The pulse

repetition time is7,, = 7T./256 with the sampling inter-

val T, = T,/64. The target is akkm distance from the in Fig.7(a). As we can see the image sparsity is low. Since a
radar, and rotates d2rp = 4n/180rad/s= 4°/s. The non- large amount of the data is missing this image can not be
linear rotation with frequency? = wrad/s is superimposed,improved by a direct application of the S-method since the
Qr(t) = Qr+Asin(Qt), and amplituded = 1.257/180rad/s missing data behave as a noise (Section 1I.A). The S-method
corresponds to the total change in angular frequengyfor based image witi, = 6 is shown in Fig.7(b). The same holds
2.5m/180rad/s. Note that here the range and the cross-rarfge the Wigner distribution (the S-method with = 64) given
resolutions areR,ange = ¢/(2B) = 0.5m, andReross—range = iN Fig.7(c). However, the original image calculated with the
mc/(QT2r) = 0.106m (calculated for7T, = 2s with S-method is highly sparse. Therefore the unavailable data can
Qr = 47 /180rad/s, neglecting effects of the nonlinear robe reconstructed by minimizing the S-method subject to the
tation). It has been assumed that therel@rscattering points available data, equation (27). The gradient based method is
at the positions(z;,y;) € {(-5,—-2.5),(-5,0.5),(—5,3), used to solve this minimization problem. The reconstructed S-
(=3.5,—-1.5), (=3.5,2.5), (—2.5,-3), (—2.5,0), (—2.5,4), method is almost the same as the S-method of the signal with
(0,-3), (0,0), (0,3), (2,-3), (2,2), (3.5,-3.5), (3.5,—0.5), all available data. It is presented in Fig.7(d). Two scattering
(3.5,2.5)}. The scattering coefficients aft scattering points points with small coefficients are hardly visible in 7(d). In or-
are of orderl, while 2 scattering points, af—2.5,0) and der to provide their visible presentatidd stronger scattering
(2,—3), are with scattering coefficients lower for an ordepoints are removed along with their neighborhood (strongest
of —12 [dB] than the rest of points. First, the case with alside lobes), Fig.8(a). The remaining part of the image is shown
available data is considered. The ISAR image based on theFig.8(b).

two-dimensional FT is presented in Fig.6(a). The S-methgtkample 5: Data based on the delta-wing experiment, de-
based ISAR image with. = 3 and L = 6 is shown in gcrihed in [46], are considered in this example. The experiment
in Fig.6(b)-(c). It can be seen that just a few correctiofas conducted by using an X-band radar operating at a center
terms to the FT based ISAR image significantly improve theequency ofl0.1 GHz with 300 MHz bandwidth and a range
concentration. The Wigner distribution (the S-method Withasolution of0.5 m. Three sets of data are analyzed in this
L = 64) is highly concentrated. However it suffers from thxample. Two sets are from the experiment simulator, while
cross-terms, Fig.6(d). The range and cross-range coording§€ third set are measured data. The pulse repetition time
axes are scaled with the resolution parameters to present ragog, — 1 /2000 = 0.5 ms. The total data set used in
and cross-range in meters. The nonuniform motion could g example contains samples 2048 range profiles with
reduced by reducing the CIT. This kind of reduction woulg( pins. The target was a delta-wing shaped apparatus. It
also lead to a reduced resolutidiyoss—range- IN OUr €Xample consisted of six-scatterer model. The target model has a length
the total number of cross range bins is already too small th&t 5 m on each of its three sides of regular triangle. The
this approach could be used. delta-wing is at a range df km and was rotating a3 °/s.

The case with50% of the data being unavailable (orThe nonlinear rotation with a maxim#l/s. deviation in the
removed due heavy corruption) is considered next. The ISABtation speed is superimposed. The range and the cross-range
image calculated by using the two-dimensional FT is presentebolutions areR,ange = ¢/(2B8) = 0.5 m, andRqoss—range =
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Fourier transform S-method, L=6 shown in Fig.9(k) and (m), while the results with unavailable
samples are presented in Fig.9(l) and (n), for the FT based
image and the S-method based image, respectively. The
measured delta-wing data set was collected ugjng 1,/2000

s. Each range profile is generatedOi's ms and each profile
had 41 bins. The total data set contaiG8000 samples. The
delta-wing was at a range of km and was rotating af

°/s. Only the data corresponding to the interval6af range
bins (there the target was located) are used for calculation and
presentation in Fig.9(k)-(n).

In order to illustrate influence of the assumed number of
componentsK in the case of a direct reconstruction, with
the FT (Section Ill) the calculations for data from Fig.9(a)-
(f) are repeated withK = 3, K = 9, K = 12, K = 24,

K = 96 and K = 256. They are shown in Fig.10. For too
small value of K = 3 some of the scattering points are not
reconstructed. This can easily be detected by calculating the
MSE using available signal positions. equation (15).

Fig. 7. The ISAR image based on: (a) The two-dimensional Fourier A rand(_)m posmon of the avalk_ible sampl_es_ has been
transform. (b) The S-method with = 6. (c) The Wigner distribution. (d) assumed in Fig.9(b). Another possible scenario is that data
The S-method based on the reconstructed signal in two steps2). Only  blocks of a random duration are unavailable/corrupted, like in
50% of randomly positioned available data are used in the reconstructionFig_ll(b)_ The reconstruction results in this case are presented
in Fig.11(d). The results are similar to the case of random
missing data as far as the randomness of data used in initial
calculation is present in at least one direction, in order to
provide random structure of variable in (6).

cross-range

cross-range

range range

S-method reconstructed S-method reconstructed

0.06

0.05
0.04 V1. CONCLUSION

9% An analysis of the ISAR image reconstruction in the case
of a large number of unavailable or heavily corrupted data is
%01 presented. A simple method that can produce reconstruction
4 . % in the case of uniform motion is reviewed, along with a simple
range range an accurate analysis of the noise influence to the results. In the
case of fast and complex target manoeuvring the ISAR image
Fig. 8. (a) Reconstructed normali_zec_i_ image With_ colorpar values. (@cpmrred and the sparsity property is lost. For a |arge number
The same image after 14 the most'5|gn|f|'cant scattering points are removef . . . .
(detected and zero-valued) along with their surrounding side-lobes. of scattering points a parametric approach to refocus the image
and reconstruct the signal with large number of missing data
would be computationally extensive. A simple nonparametric
method is used here to refocus image. Since it belongs
me/(QT.0Qr) = 0.2770m (calculated neglecting effects ofto the class of quadratic time-frequency representations, a
the nonlinear rotation). The ISAR images obtained using thirect linear relation between the sparsity domain and the
data without and with nonuniform motion are shown in Fig.ignal can not be established. Thus, the reconstruction task
Data within the interval of50 range bins (where the targetis appropriately reformulated. An adapted form of gradient
was located) are shown only. Image in actual range and croaRyorithm is used to recover the ISAR image of the quality
range values in meters is presented in the last figure. Dataai§lin the case if all data were available. The efficiency of the
Fig.9(a)-(f) correspond to the case when the nonlinear motipfoposed methods is illustrated on several numerical examples.
is not superimposed. Then there is no significant velocity
nonlinearities and the FT based analysis produces satisfactory REFERENCES
results. In the second case, when nonlinear motion is included] v. c. Chen, H. Ling, "Time-frequency transforms for radar imaging and
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Fig. 9. The delta-wing experiment data: Full data are in the first column anLB]
the analysis based on 12.5% of the signal samples is in the second column.
(a) All signal samples. (b) Available signal samples (unavailable samples
in black). (c)-(f) Images with the STFT and the S-method with full data se
(left) and a reduced set of data (right) for a case when the motion is almo
uniform. (g)-(j) Images with the STFT and the S-method with full data se
(left) and a reduced sets of data (right) for the case when the motion for most
of the scattering points is nonuniform. (k)-(I) Images with measured data s
The STFT and the S-method with full data set (left) and with a reduced s
of data (right).
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