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Abstract—The paper presents a statistical performance ana-
lyzer for compressive sensing gradient algorithm. It is composed
of two main parts. The first part is designed as a tool for signal
reconstruction based on the gradient algorithm. The possibility
to generate various signals is incorporated through the special
panel which is used to set the length, sparsity, percent of
available samples and the ranges of amplitude. Also, a noise
with specified variance can be added through this panel as well.
The second part of presented instrument is dedicated to the
statistical analysis. Different analysis can be performed through
this part such as the calculation of MSE as a function of noise
variance or signal sparsity, as well as the analysis of MSE and
computational time in terms of sparsity and the amount of
missing samples. This instrument can be useful for both the
research and educational purpose for the area of compressive
sensing and signal reconstruction.

Keywords—Statistical Analyzer; Gradient Algorithm; Com-
pressive Sensing; Sparse signal processing

I. INTRODUCTION

Signals that can be represented by a small number of non-
zero coefficients compared to the signal length are called
sparse in the observed representation basis. Signal having
sparse presentation in one domain is usually dense in some
other domain. For example, each pixel of image usually
has non-zero value. However, the Discrete cosine transform
(DCT) for most of the pictures has small number of non-zero
coefficients while the rest of them can be neglected without
loosing the image quality. Thus, we can say that DCT is
sparse domain for most of the images. The sparsity domain
can be also any other transform domain such as Discrete
Fourier transform (DFT), Discrete wavelet domain (DWT),
etc. Sparse signals are of interest in many practical applications
like radars, sonars, biomedicine, etc. The area dealing with
sparse signals and its reconstruction from an incomplete set
of samples is called Compressive sensing (CS) and it has been
of great interest in the last decade [1], [2].

The idea behind the CS concept is to reduce sampling rate
compared to the conventional one defined by Nyquist theorem.
It was shown that the signals having sparse presentation in
certain domain can be reconstructed from reduced set of
linear measurements. The number of measurements that is
sufficient to reconstruct the whole signal is related to the
sparsity of considered signal. For lower level of sparsity, a
smaller number of measurements is required. Theory of CS is
studied in [3–5], and there are two main research directions

there. The first one is about sensing matrix which makes
relation between N samples of signal in dense domain and its
M (M � N ) linear measurements. The second one is about
reconstruction of the original signal of length N from its M
linear measurements. There are many algorithms dealing with
this kind of problem, and among them we may distinguish
two major classes: convex relaxations algorithms and greedy
algorithms (based on matching pursuit, thresholding, etc) [6],
[7].

This paper brings the realization of the virtual instrument
and analyzer for recently proposed gradient algorithm [8]
belonging to convex class of algorithms. The instrument is
designed to facilitate the use and analysis of the mentioned
algorithm in many different situation. It allows to design
different signals by specifying the level of sparsity, the number
of measurements, the components amplitudes, etc. Also, input
noise can be added in order to test and analyze algorithm
since most of the algorithms do not perform very well in this
case. The second part of instrument is statistical performance
analyzer. Here, we can perform different statistical analysis
and obtained results are averaged over given number of itera-
tions and shown graphically. Parameter of interest here is MSE
and it is presented as a functions of sparsity or input noise
variance. Also, MSE and computational time are presented as
a functions of sparsity and number of missing samples.

The paper is organized as follows. After introduction, the
theoretical background about CS is provided in Section II.
Section III is related to the gradient algorithm. The proposed
virtual instrument is described in Section IV. The conclusion
is given in Section V.

II. THEORETICAL BACKGROUND

Consider discrete-time signal x(n), where
n = 0, 1, . . . , N − 1. This signal might have sparse
presentation in various domains. Here, we will consider the
DFT as a sparse domain of signal. A vector of time domain
signal samples will be denoted by x. The FT transformation
of considered signal will be denoted by X(k), where
k = 0, 1, . . . , N − 1, and vector presentation of this signal
will be X. The relations between signal x and its transform
X can be expressed by:



X = Wx (1)
x = W−1X. (2)

where W is N × N DFT matrix with elements W (n, k) =
exp(−2jπnk/N).

Let suppose that signal x have only M (M << N ) available
samples, while the other N −M samples are missing or are
unavailable. Vector of available samples y(i) = x(ni), where
i = 1, . . . ,M will be denoted as y. These available samples
are actually linear measurements of signal X and matrix A
obtained from matrix W−1 by eliminating rows corresponding
to missing samples. This can also be expressed in matrix
notation as y = AX. As we can see, vector y is obtained
as a linear combination of elements from the vector X

Under assumption that signal X is sparse, the CS theory
states that whole signal X can be reconstructed from M
samples of y. By reconstructing X we can uniquely determine
x, since they present the same signal in two transformation
domains. Thus, the reconstruction task can be defined as:

X̃ = arg min ‖X‖0 subject to y = AX. (3)

Here, the optimal solution would be the sparsest vector
satisfying the linear system of equations. However, solving
the problem using the l0-norm minimization is NP hard com-
binatorial approach. Moreover, in practical signal processing
applications, l0-norm is sensitive to very small values even
of computer precision order [9]. It is the reason why l1-norm
minimization is commonly used. The reconstruction task can
be formulated as:

X̃ = arg min ‖X‖1 subject to y = AX. (4)

It is very important to note that solutions of (3) and (4) are
the same if matrix A satisfy reconstructed isometry properties
(RIP) [10].

After sparse signal X is approximated by (4), a recon-
structed signal is obtained as xr = W−1X.

III. GRADIENT ALGORITHM

Recently proposed gradient algorithm [8] for sparse signal
reconstruction belongs to class of convex optimization algo-
rithms. The idea behind this algorithm is to reconstruct time
domain samples that are missing by minimizing concentration
in sparse domain. Concentration in sparse domain can be
measured in various ways, but l1-norm is commonly used.
Algorithm will be explained in sequel. The sparse domain will
be DFT as it was mentioned before. We will review algorithm
from [8] next.

Consider a discrete-time signal x(n) of length N with some
samples that are missing or are not available. Missing samples
positions are denoted by ni, where i = 1, 2, . . . ,M , and M is
total number of missing samples. Assume that signal is sparse
in a DFT domain.

Step 0: Form the initial signal y(0)(n), where (0) means that
it is initial state (0 iteration) of algorithm, as:

y(0)(n) =

{
x(n) for available samples
0 for missing samples

(5)

Step 1: For each missing sample at ni we form two signals
y1(n) and y2(n) in each next iteration as

y
(k)
1 (n) =

{
y(k)(n) + ∆ for n = ni

y(k)(n) for n 6= ni
(6)

y
(k)
2 (n) =

{
y(k)(n)−∆ for n = ni

y(k)(n) for n 6= ni
(7)

where k is the iteration number. Constant ∆ is used to
determine whether the considered signal sample should be
decreased or increased.
Step 2: Estimate the differential of the signal transform
measure as

g(ni) =

∑∣∣∣DFT[y
(k)
1 (n)]

∣∣∣−∑∣∣∣DFT[y
(k)
2 (n)]

∣∣∣
N

, (8)

The differential of measure is proportional to the error
(y(k)(n)− x(n)).
Step 3: Form a gradient vector G with the same length as the
signal x(n). At positions of available samples, this vector has
value G(n) = 0. At the positions of missing samples it has
values g(ni) calculated by (8).
Step 4: Update the values of signal y(n) iteratively by

y(k+1)(n) = y(k)(n)−G(n). (9)

Repeating the presented iterative procedure, the missing
values are going to converge to the true signal values that
produce minimal concentration measure in the DFT (sparse)
domain.

IV. INSTRUMENT DESCRIPTION

Instrument for statistical performance analysis is described
in this section. The outlook of the instrument is presented in
Fig.1. The proposed instrument is implemented in MATLAB,
and it has two main functionalities. The first one is to test
the gradient algorithm [8] in various situations by setting up
all relevant parameters of input signal. The second one is to
perform various statistical analysis for this algorithm. Each of
these two functionalities will be explained next.

A first functionality of the instrument is to perform re-
construction for various input signals which can be made by
instrument. Signals are generated by panel named ”Generate
input signal”. Here we can create different input signals. First
option is to chose signal length. There are three predefined
lengths 128, 256, and 512. The next parameter which can be
chosen is percent of available samples. Next, there is slider
for sparsity adjustment. In this way signals with different
sparsities can be created in an easy way. Also the amplitude
range for signal components can be chosen. At the end,
there is entry field to determine variance of noise which



Fig. 1: Outlook of the presented instrument

will be added to available samples. When each of these
parameters is changed, a new signal with appropriate setup
is created. It is important to note that each signal is generated
with random signal components amplitudes from specified
range where number of signal components in DFT domain is
specified by signal sparsity slider. After the reconstructions
is performed by clicking ”Start” button at the bottom of
this panel, the reconstruction results are presented graphically
and numerically. The DFT domains of signal with missing
samples and reconstructed one are presented at the central
part of instrument. Below these graphical results, there are
numerical parameters describing the quality of reconstruction:
MSE, time, SNR input, SNR output, length and sparsity of
signal. In this way a different randomly generated signal can
be tested by instrument. An example of signal reconstruction
with sparsity s = 8 and 20% of missing samples is shown in
Fig.1.

The second part of the instrument is analyzer implemented
in panel ”Statistical analyzer”. There are three separate sec-
tions to perform different statistical analysis. Note that all
statistical analysis are calculated as many times as user has
specified in ”No. of iterations” entry field at the top of
panel. Then, the obtained results are averaged before they are
graphically presented.

The first part is for analyzing MSE as a function of input
noise variance. The panel for setting up parameters is titled
”MSE/Variance”. There are three input fields where user
can specify range for noise variance as well as number of
points between selected range. Signal sparsity and percent of
available samples is the same as the one given by ”Generate
input signal” panel. Clicking the ”Start” button at this panel the
analysis of MSE for all specified noise variances is calculated
and shown graphically as it is shown in Fig.2.

The second part of analyzer is ”MSE/Sparsity” panel. User
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Fig. 2: MSE as a function of signal sparsity
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Fig. 3: MSE as a function of variance of input noise
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Fig. 4: MSE as a function of signal sparsity and percent of
missing samples.
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Fig. 5: Computational time as a function of signal sparsity and
percent of missing samples.

can specify minimal and maximal sparsity as well as the step
between considered sparsities within chosen range. The per-
cent of available samples is the one given by ”Generate input
signal” panel. A new signal in each realization is generated
and missing samples are reconstructed by algorithm. Average
MSE for each considered sparsity is calculated (averaged) and
results are shown as in Fig.3.

The third part of analyzer is for calculating average MSE
and computational time for various combinations of sparsity
and percent of missing samples. The results are calculated and
then averaged. MSE and time as a functions of two variables
(sparsity and percent of missing samples) are presented then
as it is shown in Fig.4 and Fig.5.

V. CONCLUSION

A statistical performance analyzer for gradient based sig-
nal reconstruction algorithm is presented. To demonstrate
the performance of instrument for various input signals, a
special panel for setting up all relevant signal parameters is
presented. In this way, signals with different lengths, sparsities
and percent of available samples can be created and their
reconstruction can be performed. Reconstruction results are
shown graphically by presenting DFT domain of signal before
and after reconstructions. Also some measurable parameters
like MSE, reconstruction time, input SNR, output SNR are
presented. The performance analysis based on the statistical
tests are provided in the second part of the instrument. The
idea of this module is to analyze the MSE in the presence
of noise, then the influence of the signal sparsity and missing
samples on the reconstruction quality as well as to estimate
the reconstruction time for each of the tested scenarios.
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