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Separation and Reconstruction of the Rigid Body

and Micro-Doppler Signal in ISAR

Part I – Theory
L. Stanković1, S. Stanković1, T. Thayaparan2, M. Daković1, I. Orović1

Abstract

In radar imaging, the micro-Doppler effect is caused by fast movements of some scattering points on the target. These

movements correspond to highly non-stationary components in the time-frequency domain of the signal. The rigid body can be

considered as stationary at one range location during the processing time. This property is used to separate the micro-Doppler

signal from the rigid body using the L-statistics. Since the rigid body can be considered as a sparse signal, its values can be

fully recovered at the positions where the micro-Doppler and rigid body components overlap. The recovery is based on the

compressive sensing theory and methods.After an overview of the methods, a quantitative analysis of the improvements achieved

in the time-frequency based separation is done. Also, a comparison with both the time and the frequency domain analysis is

provided. Analysis of small additive noise influence to the reconstruction accuracy is done.

I. INTRODUCTION

In the inverse synthetic aperture radar (ISAR), the distance and the velocity component along the line-of-sight are used to

locate the target point in the range/cross-range domain [1]–[4]. Since the range and cross-range information are contained within

the frequencies of two-dimensional sinusoids, a common technique used in the ISAR signal analysis is the two-dimensional

Fourier transform. Its application to the ISAR signal of a point target results in a highly concentrated function at a point whose

position corresponds to the range and cross-range values [1], [3], [5], [6]. However, if there are some fast-moving parts on a

target, they will produce fast frequency changes, causing micro-Doppler effects [1], [5], [7], [8]. These parts have increased

speed, projecting themselves in a different scale in the ISAR image than the scale of slow-moving parts [9]. Micro-Doppler

effect can also cover slow moving (rigid body) parts of a target and degrade the ISAR image. In addition, the micro-Doppler

effect also contains useful information about the fast-moving parts of the target. The separation of patterns caused by rigid

body parts of the target from the patterns caused by fast moving parts is an important topic in the ISAR (and SAR) signal

analysis [4], [10]–[12]. The micro-Doppler effect in most cases is not well concentrated either in the time or in the frequency

domain. However, this part of the signal is commonly well-concentrated in the time-frequency domain [13], [14]. Thus the

separation of the micro-Doppler part and the rigid body part could be efficient in the time-frequency domain. A method for the
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Fig. 1. Time-frequency representation of the radar signal, at a given range, corresponding to five rigid body points and four micro-Doppler reflectors, and

several points reflecting during a short time interval, producing flashes: (a) The absolute STFT value within the coherent integration time, (b) The absolute STFT

values, sorted along time, for each frequency (cross-range), (c) The matrix showing available (in white) and omitted (in black) values in the time-frequency

plane, after the L-statistics approach with 60% of omitted values is used. The Hanning window is used in time-frequency analysis.

time-frequency domain based separation has been presented in [4]. The non-stationary parts of the radar signal are detected

by using the L-statistics [15], [16] and they are removed from the time-frequency representation of the signal.

Of course some parts of the rigid body signal, overlapping in the time-frequency plane with the micro-Doppler effect, are

also removed. Thus we are left with a reduced number of samples representing rigid body part of the signal, Fig.1. Since the

rigid body signal can be considered as a sparse signal in the Fourier domain, the theory and reconstruction algorithms derived

within compressive sensing (CS) theory [17], [18] can be used to recover the rigid body signal as if all signal samples where

known and undisturbed [16], [19], [20]. After the rigid body signal is fully recovered, its separation from the micro-Doppler

signal is straightforward.

In this paper, after a review of the separation and reconstruction methods, an analysis to the reconstruction process is done.

The analysis is based upon the improvement that can be expected with respect to the case if all signal samples containing

both the rigid body parts and micro-Doppler parts of the signal are removed in the time domain, before the reconstruction

algorithm is applied. It is shown that the reconstruction based on the reduced set of samples in the joint time-frequency domain

is significantly improved with respect to any of these domains considered separately.

The paper is organized as follows. In Section II, the time-frequency based separation of the rigid body and the Micro-Doppler

effect are reviewed. The analysis of the recovery bounds by spark and restricted isometry property is done in Section III. A

simple recovery algorithm is presented in Section IV.

II. TIME-FREQUENCY BASED SEPARATION

Let us consider a radar return signal after coherent processing and filtering, which consists of two sets of components

x(n) = xrb(n) + xmD(n). (1)

One stationary set, whose frequencies may be considered as constant within the CIT, denoted by xrb(n). Components of this

signal correspond to the rigid body

xrb(n) =

K∑
i=1

ρie
j2πk0in/N (2)
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at the cross-range positions (corresponding to the signal frequencies k0i). The other set is nonstationary with components

having fast frequency changes during the CIT. They are denoted by xmD(n). The assumption for this set of components is

that their time-frequency representation (spectral content) is well concentrated in the joint-time frequency domain and that it

changes over time.

As a time-frequency representation of these radar signals, containing the rigid body part and the micro-Doppler part, we

will use the simplest and linear short-time Fourier transform (STFT) [21]. Its form with a rectangular window is

STFT (n, k) =

M−1∑
m=0

x(n+m)e−j2πmk/M . (3)

In a matrix form, it can be written as:

STFTM (n) = WMx(n), (4)

where STFTM (n) and x(n) are vectors:

STFTM (n)=[STFT (n, 0), ..., STFT (n,M − 1)]T , (5)

x(n)=[x(n), x(n+ 1), ..., x(n+M − 1)]T ,

and WM is the M ×M DFT matrix with coefficients W (m, k) = exp(−j2πkm/M).

Frequency of the rigid body does not change so we may assume that the absolute value of

STFTrb(n, k) =

M−1∑
m=0

xrb(n+m)e−j2πmk/M

is constant over time, for a given frequency,

|STFTrb(n, k)| = C(k).

The micro-Doppler based part of the signal is spread over both time and frequency domain, considered separately, but well

localized in the joint time-frequency domain. We will also assume that for each frequency there are at least some time instants

during the CIT that are micro-Doppler free, i.e., |STFTmD(n, k)| = 0. This kind of micro-Doppler effects can cover the

whole rigid body in both time and frequency domains considered separately.

The result may easily be generalized for linear frequency changes of the rigid body components over the CIT by using the

first order local polynomial Fourier transform (LPFT)

LPFT (n, k;α) =

M−1∑
m=0

x(n+m)ejαm
2

e−j2πmk/M . (6)

with appropriately adjusted modulation coefficient α [2], [4], [22].

For notation simplicity, assume first that the nonoverlapping STFT is used in the time-frequency analysis. The STFT values

are calculated with step M in time n

STFT =
[
STFTM (0)T , STFTM (M)T , ... ,STFTM (N −M)T

]T
All STFT values are combined into one vector

STFT = WM,N x. (7)
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The N ×N matrix WM,N is formed as

WM,N=


WM 0M · · · 0M

0M WM · · · 0M
...

...
. . .

...

0M 0M · · · WM

 , (8)

where 0M is a M ×M matrix with all 0 elements. The signal vector

x = [x(0)
T
, x(M)

T
, ...,x(N −M)

T
]
T
= [x(0), x(1), ..., x(N − 1)]T

contains all signal values.

Note that we have used notation STFT (n, k) for a scalar STFT value at a given time n and frequency k. The boldface

notation STFTM (n) with time argument is used to represent the STFT vector containing M frequencies at an instant n.

Finally the boldface notation STFT without arguments is a vector of all STFT values for all frequencies k and all instants n.

We may write the signal vector x in terms of the DFT,

x = W−1
N X, (9)

where W−1
N denotes the inverse DFT matrix of the dimension N ×N, while X is the DFT vector. Now, we have:

STFT = WM,NW−1
N X = ΨX (10)

X= WNW−1
M,NSTFT

In this case, the transformation matrix is defined as Ψ =WM,NW−1
N . It maps the global frequency information in X into

the local frequency information in STFT. The dimension of matrix Ψ is N × N and each of its rows corresponds to one

STFT value STFT (l) = STFT (n, k) with l = n+k and n ∈ N = {0,M, 2M, ..., N −M} and k ∈ K = {0, 1, 2, ...,M −1}.

Obviously the inverse relation is k = mod(l,M) and n = int(l/M), where mod(l,M) and int(l/M) are the reminder and

integer part, respectively, when l is divided by M .

The basic idea for separating the rigid body stationary signal and the micro-Doppler nonstationary signal is in the sorting

of the STFT values along the time axis. Since the rigid body signal is stationary, the sorting procedure will not significantly

change the distribution of its STFT values. However, the fast-varying micro-Doppler part of the signal is highly nonstationary,

occupying different frequency positions for different time instants. Its existence is short in time, for each frequency, over a

wide range of frequencies. Thus, after sorting the STFT along the time axis, the micro-Doppler nonstationary part of the signal

have strong values at the wide frequency range, but for a few samples in sorted index only. By removing several strongest

values of the sorted STFT, for each frequency, we eliminate most or all of the micro-Doppler nonstationary part of the signal.

The rest of the STFT values contain the rigid body part of the signal only. Fast varying part of the signal, corresponding

to micro-Doppler effect, can be detected and eliminated using the L-statistics [4], [19]. After the micro-Doppler part of the

signal is removed, a part of the signal which overlaps with disturbance is removed as well. Therefore, just some of the desired

sparse signal values are available for analysis and recovery process [19]. Here, a short review of the method from [19] will

be presented.

By removing a set of time-frequency points using the L-statistics, only some elements in the observation vector STFT

remain. Namely, for each frequency k, a vector of STFT in time is formed as:

Sk = {STFT (n, k), n = 0,M, 2M, ..., N −M}. (11)
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After sorting the elements of Sk, we obtain the new ordered set of STFT elements Sk,sorted. A percentage Q of the high and

low value elements are removed from consideration. These values capture most of the overlapping values of the rigid body

and micro-Doppler effect in the time-frequency samples. The rest of the STFT values belong to the desired sparse rigid body

signal.

Denote the vector of available STFT values by STFTCS . The values of elements of STFTCS denoted by STFTcs(l) are

STFTcs(l) = STFT (nl, kl)

for

(nl, kl) ∈ NA ⊂ N×K

where N × K is the direct product (all pairs) of time instants used in calculation and frequencies from the STFT. The total

number of the available elements (nl, kl) is NA = card{NA}. Note that card{N×K} = N for N/M being an integer.

The same notation may be applied for the overlapping STFT. The only difference is that STFTM (n) = WMx(n) is

calculated at n ∈ N = {0, R, 2R, ..., N − R} where 1 ≤ R ≤ M is the time step of the STFT calculation. In this case, the

total number of calculated STFT values is card{N×K} = NM/R.

The corresponding CS matrix A, relating the sparse DFT vector X to STFTCS ,

STFTCS = AX

is formed by omitting the rows in

Ψ = WM,NW−1
N

corresponding to the removed STFT values. When a value of STFT (nl, kl) is removed as unavailable (disturbed) then the

row l = nl + kl is removed from the full matrix Ψ, since each row corresponds to one time and frequency point (n, k).

The reduced observations, along with the sparse DFT domain, and their linear relationship provide a basis for the CS problem

formulation and application of the CS methods in its solution. For the sparse rigid body signal, the solution is obtained from

the problem defined as

min ‖X‖0 subject to AX = STFTCS . (12)

where ‖X‖0 is the number of nonzero values in X. It is also called norm-zero of X although it does not satisfy the properties

of a norm. When we solve this problem then the rigid body signal is

x̂rb(n) = W−1
N X.

In minimization algorithms norm-zero is commonly replaced by norm-one and ‖X‖1 is minimized instead of ‖X‖0 in (12)

[17], [18], [23],

min ‖X‖1 subject to AX = STFTCS .

The existence of solution of these minimization problems and their equivalence is studied next.

In the case of linear frequency modulated rigid part, the same procedure would be applied to the LPFT of signal Sk =

{LPFT (n, k;α), n = 0,M, 2M, ..., N −M}.
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III. ANALYSIS WITHIN THE CS FRAMEWORK

A. Spark and Coherence

Since the DFT of the rigid body signal X is sparse with sparsity K then the sufficient condition for its reconstruction from

the measurements STFTCS taken using matrix A is that the spark of A and the sparsity K satisfy the condition.

K <
1

2
spark(A).

The spark of matrix A is equal to the minimal number of columns which are not independent. The direct spark calculation is

a very complex problem. The spark of matrix A can be related to the coherence index of the matrix A, defined by

µ(A) =max
k 6=i

∣∣∣∣ 〈ak,ai〉‖ak‖2 ‖ai‖2

∣∣∣∣ (13)

where ak and ai are column vectors of the measurement matrix A. The spark of A is then

spark(A) ∼= 1 +
1

µ(A)

with

K <
1

2
(1 +

1

µ(A)
). (14)

If the number of rigid body components within one range bin is, for example, K = 3 then the matrix A guaranties the

reconstruction if µ(A) >1/6. This is also computationaly complex, but feasible check of the solution since it requires inner

product calculation of N(N−1)/2 pairs of columns of matrix A. It is extremely conservative (sufficient) limit. It guaranties the

recovery in the worst case for any combination of the available samples and rigid body positions. It will be used to comment

the presented method.

Before we start the analysis for the presented matrix A, recall first that for any matrix A with N columns and NA ≤ N

rows holds (Welch bound) [24]

µ(A) ≥

√
N −NA

NA (N − 1)
. (15)

The equality holds for matrices that form an equiangular tight frame. For random positions of available rows, this bound can not

be satisfied for all possible combinations of available rows of a deterministic matrix. The partial DFT matrix with a large number

of columns for some specific combinations of rows can be treated as a rough approximation of an equiangular tight frame,

since it will not significantly differ from the Paley equiangular tight frame [24]. For arbitrary combination of rows and the DFT

matrix, the case with NA = N − 1 (one eliminated sample) is the only satisfying the limit value. All other cases will produce

a value of µ(A) above the Welch limit. The sparsity bound (maximal number of rigid body components) for some values of

available samples NA is given in Table I. For example, we can see that just one missing sample NA = N − 1 will reduce the

number of rigid body points that can be reconstructed from K = N (if all samples are available) to K < 1
2 (1+N−1) = N/2,

since the bound for µ(A) for NA = N − 1 is N − 1. For N = 1024, it means that one missing sample reduces the number

of nonzero values that can be reconstructed to K < 512, Table I (second column). For NA = N − 1, the partial DFT matrix

is an equiangular tight frame with µ(A) = 1/(N − 1). Probability of this event is studied in detail in the part two [25]. For

NA = N − 4, in the same way we get K < N/4 since for large N we have NA (N − 1) = (N − 4) (N − 1) ∼= (N − 1)2.

As we see even a small the number of unavailable samples significantly reduces the number of nonzero values (rigid body

points) that can be reconstructed, if the general theory bound is considered. This is not a problem in our application, since the

number of rigid body components, in one range bin, is quite small, K � N .
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TABLE I

SPARSITY BOUND CALCULATED USING COHERENCE INDEX WITH 100 RANDOM REALIZATIONS AND N = 1024

N−NA
N

1
8

1
4

1
2

3
4

K CS theory bound 42 23 16 9

K DFT (STFT M = 1) 17 11 6 3

K STFT (OVLP M = 32) 18 12 7 4

K STFT (NOVLP DC M = 32) 25 15 9 5

A statistical check on the number of nonzero values K that can be reconstructed is preformed on the DFT matrix of the

same order as the matrix that is going to be used in our STFT based analysis. It corresponds to the special case of one-sample

window (M = 1) in the STFT analysis. The values of K bound obtained in 100 realizations with different available values

and the DFT matrix is presented in Table I as well. The bound of K is calculated using a random set of NA rows of the full

matrix WNW−1
M,N to form matrix A. Then for each pair of columns of matrix A, denoted by ak,ai, the coherence index is

calculated using (13). The bound for K is then the smallest integer satisfying (14).

The same analysis for K is done for the STFT based matrix. In addition to the already mentioned case M = 1, the case

M = 32 is presented in Table I. The value of µ(A) is calculated for each combination of columns of A and a given random

set of available values in each realization. Due to the STFT being used as the basic tool in the analysis, we concluded that

by increasing the value of M the frequency resolution plays an important role, as in the case of the signal analysis using

the STFT. In general, to reconstruct just a few nonzero values, for example with the STFT and M = 32, a large number of

samples in needed. Two cases when the STFT based analysis can produce the resolution in the frequency domain close to

the DFT are considered. In the first case we exclude the possibility of having close components. In the coherence analysis,

it means to exclude the value of µ(A) for small |i− j| corresponding to close components. The results obtained using this

assumption are indicated by DC (distant components) in Table I. If a number of close rigid body points can be expected, so

that the DFT resolution is required, the presented method can be used with the STFT with overlapping (OVLP) in time. It is

even a more common way of the STFT calculation. All relations remain the same and the requirement that |i− j| is small is

not used. The results for maximal number of rigid body points K is presented in Table I for all of these cases and NA = 7N/8,

NA = 3N/4, NA = N/2, and NA = N/4. The case of NA = N/2 means that in a half of the STFT values the rigid body

and the micro-Doppler effect are overlapped in time-frequency domain. This is quite pessimistic assumption, along with very

pessimistic estimation of the value of K based on the spark analysis. Thus in reality we can expect much better performance,

although these are already sufficient for ISAR data analysis where the number of rigid body components, in one range bin, is

quite small, K � N .

B. Restricted Isometry Property

Note that the other commonly used method to establish the solution existence is based on the restricted isometry property

of matrix A. The restricted isometry in this case would guaranty a solution if there is a restricted isometry constant δK such

that ∣∣∣‖AX‖22 − ‖X‖
2
2

∣∣∣ < ‖X‖22 δK
for 0 ≤ δK < 1. This should be checked for all possible positions of K nonzero values (possible rigid body positions) in X.

The solution is unique if for a 2K sparse rigid body signal the restricted isometry property holds. Check of this condition

is an NP hard problem that can not be implemented on computers for any reasonable values of N and K. For example, for
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N = 1024 and K = 4 rigid body points, it would require the restricted isometry check for all possible combinations of 2K = 8

columns out of the total number of N = 1024 columns of matrix A. The number of combinations is
(
1024
8

)
∼ 1020. For each

of them, an eigenvalue analysis of a matrix should be done.

Here we will reformulate the restricted isometry property to the form that can easily be checked in the solution of the presented

separation problem. We will assume that the measurement matrix is normalized in order to obtain isometry ||ΨX||2 = ||X||2
for full transformation matrix. In our case, this results in normalizing STFT values with factor

√
N/M . Now we have

‖AX‖22 = ‖STFTCS‖22 =
∑∑
(n,k)∈NA

|STFT (n, k)|2 =
∑∑
(n,k)∈NA

SPEC(n, k)

where SPEC(n, k) is the spectrogram and the summation goes over the available samples. Also Parseval’s theorem holds for

the normalized nonoverlapping STFT

‖STFT‖22 =

M−1∑
k=0

∑
n∈N
|STFT (n, k)|2 =

=
N

M

M−1∑
k=0

∑
n∈N

M−1∑
m1=0

M−1∑
m2=0

xrb(n+m1)xrb(n+m2)e
−j2π(m1−m2)k/M

= N

M−1∑
m=0

∑
n∈N
|xrb(n+m)|2 = N

N−1∑
n=0

|xrb(n)|2 = ‖X‖22 .

Therefore ∣∣∣∣∣‖AX‖22 − ‖X‖
2
2

‖X‖22

∣∣∣∣∣ =
∑∑

(n,k)∈(N×K)\NA

SPEC(n, k)

‖STFT‖22
.

It means that the restricted isometry property is satisfied with small δK if the ratio of the sum of spectrograms over the removed

points and the sum over all points (energy of signal multiplied by N ) is small. For the largest possible value of sparsity K when

the restricted isometry can be checked, 2K = N , it means that this ratio should be calculated over all possible values of k ∈ N.

It obviously means that if we remove all STFT values containing our signal xrb(n+m1) energy, then the reconstruction is not

possible independently of the number of remaining STFT values. Since in the L-statistics based approach the same number

of STFT values is removed at all frequencies, then this situation is not possible, assuming that the rigid body is stationary

over time and that the energy over all time points is uniformly distributed. Then the common restricted isometry condition

δ2K <
√
2−1 (providing equivalence of norm-one and norm-zero solutions) will require that the energy of the removed STFT

values is lower than (
√
2− 1) ‖STFT‖22, meaning (N −NA) < (

√
2− 1)N or NA > (2−

√
2)N = 0.59N . The result that

the signal of sparsity K < N/2 can be reconstructed if NA > 0.59N seems very optimistic with respect to the spark and

coherence analysis. However, it has been derived with the assumption that the spectrogram (square modulus of the STFT) of

a rigid body is constant over time. It means that there is no cross-terms in the spectrogram, requiring that the components are

not to close to each other. However, if this assumption is not used the spectrogram of two close components is not constant

over time and we will come to the number of rigid body points that can be reconstructed similar to the bound values obtained

by using the coherence and spark analysis.

Example 1: Applying the presented procedure the rigid body part of the signal presented in the Fig. 1 (as illustrative

example) is reconstructed. The rigid body consists of five scattering points with amplitudes ρ1 = 0.35, ρ2 = 1.2, ρ3 = 0.33,

ρ4 = 0.9, and ρ5 = 1. The Fourier transform of the input signal, the rigid body signal after the L-estimation (corresponding to

norm-two minimization), and the signal after the presented reconstruction are shown in Fig. 2. The amplitudes and phase of the

reconstructed signal are the same as the corresponding rigid body parameters. Since the reconstruction is complete, including
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Fig. 2. The discrete Fourier transform (DFT) of the input signal (top), the rigid body signal after the L-estimation (middle), and the signal after the presented

reconstruction (bottom). The DFT values are scaled with N to produce the signal component amplitudes ρi.

the phase of the components, the micro-Doppler part of the signal can be obtained by simple subtraction. The Hanning window

is used in time-frequency analysis with STFT overlapping for M/2. Analysis may reduce to the two sets of nonoverlapping

data as presented in [4], [19], [21].

Example 2: In this example, the real radar data corresponding to two outside corner reflectors, rotating at approximately

40 rpm (all facing radar) with rigid body, are analyzed within one range bin. In addition to one existing rigid body four rigid

body components are added to be able to check the result. The STFT representation of the observed signal is shown in Fig. 3(a).

The sorted STFT is shown in Fig. 3(b). The original DFT is shown in Fig. 3(c). The reconstructed Fourier transform of the

rigid body, obtained by summing 40% of the remaining STFT values, after sorting in time, is presented in Fig. 3(d).

IV. RECOVERY ALGORITHM FOR THE RIGID BODY SIGNALS

The goal is to reconstruct the original sparse stationary signal, producing the best concentrated DFT X(k), using the available

STFT values. Therefore, the corresponding minimization problem can be defined as follows:

min ‖X‖1 = min

N−1∑
k=0

|X(k)| (16)

subject to STFTCS = A X.

Based on the values of STFTCS , the missing STFT values can be reconstructed such as to provide minimal
∑N−1
k=0 |X(k)|.

Here we will present a simple reconstruction algorithm with the L-estimation (norm-two solution) as the initial representation.

This algorithm is a variant of the matching pursuit algorithms. The initial estimate of the Fourier transform of the rigid body

is the solution of the norm-two minimization problem

min ‖X‖2 subject to A X = STFTCS .
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Fig. 3. Radar data corresponding to a rigid body and three corner reflectors rotating at ∼ 60 RPM. (a,) The STFT. (b) The sorted STFT. (c) The original

Fourier transform. (d) The Fourier transform reconstructed by summing over 40% of the lowest STFT samples and applying the reconstruction algorithm.

It corresponds to using zero values for unavailable STFT values. Two possibilities may occur. One is that all K positions of

nonzero values of X can be detected based on the initial estimation. Then we will have a system with NA linear equations

and K � NA unknowns in X(k), at the estimated positions, since all other values of X(k) are assumed to be zero-valued.

This vector is denoted by XK . Its values are XK(k) = 0 for k /∈ K = {k01, k02, ...k0K}. Now the system with K unknowns

is

AKXK= STFTCS . (17)

Matrix AK is obtained from the matrix A by removing all columns at the positions of zero values in X(k). This method

can be used with both overlapped and nonoverlaped STFT values.

The algorithm can be summarized as follows:

(i) Calculate the initial transform estimate X2(k) by using the available/remaining STFT values and assuming that unavailable

signal values are zero. This vector will be denoted by STFT0
CS .

X2= WNW−1
M,NSTFT0

CS . (18)

This kind of calculation can be simplified, since the DFT can easily be reconstructed directly from the STFT. It is assumed

that the STFT is calculated with such a window and time step that classical STFT to signal reconstruction condition is satisfied

[21].

(ii) Find all positions k0i, i = 1, 2, . . . ,K0 where |X2(k0i)| > Tr is satisfied. Set the transform values X(k) to zero at all

positions k where initial estimate X2(k) is below a threshold Tr,

X(k) =

 0 for k 6= k0i, i = 1, 2, ...,K0

X2(k) for k = k0i, i = 1, 2, ...,K0

(19)

This criterion is not sensitive to Tr as far as all nonzero positions of the original transform are detected and the total number

K0 of transform values in X(k) satisfies the condition for a unique solution.
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(iii) After their positions are detected in (ii), the unknown values of nonzero coefficients could be easily calculated by solving

the set of NA equations for available instants n ∈ NA, at the detected nonzero candidate positions k0i, i = 1, 2, ...,K0, using

system (17). This system is solved in the least square sense as

XK = (A∗KAK)
−1

A∗KSTFTCS . (20)

The reconstructed coefficients X(k0i), i = 1, 2, ...,K0, (denoted by vector XK) are exact and unique if the reconstruction

conditions, discussed in the previous Section, are meet. If among the K0 nonzero candidates in (20), there are some coefficients

that should be zero valued, the system solution will provide correct (zero) values.

(iv) The reconstruction can be verified by recalculating back the STFT values using the reconstructed DFT vector XR with

components

XR(k) =

 0 for k 6= k0i, i = 1, 2, ...,K0

XK(i) for k = k0i, i = 1, 2, ...,K0

as STFTR = WM,NW−1
N XR. If the reconstruction error at the available positions

e = ‖STFTR − STFTCS‖2

calculated for the points (nl, kl) ∈ NA is not zero (or bellow expected precision) then it means that we have not detected

all rigid body candidates. We should form a residual STFT as STFT1
CS = STFT0

CS − STFTR at the available points

(nl, kl) ∈ NA and go back to (i). Detect new possible candidates k0(K+i) and try to solve the problem (20) with new set of

possible positions which is a set union of the positions detected in the initial step and using STFT1
CS . This procedure should

be continued until the desired precision is satisfied or the allowed number of iterations is reached.

A special case of this procedure is one-by-one matching pursuit method when only the position of the largest value of the

estimated DFT is used in each iteration. Then the detection step (19), in each iteration, is redefined as

X(k) =

 0 for k 6= k0

X2(k) for k = k0
(21)

k0 = arg{max |X2(k)|}.

In this case there is no need for threshold.

Again in each next iteration, the union of the detected positions in the all previous and the current iteration is used. These

two approaches produce similar results.

If the number of available samples is sufficiently large (much larger than the signal sparsity) then the solution producing

zero (bellow desired precision) error will be unique with a high probability. Strict bounds for the uniqueness of the solution

are defined by the spark or restricted isometry property. Their check is, in general an NP hard (computationally not feasible)

problem. In addition, they offer very pessimistic bounds, including some zero probability events that are discussed in part II

of this manuscript [25].

A. Additive Noise Influence

In the case of noisy STFT values the reconstruction is based on STFTCS +STFTCSN where STFTCSN is the STFT of

additive noise [26]. Note that is corresponds to the STFT of input noise since the STFT is a linear transformation. If the variance

of input white noise is σ2
ε then the variance of its STFT values is Ewσ2

ε where Ew =M is the energy of rectangular window.

For nonoverlapping windows noise in the STFT is uncorrelated, while for the case of overlapping windows the correlation
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is a function of the overlapping interval. Since the algorithm reconstruction bounds will be considered in the second part of

this paper, assume here that the amount of noise is such that it influences the algorithm accuracy only. At a signal component

frequency k = k0i all available STFT values will sum up to produce X(k0i). Consider the case when L-statistics is used

and a constant number of STFT elements MA = MNA/N is used in reconstruction for each instant. Then the initial DFT

calculation X2= WNW−1
M,NSTFT0

CS will produce the signal component at k = k0i whose amplitude is ρiNMA/M, where

ρi is the component amplitude. The variance of STFT noise Mσ2
ε in the initial DFT calculation is added up N

M
MA

M times

instead of N/M is all STFT were available. When the frequencies are correctly detected based on the initial DFT calculation,

then during the reconstruction process XK = (A∗KAK)
−1

A∗KSTFTCS the amplitudes ate scaled to their correct values Nρi.

The scaling factor is M/MA. This scaling will be applied to the noise at k = k0i as well since

(A∗KAK)
−1

A∗K(STFTCS + STFTCSN) = XK + XεK

where XεK is the noise in reconstructed DFT. The reconstructed noise at the frequency k = k0i will be scaled in amplitude

in the same way as the signal amplitude, by factor M/MA. It means that the variance of noise in nonoverlapping case will be

scaled with respect to the original variance Mσ2
ε as

var{X(k0i)} =
(
M

MA

)2

Mσ2
ε

N

M

MA

M
. (22)

The variance will decrease as the number of available samples MA increases. Since only K0 values of X(k) different from

zero will be used in the signal reconstruction it means that the reconstructed signal in time domain xR(n) will contain noise

of variance

var{xR(n)} =
1

N2

K0∑
i=1

var{X(k0i)εK} =
M

MA

K0

N
σ2
ε . (23)

With respect to the estimated number of components K0 we should keep its value as small as possible in order to reduce the

total noise in the reconstructed signal. Note that for K0 = N , MA =M and rectangular nonoverlapping window the original

variance of noise σ2
ε is obtained for xR(n).

Obtained relation is statistically checked on a signal with N = 256 and K = 3 signal components, using the STFT

with M = 16 and assuming that 50% of data are removed at each time instant. The calculation is run on a signal x(n) =

1.25 exp(2πk01nN + ϕ1) + exp(2πk02nN + ϕ2) + 0.75 exp(2πk03nN + ϕ3) + ε(n), with 100 independent realization with

various missing data sets and frequency positions. Standard deviation of the input noise is σε = 1. Input signal-to-noise ratio

is 5 [dB]. Statistically obtained variance of the reconstructed signal is var{xR(n)} = 0.0238, while expression (23) produces

var{xR(n)} = 0.0234 corresponding to the output signal-to-noise ratio of 11.25 [dB]. Although the total signal-to-noise ratio

is reduced in the reconstructed signal (mainly to the sparsity assuming that N −K DFT values are zero), the variance of noise

in a single DFT value X(k0i, defined by (22) as var{X(k0i)εK} = σ2
εNM/MA is increased for the factor of M/MA with

respect to the case when all data are available, as expected. Illustration of the statistical analysis on one signal realization is

presented in Fig.4.

V. CONCLUSION

ISAR signals containing the rigid body and micro-Doppler effect caused parts are considered. It has been assumed that

these two parts of signal partially overlap in the time-frequency plane. After the detection and removal of overlapping values,

a possibility and method for the full recovery of the rigid body signal are discussed. The property that the rigid body part of

the signal can be considered as a sparse signal is used. The recovery of the rigid body is based on the compressive sensing
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Fig. 4. Illustration of the statistical noise analysis on one signal realization: (a) Undisturbed rigid body STFT samples (disturbed and omitted values are in

red). (b) The DFT of reconstructed rigid body using norm-two. (c) The DFT of original noisy rigid body signal. (d) Reconstructed DFT (denoted by x) and

true noise free values (denoted by dot).

methods. The analysis of the performance of these methods is done, along with a simple recovery algorithm. The influence of

a small additive noise to the reconstruction is analyzed.
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[21] Stanković, L., Daković, M., and Thayaparan, T.: ‘Time-Frequency Signal Analysis with Applications’, (Artech House, Boston, 2013)

[22] Wang, Y., and Jiang, Y.C.: ’ISAR Imaging of Ship Target with Complex Motion Based on New Approach of Parameters Estimation for Polynomial

Phase Signal’, EURASIP Journal on Advances in Signal Processing, 2011, Article ID 425203
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