
A Software Tool for Compressive Sensing based 

Time-Frequency Analysis 
 

Andjela Draganić, Miloš Brajović, Irena Orović, Srdjan Stanković
1
 

1
 University of Montenegro, Faculty of Electrical Engineering, Dzordza Vasingtona bb, 81000 Podgorica, Montenegro 

andjelad@ac.me 

 

 
Abstract – A software tool that implements Compressive sensing 

based time-frequency analysis and performs instantaneous 

frequency estimation, is proposed and described in the paper. A 

focus is made on the signals with fast varying instantaneous 

frequency (IF), which can be accurately estimated using complex-

time distribution. Therefore, the proposed tool offers different 

possibilities to adjust parameters of complex-lag distributions in 

order to comply with fast-varying IF laws. Moreover, beside the 

standard implementation based on the full set of samples, a 

compressive sensing based time-frequency approach is included 

in order to obtain sparse time-frequency representation. Sparse 

time-frequency representation is reconstructed from very few 

ambiguity domain observations. The tool performance is tested 

on real and synthetic signals.  
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I.  INTRODUCTION  

Achieving highly concentrated representation in the time- 
frequency (TF) domain is one of the main requirements in TF 
based signal processing applications. A number of distributions 
is introduced to suit with different types of signals, such as the 
short-time Fourier transform (STFT), Wigner distribution 
(WD), S-method, etc. Particularly, for signals characterized by 
fast instantaneous frequency (IF) variations, the complex-lag 
distributions are employed in order to concentrate the energy 
around IF and to provide efficient TF representation [1]-[5]. 
Recently, it has been shown that the TF analysis may benefit 
from the Compressive sensing (CS) [6] and related signal 
reconstruction algorithms. Namely, the implementation of the 
complex-time distribution can be combined with the CS in the 
ambiguity domain aiming to provide very sparse TF 
representation. CS approach [4],[7],[8] defines conditions for 
high quality signal reconstruction in the cases of randomly 
under-sampled data, [7]-[10]. A signal representation needs to 
be sparse in certain domain, having zero values for most of the 
coefficients. Also, the signal should be dense in the domain of 
measurements acquisition. In this paper, we have observed the 
case of two-dimensional CS approach, where the 
measurements are collected in the ambiguity domain, while the 
reconstruction produces a sparse TF representations [9],[12]-
[15]. The implementation of CS based type of TF analysis 
requires the knowledge of both the TF distributions and CS 
reconstruction using complex mathematical algorithms. Hence, 
in order to facilitate the calculation of CS based TF 
representations, the proposed software provides a user-friendly 

environment with different set up options. Particularly, the user 
can define the measurements acquisition process using the 
mask, chose the measurements inside or outside the mask, 
parameters of the complex-time distribution, etc. In order to 
evaluate its performance, several types of fast varying test 
signals are included within the tool. There is also a possibility 
to choose between analytic or real signals. Based on the 
calculation of the sparse TF distribution, the proposed software 
tool provides the estimation of the signal’s IF. The estimation 
results are compared with the exact IF of the signal. The true 
and estimated IFs can be illustrated graphically within the tool, 
but can be also evaluated numerically using the mean square 
error. Consequently, the proposed software tool can be used for 
educational and research purposes, and could be upgraded for a 
specialized applications and scenarios. 

The paper is organized as follows. Theoretical background 
on the distributions implemented within the software is given 
in Section II. The CS-based TF analysis is introduced in this 
section as well. Basic building blocks of the software tool and 
related functionalities are given in Section III. Section IV 
contains experimental results. Concluding remarks are given in 
the Section V. 

II. THEORETICAL BACKGROUND  

A. Generalized complex-time distributions 

Accurate estimation of the signal’s IF using TF 

distributions/representations is important for a number of real-

world applications [4],[15],[16]. Various TF distributions have 

been developed and each of them is suitable for certain types of 

signals. In the case of fast varying IF, the commonly used 

distributions like the WD or Cohen class distributions fail to 

provide the satisfactory results regarding the concentration and 

ability to track the IF changes. Therefore, the higher order 

distributions with complex-lag argument are used for such 

signals. A general form of the complex-time distributions of 

order N is given by [4]: 

 ( , ) ( , ) ,N j
CT NT t R t e d  






    (1) 

where complex-lag moment RN(t,τ) is defined as: 
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For the sake of simplicity, the 4
th
 order complex-time 

distribution (N=4) is considered in the sequel, particularly its 



ambiguity domain-based implementation. The ambiguity 
functions with real and complex argument can be defined as: 
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Both real-lag AR(θ,τ) and complex-lag AC(θ,τ) ambiguity 

functions can be filtered using the kernel K(θ,τ) [4]:  

( , ) ( , ) ( , )K
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The resulting ambiguity function can be obtained as a 

convolution of ( , )K
RA    and ( , )K

CA    within the window 

function ( )  : 
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Finally, the complex-time distribution is obtained as a two-

dimensional Fourier transform of ( , )CTA   :  
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Choosing an appropriate kernel function K(θ,τ) and 

distribution order N, the unwanted components such as cross 

terms or interference terms, can be removed from the TF 

plane, but usually on the cost of distribution concentration.  

B. CS-based TF analysis 

For a variety of signals in real applications, there is a 
certain domain in which the signal is represented by a few non-
zero coefficients that bring important information. This 

property is referred as sparsity. Generally, the signals can be 
sparse either in time, frequency or time-frequency domain 
[17]-[20], and for such signals the sampling can be done with 
far less samples than it is required by the conventional 
sampling theorem. The sampling procedure should be done in a 
way which assures accurate signal reconstruction from the 
reduced set of samples. It has been proven that signal needs to 
be sampled in a random manner to provide satisfactory results. 
In this paper, we assume that a signal is sparse in TF domain, 
while it is acquired in the ambiguity domain. The 
measurements acquisition is done by randomly selecting the 
samples from the mask having low-pass characteristics 
(centered at the origin of ambiguity domain). Depending on the 
signal type, some measurement can be collected outside the 
mask, as well.  

Starting from the relation between the ambiguity function 
and complex-time distribution: 

 ( , ) ( , )CTA T t   F , (7) 

where F denotes 2D Fourier transform matrix, the 2D CS 

problem can be derived. Coefficients that belong to the signal 

terms are concentrated around the origin in the ambiguity 

plane, while the unwanted terms are dislocated. Hence, the 

measurements should be taken from the region around the 

origin, and then used to obtain a sparse TF distribution. The 

ambiguity function is multiplied by the mask:  
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 and will be referred as the masked ambiguity function. where 
Mx and My denotes the rectangular mask dimensions, P=(N-
Mx), Q=(N-My)/2 and N×N  is dimension of the ambiguity 
function. 

 

 

Parameters set up block Display panel IF estimation results

 
Figure 1. Main parts of the proposed software 



After the random selection of the ambiguity domain 

coefficients is performed, m
vecA vector of the acquired 

ambiguity coefficients is obtained. The optimization problem 

is then formulated as follows: 
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where partF denotes subsampled 2D FT, keeping all columns 

of the matrix and only those rows whose positions corresponds 

to the positions of randomly selected samples. The solution of 

the above problem is an estimated sparse TF distribution Ts. 

 

III. THE PROPOSED SOFTWARE TOOL FOR CS-BASED TF 

ANALYSIS 

 
The software tool is consisted of several blocks: 

- Parameters set up block - which is used to chose/define a 
signal, to specify the kernel and window parameters and to 
select appropriate distribution, and finally to specify the 
measurements selection; 
- Display panel – used to represent the signal in the time and 
frequency domains, to display the original and masked 
ambiguity domain, TF and sparse TF representation;  
- IF estimation results - containing graphical representation of 
the true and estimated IFs as well as the numerical evaluation 
using the mean square error. 
 The software tool is shown in Fig. 1. In Parameters set up 
block, a user can choose to test the CS-based IF estimation 
procedure on some of the already implemented synthetic 
signals, listed in the drop-down menu. Also, a real signal can 
be chosen as well, such as the real audio/musical signals for 
example. A window width parameters and the kernel type can 
be chosen within this part as well. Regarding the types of TF 
distributions, the WD and complex-time distribution are 
implemented within the tool. Since we have examined fast 
varying phase signals, the complex-time distribution is chosen 
in the examples. 

In the part defining the measurements selection, one can 

choose certain amount of measurements within the mask, and 

certain amount of measurements outside the mask. In both 

cases, measurements are selected in a random manner. Mask is 

formed around the origin in ambiguity plane. Otherwise, the 

user can select a full set of samples in the ambiguity domain 

for the standard TF calculation procedure.  
The block IF estimation results contains a graph for IF 

representation. Both, estimated and true IFs are displayed 
(using different colors – blue is for true IF while the red is for 
the estimated IF). Note that, the true IF in the cases of analytic 
signals will correspond to the first phase derivative, while in 
the cases of real signals, “true” IF is estimated from the 
starting, non-sparse TF distribution. In this part of the tool, the 
mean square error (MSE) between original and estimated IFs is 
shown as well.  

 

IV. EXPERIMENTAL RESULTS 

The functionality of the software will be demonstrated on 

two types of signals: analytic and real one.  

Example 1: Flute signal (real signal case)  

 

Audio signals, such as piano, flute, guitar and clarinet signals 

produced by different instruments are included within the tool. 

When observing harmonics components, the small variations 

in the time-frequency domain can be noticed if the complex-

time distributions are used. Therefore, we have applied 

complex-time distributions and test the accuracy of the IF 

estimation from the CS-based sparse TF. The flute signal is 

considered for the experiment. When observing ambiguity 

function of this signal, it can be seen that components are not 

perfectly concentrated around the origin. Therefore, certain 

percent of measurements is used inside the mask (10%) and 

outside the mask (50%). The size of mask is 5×5, while the 

total size of the TF plane is 40×40 points. 

 

 
 

Figure 2. Sparse TF estimation for the flute signal 

 

 
 

Figure 3. IFs for the components of the flute signal. Blue line is for true 
IFs, while red line denotes estimated Ifs 



 

The ambiguity function, the standard complex-time TF and 
CS-based sparse TF are shown in Fig. 2, for a considered flute 
signal (two harmonics are represented). The estimated IF of 
each component and corresponding MSEs are shown in Fig. 3. 

 

Example 2: Synthetic signal 

 
The results for sparse TF analysis and IF estimation, in the 

case of synthetic two-component signal, are shown in the 
sequel. Unlike the previous example, this signal has 
components concentrated around the origin in the ambiguity 
plane. Therefore, 50% percent of measurements is used only 
inside the mask. The size of mask is 25×25 (the total ambiguity 
plane size is 90×90). Fig. 4 illustrates the signal in time, 
frequency and TF domain, as well as its sparse TF 
representation. 

 

 
 

Figure 4. Results for obtaining sparse TF-analytic signal 
 

V. CONCLUSION 

 
In this paper we presented a software tool implementing the 

algorithms for obtaining sparse TF representation for IF 
estimation based on a reduced set of ambiguity domain 
measurements. Our focus was on the signals with fast varying 
IF, for which the standard distributions cannot provide 
satisfactory results. Therefore, we have implemented complex-
time distributions, both the standard and CS-based form, with 
the possibility to set up various parameters depending on the 
nature of test signals. This tool represents an initial version of 
the future multi-modular software – Virtual Instrument for 
Compressive Sensing. Hence, the future work will be oriented 
toward the extension of the software tool that will include more 
CS-based approaches, additional TF distributions, signal 
upload from a file format, and different mask definitions.  
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