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Separation and Reconstruction of the Rigid Body

and Micro-Doppler Signal in ISAR

Part II – Statistical Analysis
L. Stanković1, S. Stanković1, T. Thayaparan2, M. Daković1, I. Orović1

Abstract

Micro-Doppler effect corresponds to non-stationary components in the time-frequency domain, while the rigid body can be

considered as a stationary signal during the processing time. This property is used in the first part of the paper to present the

method for separation recovery based on the compressive sensing theory. Recovery bounds are based on the restricted isometry

property or the coherence and spark analysis. Their calculation is a computationally difficult (NP hard) problem. These bounds

also produce very pessimistic results. It is the reason to consider the statistical analysis of the reconstruction results. The statistical

approach is presented in this part of the paper and illustrated by examples, including a detailed case study example.

I. INTRODUCTION

In the first part of this two-part paper, the micro-Doppler effects [1] and possibility of their separation from the rigid body in

ISAR are considered [2]. The rigid body components behave as stationary within the coherence integration time [1], [3]–[6],

while micro-Doppler components [4], [7] are non-stationary and well-concentrated in the time-frequency domain [8]–[10]. A

time-frequency method for their separation is presented in [11], [12]. The removal of the overlapping parts of the micro-Doppler

and rigid body components results in a reduced number of samples representing rigid body part of the signal. The sparsity

property of the rigid body signal in the Fourier domain has indicated a possibility of reconstruction within the compressive

sensing (CS) framework [13]. The compressive sensing reconstruction bounds are based on the restricted isometry property

and coherence index analysis. They are quite conservative for engineering applications [14], [15]. One example illustrating this

fact is presented in the Appendix. It was the main motivation for a statistical approach, presented in this part of the paper. The

statistical approach is illustrated in a case study example. It shows that the full recovery results may be expected with high

probability, well bellow the theoretical bounds.

The paper is organized as follows. In Section II a statistical comparison of the recovery in the time, frequency, and the joint

time-frequency domain is done. A case study analysis is performed in Section III. The importance of the statistical analysis is

highlighted on a simple example in Appendix.
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Fig. 1. (a) Time-frequency representation of a rigid body signal with nonstationary micro-Doppler disturbances. (b) Signal samples in the time domain with

disturbed values being marked in red. (c) Signal samples in the time-frequency domain with disturbed values being marked in red.

II. STATISTICAL ANALYSIS

The reconstruction algorithm presented in the first part (of this two-part paper) is based on the rigid body frequencies

estimation [15]. This calculation is done using the L-statistics to obtain the initial representation. The available samples are

used to reconstruct the signal. The missing values are assumed to be zero. The initial estimation is based on the norm-two

solution of the problem (norm-two solution is not sparse in the transformation domain). Initial position estimate plays the

crucial role in these kind of algorithms. The initial estimate is related to the energy of the available measurements. Increasing

the number of removed STFT values will degrade this estimate and possibility to reconstruct the signal. This fact is used in the

restricted isometry property as well. The exact bounds calculation based on the restricted isometry property or the coherence

and spark is a computationally very difficult (NP hard) problem. Even if these bounds are calculated, they give very pessimistic

estimates of the parameters (see Appendix). This is the reason to consider the statistical analysis of the reconstruction results.

As an introduction to the analysis that follows let us observe an illustrative example. Assume a well localized nonstationary

signal corresponding to micro-Doppler effect within five STFT values, as in Fig.1 (a). In general, this kind of nonstationary

signal covers much larger percentage of signal samples in the time domain Fig.1 (b). When a single well localized time-

frequency component exists in the time-frequency domain, it is usually present in several samples in the time domain. If these

well localized nonstationary parts are removed in the time-frequency domain then we deal with the problem of a small percent

of missing values in this domain, Fig.1 (c). Corresponding number of samples in the time domain will be analyzed next.

Assume that well localized nonstationary signal appears randomly in several time-frequency regions.

The STFT of signal x(n) whose length is N is calculated using M samples window, as explained in detail in [15]. Along

frequency axis there will be M columns corresponding to frequencies resulting from one STFT calculation

STFTM (n) = WMx(n)

where x(n) is signal vector with elements x(n)=[x(n), x(n + 1), ..., x(n + M − 1)]T and and WM is the M ×M discrete

Fourier transform (DFT) matrix with coefficients W (m, k) = exp(−j2πkm/M).

The whole STFT column matrix STFT consists of stacked columns STFTM (n) calculated for all n = 0,M, 2M, ..., N−M

in nonoverlapping case. Matrix S has the same values as the STFT column matrix of denoted by STFT, but relocated in a matrix

form to correspond the time-frequency plane location. Each point in the time frequency plane in this case will be represented

by values STFT (n, k). In the time direction, there are N/M rows corresponds to the time instants n = 0,M, 2M, ..., N −M

where the nonoverlapping STFT is calculated. In the nonoverlapping case dimension of S is M × (N/M). Assume that Q
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of randomly positioned STFT values contain signal values x(n) where the rigid body signal xrb(n) overlaps with the micro-

Doppler components xmD(n). These are undesirable STFT and should be removed from the analysis. The remaining number

of STFT values is NA = N −Q in the nonoverlapping STFT calculation.

Components of the signal x(n) corresponding to the rigid body are modeled by

xrb(n) =

K∑
i=1

ρie
j2πk0in/N (1)

at the cross-range positions (corresponding to the signal frequencies k0i).

First we will calculate the number of time instants (denoted by eQ) where all values (rows) of the matrix S are not disturbed.

In these instants, the signal values used for STFT calculation are not disturbed as well. The problem will be solved in a recursive

manner. If the number of STFT disturbed values is Q = 0, then obviously the number of undisturbed STFT rows is e0 = N/M .

For Q = 1, we easily get e1 = N/M − 1 since only the STFT row where this disturbed STFT sample is located is disturbed.

Let us denote the expected number of undisturbed rows for Q = p by ep. In order to find ep+1, consider two possible cases:

1. The newly added disturbed STFT value is in the row where already exist disturbed STFT values. Then the number of

undisturbed rows remains the same. Probability of this event is

PI =
N − epM − p

N − p

2. The disturbed value is added to the row with no disturbed values so far. In this case, the number of undisturbed rows is

reduced by 1. Probability of this event is

PII =
epM

N − p
.

Since these two events are mutually exclusive we have

ep+1 = epPI + (ep − 1)PII = ep

(
1− M

N − p

)
It means that the resulting eQ is:

eQ = eQ−1

(
1− M

N − (Q− 1)

)
= eQ−2

(
1− M

N − (Q− 2)

)(
1− M

N − (Q− 1)

)
· · ·

= e0

(
1− M

N − 0

)
· · ·
(

1− M

N − (Q− 2)

)(
1− M

N − (Q− 1)

)
.

Finally

eQ =
N

M

Q−1∏
p=0

(
1− M

N − p

)
. (2)

The number of undisturbed rows in the STFT can be easily related to the number of undisturbed signal samples in the time

domain. For the STFT calculated without overlapping for each STFT column M signal samples are used in the calculation. If

eQ is the number of undisturbed rows then the number of undisturbed samples in time domain is

NA = M eQ = N

Q−1∏
p=0

(
1− M

N − p

)
The above results presented by (2) are statistically checked. For various values of N , M and Q, the number of undisturbed

samples is calculated by (2) and compared with statistical results. The results are shown in Table I for N/M = 128 and
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TABLE I

STATISTICAL CHECK OF (2) FOR N/M = 128 AND M = 32. THE EXACT VALUE, THE STATISTICAL VALUE AND THE ERROR ARE SHOWN.

Q Exact Statistical Error (%)

50 86.2713 86.2503 0.001

100 57.8607 57.8603 0.001

150 38.6108 38.6160 -0.014

200 25.6321 25.6136 -0.006

300 11.1161 11.1189 -0.025

500 1.9524 1.9527 -0.015
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Fig. 2. Expected number of removed samples in time domain as a function of the number of disturbed and removed time-frequency values for N = 256

and various window lengths M in the STFT calculation.

M = 32. In each case, 106 random realizations are formed for Q = 50, 100, 150, 200, 300, 500. For a large number Q of

disturbed STFT values the probability that a row is undisturbed is very small. In order to correctly estimate low probability

event a large number of realization should be used. Expected number of available samples as a function of the number of

disturbed samples Q for N = 256 and different M is presented in Fig.2.

Analysis of the signal and DFT can be obtained as a special case of the STFT analysis. Namely, with M = 1 the STFT

reduces to the signal itself, STFT (n, k) = xrb(n). This case is already presented and studied in details in [12]. The time-

frequency form presented in this section is used in [13] to separate the stationary sparse part of the signal from a strong

impulsive noise disturbance. The analysis that follows will start from the special case when M = 1, meaning STFT = x and

STFTCS = y, where y(n) are available samples of xrb(n), n ∈ NA and x is the vector with elements xrb(n). This is the

case when the signal is analyzed in the time domain. It is studied in detail in [12]. For M = 1, the initial estimate of the

Fourier transform of the rigid body is the solution of the norm-two minimization problem

min ‖X‖2 subject to AX = y = STFTCS ,

where the measurement matrix A corresponds to the available samples.

This solution is quite simple for the DFT matrix. It will be denoted by X2 and its values by X2(k). Since Parseval’s theorem

holds then

‖X‖2 = ‖x‖2
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and the problem reduces to

min ‖x‖2 subject to AX = y.

Since we have NA fixed and given by the condition AX = y then obviously ‖x‖2 =
√∑N−1

n=0 |xrb(n)|2 is minimal if all

unavailable signal samples (STFT with M = 1) are zero-valued. Therefore, the initial estimate of the rigid body DFT is

X2(k) = NA mean
n∈NA

{xrb(n)ej2πkn/N}

The average value of X2(k) for signal xrb(n), assuming the integer values of k0i in (1), is [15]

X2(k) = NA

K∑
i=1

ρiδ(k − k0i). (3)

The variance at the frequency (cross-range) position k where there is no rigid body component is

σ2
N = var{X2(k)} = NA

N −NA
N − 1

K∑
i=1

ρ2
i = NA

N −NA
N − 1

Ex, (4)

where Ex =
K∑
i=1

ρ2
i = 1

NA

∑
n∈NA

|xrb(n)|2. For the detection of a signal component, the crucial parameter is

σN∣∣∣X2(ki)
∣∣∣ =

√
N −NA

NA (N − 1)

√
Ex
|ρi|

≥

√
N −NA

NA (N − 1)
.

It is interesting to note that this relation corresponds to the Welch bound for the coherence (defining the maximal sparsity in

the reconstruction).

The variance at a position of the signal’s i-th component is

σ2
Si

= NA
N −NA
N − 1

K∑
l=1,l 6=i

ρ2
l .

According to the central limit theorem, the real and imaginary parts of the transform value for non-signal component (noise

only) can be described by Gaussian distribution, N (0, σ2
N/2) with zero-mean and variance σ2

N . The probability density function

for the absolute transform values outside signal components is Rayleigh-distributed [12]. The transform at a noise only position

takes a value greater than Ξ, with probability

Q(Ξ) =

∫ ∞
Ξ

2ξ

σ2
N

e−ξ
2/σ2

Ndξ = exp(− Ξ2

σ2
N

). (5)

Real and imaginary parts of the signal transform value, at the i-th signal component position, can be described by the Gaussian

distributions

N (NAρi, σ
2
Si
/2), N (0, σ2

Si
/2), (6)

respectively. A real-valued ρi is assumed without any loss of generality. The probability density function (pdf) for the absolute

transform values at the position of the i-th signal component, is Rice-distributed

p(ξ) =
2ξ

σ2
Si

e−(ξ2+ρ2iN
2
A)/σ2

Si I0(ρiNA2ξ/σ2
Si

), ξ ≥ 0. (7)

where I0 is the zero-order modified Bessel function.

The probability that the Fourier transform of noise-alone is lower than Ξ is [1−Q(Ξ)]. The total number of noise-only

points is MK = N −K, where K is the number of non-zero signal points. The probability that MK independent transform

noise-alone values are lower than Ξ is [1−Q(Ξ)]
MK . Probability that at least one of MK transform noise-only values is

greater than Ξ, is G(Ξ) = 1− [1−Q(Ξ)]
MK . When a noise-only transform value surpasses the transform signal value, then
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an error in the component detection occurs. To calculate this probability, consider the absolute transform value of a signal

component at and around ξ. The transforms signal value is within ξ and ξ + dξ with the probability p(ξ)dξ , where p(ξ) is

defined by (7). The probability that at least one of MK noise-only transform values is above ξ can be written as

G(ξ) = 1− [1−Q(ξ)]
MK . (8)

Thus, the probability that the absolute transform signal component value is within the interval ξ, ξ + dξ and that at least

one of the absolute transform noise-only values (outside the positions of the transform signal value) exceeds the transform

signal value is G(ξ)p(ξ)dξ. Considering all possible values of ξ, from (5) and (8), it follows that the probability of the wrong

detection of the ith signal component is

PEi =

∫ ∞
0

G(ξ)p(ξ)dξ (9)

The approximation of this expression can be calculated by assuming that the transform of the i-th signal component is not

random and that it is equal to NAρi (positioned at the mean value of the signal’s transform). This approximation assumes that

the influence of noise to amplitude is symmetric. The form of error probability is then very simple

PEi
∼= 1−

[
1− exp(−N

2
Aρ

2
i

σ2
N

)

]MK

. (10)

This expression can be easily used for simple rough approximate analysis [12].

III. STATISTICAL CASE STUDY

The presented theory is tested and illustrated on a case study with a three-component rigid body signal

x(n) = ρ1e
j2πk01n/N + ρ2e

j2πk02n/N + ρ3e
j2πk03n/N

with ρ1 = 0.75, ρ2 = 1, and ρ3 = 1.25. Frequencies k01, k02, and k03 are chosen randomly from 0 to N−1 in each realization.

No assumption about the distance of the components is done.

Since the presented recovery method will produce a correct result when the component positions (frequencies) are correctly

detected in the initial estimation, analysis and comparison of the results and methods is done based on the wrong detection

in the initial STFT calculation. Since there are three signal components in this example, the largest three values in the initial

DFT are found based on the STFT and their positions are compared with the true frequencies k01, k02, and k03. There are

four possible outcomes:

1) The largest three values in the initial transform are at the positions of the signal components. Then, all signal components

are detected and there is no wrong component detection.

2) Only two out of three largest values in the initial transform correspond to the signal frequencies. Then, there is one

wrongly detected component. Probability of the event that one component is not detected among the largest three initial values

will be denoted by P (1).

3) Only one out of the three largest values in the initial transform corresponds to a signal frequency. In this case, there are

two wrongly detected components. Probability of this event will be denoted by P (2).

4) The three largest values in the initial estimation do not correspond to any of the signal component frequencies k01, k02,

k03. Then there are three wrongly detected components. Probability of this event is denoted by P (3).

The average number of wrongly detected components is

NE = 1P (1) + 2P (2) + 3P (3).
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The number of wrongly detected components in percent is calculated as NWD[%] = NE/3 × 100. Division by 3 is done so

that the maximal number of wrongly detected components, in this case 3, corresponds to 100 in percent.

In order to calculate the expected number of wrong detections, probabilities P (1), P (2) and P (3) should be calculated using

the derived expressions (9) or (10). The percent of wrongly detected maxima is statistically obtained and compared with the

theoretical results. The statistically obtained results (percent of wrong detections as function of percent of missing samples)

are presented by a solid green line in Fig.4. The theoretical results are presented by a solid red line, while the results obtained

by using approximate error analysis are given by a red dotted line in Fig.4a) and Fig.4b).

Since the amplitudes of components differ, the wrong detection probabilities P (1), P (2) and P (3) are calculated in the

following way. Probability P (1) is equal to the probability that at least one DFT sample corresponding to noise-only is greater

than the DFT of the lowest component (PE1) and that at the same time no other noise-only component is greater than the

second largest signal component (1− PE2). This probability is

P (1) ∼= PE1(1− PE2).

Probabilities PE1
and PE2

are calculated according to (9) (or its approximation (10)). Here, the approximation sign is used

instead of equality sign since we have neglected the probability that a single noise DFT value is greater than both the first

(A1) and the second (A2) lowest signal DFT component. In other words, it has been assumed that the noise due to the missing

samples is distributed in such a way that if one noise value surpasses the second largest component A2, then there will be at

least one additional noise component which is above the lowest signal component A1.

Probability that: (a) at least one noise DFT value is greater than the third signal component (A3), and that (b) at least one

noise value is greater than the second component (A2), and that (c) at least one noise component is greater than the first

component (A1), producing all three wrong positions of frequencies, is

P (3) ∼= PE1PE2PE3.

Similarly, the probability that there are two wrong detections is approximated by the probability that there is at least one

noise component above the lowest signal component (equal to PE1) and at the same time there is at least one noise component

above the second signal component (equal to PE2). There should be no noise component above the strongest signal value

(1− PE3) as well. This probability is

P (2) ∼= PE1PE2(1− PE3).

Here, similar approximations like in the case of P (1) calculations are done.

Based on the previous results, the total average number of wrongly detected components is

NE = P (1) + 2P (2) + 3P (3) ∼= PE1 + PE1PE2 + PE1PE2PE2

with NWD[%] = NE/3× 100 being a percent of the mean number of wrongly detected components and PEi (i = 1, 2, 3) are

calculated according to (9) or its approximation (10).

In order to illustrate the previous effects on the reconstruction process, a single realization of a signal disturbed in the time-

frequency domain is presented in Fig.3 with a small number of samples N = 64 and M = 8. The STFT of noisy (disturbed)

signal is presented (top), along with the signal’s DFT (radar image) in Fig.3a). The CS theory based reconstruction, after all

disturbed samples are removed in the time domain, is shown in Fig.3b). The initial (norm-two or L-estimation) reconstruction,

when all disturbed STFT values are just omitted, for this single realization is shown in Fig.3c). Reconstruction based on the
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Fig. 3. A single realization illustration with N = 64, M = 8 and: (a) Signal with samples disturbed at arbitrary positions in the TF domain, (b) Signal

with all disturbed samples removed in the time domain, (c) Signals with the disturbed samples removed in the TF domain, (d) Original/reconstructed signal.

presented method in the time-frequency domain results with the original DFT values, corresponding to undisturbed original

rigid body image, presented in Fig.3d). Here we may conclude that a strong disturbance (corresponding to a micro-Doppler

effect) completely masks the rigid body components in Fig.3a). Since the disturbance occurs in most of the time domain

instants, then time domain analysis does not improve the results, Fig.3b). After the disturbed samples are removed then the

norm-two based reconstruction is done, setting all disturbed samples to zero. Normalized reconstructed values are shown in

Fig.3c). The norm-two reconstruction result is used in the described CS based reconstruction to get the reconstructed signal

equal to the original signal Fig.3d). Next, a statistical analysis is described and performed with various numbers of missing

STFT values.

A set of 100 random realizations of the signal and disturbance is used for averaging. In the DFT case (special case when the

STFT reduces to the signal itself, M = 1), the results for wrong detection, as function of the percent of removed/unavailable

samples, are presented in Fig.4a) for N = 256. In the case of the STFT, with M = 2, the results for wrong detection are

presented in Fig.4b). The statistically obtained results are presented by a dashed blue line. The analysis based on the equivalent

number of available samples in the time domain (2) is presented by a red line (solid red line for exact expression for the

error probability and dotted red line for the approximate error expression). Matching with statistical results is high. The wrong

detection percent if the STFT values (time-frequency domain) are omitted is presented by a solid green line. The analysis

is repeated with different values of the window width M and the results are presented in Fig.4c)-d). It can be seen that for

the omitted samples which are highly concentrated in the time-frequency domain their influence on the reconstruction (solid

green lines) is low, while they significantly degrades performance of the time domain analysis (dashed blue lines) in Fig.4a)-d).

The analysis has been performed using the nonoverlapping STFT calculation without assuming distant rigid body components.

According to theoretical consideration in Section III, an additional STFT performance improvement can be achieved by using

either the overlapping STFT calculation or assuming that the components may not be very close to each other.
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Fig. 4. An average number of wrongly detected components (in percent) for N = 256: (a) Signal in time (M = 1), (b) The TF analysis with M = 2, (c)

The TF analysis with M = 4, (d) The TF analysis with M = 8, (e) The TF analysis with M = 16. The statistically obtained results using TF analysis are

presented by solid green lines. The statistically obtained results by using time domain analysis are presented by dashed blue lines. The results obtained by

the theory are presented by a solid red line, while the results obtained by using approximative error analysis are given by a red dotted line.

The worst case for the time domain (or frequency domain) analysis would be when the disturbances is well concentrated in

time-frequency, but cover all the time and frequency interval. This case appears in some applications, like for example when

a rigid body signal is disturbed by a simple linear frequency modulated (FM) or a sinusoidally modulated signal caused by

a micro-Doppler effect. In these practically interesting examples, an analysis in the time (or in the frequency) domain would

be almost impossible if the disturbance is high. The presented time-frequency based improvement will be even greater in

these practical cases than in the statistical analysis presented in this section (where random positions of the disturbances in

the time-frequency domain are assumed). Random positions allow a possibility that some or all of disturbances occupy only

one time interval, while in practice even a small percentage of time-frequency disturbed area could spread over all time and

frequency range and make the reconstruction impossible.
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IV. CONCLUSION

The compressive sensing methods for the rigid body recovery are presented in the first part of this two-part paper, considering

the micro-Doppler and rigid body separation. Since the compressive sensing theory produces quite conservative bounds for

engineering applications, a statistical approach to the reconstruction from a reduced set of samples in the time-frequency domain

is presented in this part of the paper. The approach is illustrated in a case study example. It shows that the full recovery results

may be expected with high probability, well bellow the theoretical bounds, which include some zero probability events. One

such event is described in the Appendix.

V. APPENDIX

As an illustration, consider the DFT of a signal with N = 1024 samples. If just one sample is missing and the number of

available samples is NA = N − 1 then the DFT reconstitution matrix is an equiangular tight frame with the exact condition

for the signal reconstruction given by

K <
1

2

(
1 +

√
N −NA

NA (N − 1)

)
= N/2 = 512

nonzero DFT values. Assume that the missing sample is xrb(q) and that its value has to be reconstructed. Consider a rigid

body signal with sparsity K

xrb(n) =

K∑
i=1

ρie
j2πk0in/N .

The signal reconstruction is based on x0(n) = xrb(n) + zδ(n − q) where z indicates arbitrary deviation from the unknown

value of xrb(n). The DFT of the signal x0(n) is

X0(k) = N

K∑
i=1

ρiδ(k − k0i) + ze−j2πkq/N .

Using the norm-zero definition, we get the number of non-zero DFT values as

‖X0‖0 =

N−1∑
k=0

|X0(k)|0 =

K∑
i=1

∣∣∣Nρi + ze−j2πk0iq/N
∣∣∣0 +

N∑
i=K+1

|z|0

Obviously

‖X0‖0 =



N for |z| 6= 0 and z 6= −Nρiej2πk0iq/N for any i

N − 1 for |z| 6= 0 and z = −Nρiej2πk0iq/N only for one i

.. .. ...

N − P for |z| 6= 0 and z = −Nρiej2πk0iq/N for P values of i

N −K for |z| 6= 0 and z = −Nρiej2πk0iq/N = −NC for all i = 1, ..,K

K for |z| = 0.

With just one missing (eliminated) value minimum of ‖X0‖0 is achieved for z = 0 only if K < N −K, i.e. K < N/2.

From the previous equation, we see that for K = N/2, the last two rows will produce the same result N −K = N/2 and

K = N/2. In that case the minimum of ‖X0‖0 can not produce unique solution. The condition ‖X0‖0 = N −K also requires

ρ1e
j2πk01q/N = ρ2e

j2πk02q/N = ρ3e
j2πk03q/N = ... = ρKe

j2πk0Kq/N = C

In reality the case that K = 512 reflection coefficients have equal amplitude

|ρ1| = |ρ2| = |ρ3| = ... = |ρK |
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and that at the same time the missing sample position q is such that

arg {ρ1}+ 2πk01q/N = arg {ρ2}+ 2πk02q/N = ... = arg {ρK}+ 2πk0Kq/N (11)

is a zero probability event of the second order. It can be neglected or treated as singular case. Thus, one missing sample allows

reconstruction with values of K = N/2, with probability close to one.

This singularity can also be explained in an illustrative way. Consider the DFT transform X0(k) of the singular case

ρ1 = ρ2 = ρ3 = ... = ρK = C with zero phases of all ρi. According to (11), the critical case is when the missing sample is

xrb(0) with q = 0 since k0i are random values not equal to each other. The DFT in this (second order) zero-probability event

case is

X0(k) =

K∑
i=1

NCδ(k − k0i) + z.

It is a comb of equal values at K = N/2 frequencies k = k0i. By using z = −NC, we cancel out all DFT values at k = k0i

however introduce new DFT values −NC at k 6= k0i. These two DFTs are complementary to each other, but have the same

sparsity.

If K > N/2 with ρ1 = ρ2 = ρ3 = ... = ρK = C, in the same way we can easily conclude that ‖X0‖0 will produce

z = −NC with sparsity N −K < N/2. However, it is not a signal we intended to recover.

The analysis can easily be generalized to a signal with Q = N −M missing samples.
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