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Abstract: An algorithm for compressive sensing reconstruction of signals in the 

Hermite expansion domain is proposed. The compressive sensing problem is 

formulated in the Hermite framework, allowing fast and efficient reconstruction 

of missing data by exploiting the concentration of signal’s representation in the 

Hermite basis.   

 

Introduction: The Hermite expansion approach has drawn significant 

attention in certain signal processing applications where classical tools, 

including also the Fourier transform, are not suitable for analysis. 

Namely, the Hermite expansion is an orthogonal transform used in 

image processing, tomography, analysis of protein structure, 

biomedicine [1-3]. The Hermite functions have been used as a suitable 

basis for representation and compression of QRS complexes of ECG 

signals, important for diagnosis and medical treatment. Particularly, the 

application in compression algorithms shows that the reconstruction of 

ECG signals can be done using a few Hermite coefficients [1].  

Compressive sensing (CS) as an alternative sampling theory assumes 

signal sparsity in a certain transform domain in order to achieve 

successful reconstruction of missing data. A reduced set of observations 

in CS may appear as a consequence of a sampling strategy, or by 

omitting samples highly corrupted by noise. The reconstructed signal 

can be obtained by using the 1� -norm minimization via convex 

optimization algorithms [4-6], which could be complex in terms of the 

realization and the number of iterations. Here, we provide an iterative 

reconstruction approach based on a steepest descent method using 1�  

norm minimization in the Hermite transform domain. Namely, the CS 

framework is defined in the context of the Hermite expansion, while the 

achieved results demonstrate successful reconstruction using the 

gradient-based solution [7]. The proposed approach provides faster 

performance compared to the other convex algorithms such as the 

commonly used primal-dual method within the 1� -magic toolbox [8].     

 

Hermite expansion: The p-th order Hermite function can be related with 

the p-th order Hermite polynomial:  
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where the parameter σ can be used to stretch or compress Hermite 

functions, in order to match the analysed signal [1]. A signal 

representation using the Hermite basis is referenced as Hermite 

expansion [1-3]: 
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For a continuous signal f(t), an infinite number N → ∞  of Hermite 

functions is needed for an accurate expansion. However, in practice, a 

finite number of N Hermite functions is used, as an approximation of 

the signal. The p-th order Hermite coefficient cp is defined as: 
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. If Hermite functions are sampled at zeros of the N-th order Hermite 

polynomial, then the summation (2) becomes a finite orthonormal 

representation for the case of discrete signals, [1]. In numerical 

calculation, the quadrature approximations (as a discrete form of the 

Hermite expansion) are used to obtain integral in (3). For instance, the 

Gauss-Hermite quadrature is defined as: 
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where xn denotes zero of the  N-th Hermite polynomial. For a signal of 

length N, the complete set of discrete Hermite functions consists of 

exactly N functions [1]. In some applications, a smaller number of 

Hermite functions (compared to signal length) can be used [3]. To 

simplify the notation, in the sequel the argument xn will be replaced 

with the order n (of the Hermite polynomial zeros). The expansion 

using N Hermite functions can be written in matrix form. First, we 

define the Hermite transform matrix WH (of size N N× ): 
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If the vector of Hermite coefficients is: [ ]0 1 1, ,...,
T

N
c c c −=c , and vector 

of M signal samples is: [ (1), (2),..., ( )]T
f f f N=f , then we have: 

 H
=c W f . (6) 

Having in mind the Gauss-Hermite approximation (4), the inverse 

matrix 1−

H
W  contains N Hermite functions is given by: 
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Now, the Hermite expansion can be defined as follows: 

 1

H

−= =f W c Ψc . (8) 

 

Compressive sensing problem formulation: Let assume that the 

compressive sensing is done using a random selection of MA signal 

values modelled by a random measurement matrix Φ : 

 = =
cs cs

y = Φf ΦΨc A c . (9) 

Here, ycs denotes the vector of available samples, matrix Acs is obtained 

from the inverse Hermite transform matrix Ψ  by omitting the rows 

corresponding to the missing samples. Hence, we deal with 

undetermined system of MA linear equations and N unknowns. Although 

this system may have infinitely many solutions, the idea is to search for 

the sparsest one. Thus, the reconstruction problem can be defined as: 
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Gradient based reconstruction algorithm: A previous minimization 

problem can be solved by adapting the use of gradient descent [7] in the 

Hermite transform domain. The idea of the proposed method is to 

iteratively recover the values of missing samples, by a small 

appropriately estimated gradient-based step. The 1�  norm behaviour is 

examined in the Hermite expansion domain acting as a sparsity 

measure.  

Assume that the positions of available samples are defined by the set

Θ , where ΘΘΘΘ consists of MA<<N elements and ΘΘΘΘ⊂N={1, 2, .., N}. 

Denote by ni indices defined by: 
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The missing samples positions are form the setΘ , such that ∪ =Θ Θ N . 

The assumed signal sparsity is K N<< . 

The algorithm starts from the column vector y which contains available 

samples ycs and zero values at the positions of missing samples. Hence, 

y can be defined as: ( ) ( )y n f n= , for n ∈Θ , otherwise y(n)=0 (with 

f(n) being the original signal samples). Assume that the initial value of 

the step is ( )max | |∆ = y . Each iteration (denoted by k) consists of the 

following steps. 

1) Form a matrix Y with N repeated vectors y:  
( )( ) ( ) ( ) ( )
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where the notation 11xN is used for all-ones matrix of dimensions 1xN.  

 

2) Calculate two test matrices a follows: 
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For better understanding, the previous matrices can be written in an 

expanded form given by: 
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where ∆  is obtained by multiplying constant ∆ by a diagonal matrix 

with elements ( )
i

n nδ − , for n, i={1, 2, … , N}. 

3) Based on calculated test matrices ( )k

+∆Y  and ( )k

−∆Y , the gradient vector 

G is calculated as: 

 

{ } { }
1 1

1 1 1

1 1 1

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1

( ) ( ) ( )

1 1 1

1

2

1

2

c c
k c k c k

k k k

H H H

k k k

H H H

+ −

+ + +

− − −

 = − =
  ∆

 = −  ∆

 −   

∆ ∆

∆ ∆ ∆

∆ ∆ ∆

G Y Y

W y W y W y

W y W y W y

� �

� � �

� � �

�

�

H H

 (13) 

with 
( ){}c ⋅H  being the operator that calculates the Hermite coefficients 

along the matrix columns, and operator 
1

( )c
⋅
�

 calculates 1�  norm for 

each column separately. Note that gradient vector has zero values for 

signal samples at available samples positions. 

 

4) Finally, the signal vector y is adjusted as follows: 
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As G  is proportional to the error −y f , the missing values will 

converge to the true signal values. In order to obtain a high 

reconstruction precision, the step ∆  should be reduced when 

adjustments in (15) does not improve precision. This can be detected 

either by measuring reconstructed signal sparsity or by detecting 

oscillatory nature of the adjustments, [7].  

 

Experimental evaluation: Let us observe the signal in the form: 
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which is sparse in the Hermite transform domain with K = 35 

components. The signal is corrupted by white Gaussian noise, with 

SNR=30 dB, and only 50% of samples are available. The amplitudes Ai 

of components and the orders of Hermite functions pi are randomly 

chosen. The reconstruction is done using the proposed approach (Fig. 

1), with MSE ∼10
-3

. We may observe that, although the signal is not 

strictly sparse, the exact reconstruction is achieved. Compared to the 

ℓ1-magic algorithm [8] which belongs to the group of convex 

optimizations as well, the processing time (in Matlab) for the proposed 

algorithm is 2 to 4 times lower (depending on the random 

measurements and amplitudes). Also, the proposed algorithm will 

progressively accelerate as the number of available samples increases.    

The algorithm is examined also on a real QRS complex of the ECG 

signals [9], shown in Fig. 2. In order to achieve sparsity, QRS complex 

needs to be sampled at the points proportional to the roots of Hermite 

polynomial. The sparsification is done according to the procedure in [1] 

to obtain signal values at adequate position. The error due to 

sparsification is 5.23%, which is medically acceptable as long as it is 

less than 10% [1]. The reconstruction MSE is 1.262×10
-7

 obtained after 

18 iterations of the proposed algorithm. The reconstructed results are 

compared with original signal in Fig. 2.  

 

Conclusion: A gradient descent algorithm based on the Hermite 

transform domain solves the problem of CS reconstruction for signals 

that exhibit sparsity in the Hermite basis domain. The highly accurate 

algorithm performance is proven on both synthetic and real data. 

 
Fig. 1 Reconstruction results: a - desired signal (solid line) and available 

samples (crosses), b - reconstructed signal; c – desired Hermite coefficients 

(solid line) and coefficients of signal with missing samples (crosses), d – 

Hermite coefficients of the reconstructed signal 

 

 
Fig. 2 Reconstruction results for ECG signal (QRS complex): a - desired 

(solid line) and reconstructed signal (dashed line), b – Hermite coefficients 

of desired (solid line) and reconstructed signal (crosses) 

 

  Acknowledgment: This work is supported by the Montenegrin Ministry 

of Science, project grant: CS-ICT “New ICT Compressive sensing 

based trends applied to: multimedia, biomedicine and communications”. 

  

The authors are with the University of Montenegro, Faculty of 

Electrical Engineering, 81000 Podgorica. E-mail: irenao@ac.me 

References 

1.  Sandryhaila, A., Saba, S., Puschel, M., Kovacevic, J., ‘Efficient 

compression of QRS complexes using Hermite expansion’, IEEE 

Transactions on Signal Processing, 2012, vol.60, no.2, pp.947-955, 

doi: 10.1109/TSP.2011.2173336 

2.  Leibon, G. , Rockmore, D. N., W. Park, Taintor, R., Chirikjian, G. S., 

‘A fast Hermite transform’, Theoretical Computer Science, 2008, vol. 

409, issue 2, pp. 211-228, doi: 10.1016/j.tcs.2008.09.010 

3.  Stankovic, S., Orovic, I., Krylov, A., ‘The two-dimensional Hermite 

S-method for high resolution inverse synthetic aperture radar imaging 

applications’, IET Signal Proc., 2010, vol. 4, no. 4,  pp.  352-362, doi: 

10.1049/iet-spr.2009.0060 

4.  Candes, E., Romberg,, J., Tao, T., ‘Robust uncertainty principles: 

Exact recovery from highly incomplete Fourier information’, 

IEEE Trans. on Information Theory, 52(2), pp. 489 – 509, 2006, doi: 

10.1109/TIT.2005.862083  

5. Wright, S.J. ‘Primal-Dual Interior-Point Methods’ (SIAM 

Publications, Boston, 1997) 

6.  Davenport, M., Duarte, M., Eldar, Y., Kutyniok, G., ‘Introduction to 

compressed sensing’, in ‘Compressed Sensing: Theory and 

Applications’ (Cambridge University Press, Cambridge, 2012) 

7.  Stankovic, L.,  Dakovic, M., Vujovic S., ‘Adaptive variable step 

algorithm for missing samples recovery in sparse signals’, IET Signal 

Processing, 2014, vol. 8, no. 3, pp. 246 -256, doi: 10.1049/iet-

spr.2013.0385 

8. Candes, E., Romberg, J., ’ℓ1-magic: Recovery of sparse signals via     

Convex programming,’ 2005, www.acm.caltech.edu/l1magic/downlo 

ads/l1magic.pdf  

9.  PhysioNet: MIT-BIH ECG Compression Test Database, 

http://www.physionet.org/physiobank/database/cdb, accessed 

February 2015 

0 100 200 300 400 500

-5

0

5

n

a

0 100 200 300 400 500
0

2

4

6

c

p

0 100 200 300 400 500

-5

0

5

n

b

0 100 200 300 400 500
0

2

4

6

d

p

-50 0 50

-0.2

0

0.2

0.4

a

t [ms]

10 20 30 40 50

-0.4

-0.2

0

0.2

b

p


