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Abstract - Instantaneous frequency estimation of signals in a high 

noise environment is analyzed in the paper. An algorithm based 

on Ant colony optimization and Wigner distribution is proposed 

for solving the considered estimation problem. The proposed 

approach has been applied and tested on mono-component 

frequency-modulated signals. Numerical examples are given in 

order to demonstrate the algorithm’s performances in the 

analyzed framework.  
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I. INTRODUCTION 

During the last few decades, time-frequency signal analysis 
has drawn significant research attention in the area of signal 
processing [1]-[11]. A large number of time-frequency 
representations (TFRs) are developed for various applications 
of this scientific area. Estimation of the instantaneous 
frequency (IF) is an important application field of time-
frequency signal analysis [1], [4]-[11]. Many TFRs have the 
property of concentrating signals’ energy at and around the IF. 
This is the reason why the IF estimation problem formulation 
reduces to the determination of the TFR points with maximal 
values, in classical estimation approaches [1], [4], [8]. Wigner 
distribution (WD) has been widely used as an IF estimator of 
frequency modulated signals, since it highly concentrates 
signal in the time-frequency plane [6]-[10]. Accordingly, our 
study is restricted only to this representation as a starting point 
of the considered problem. The analysis of WD as an IF 
estimator was presented in detail in [6], [7], [10] and [11], 
where the estimation error sources were classified into four 
categories: bias, errors due to variations within the signal’s 
auto-terms, frequency discretization based errors and errors 
caused by a high noise. The influence of a high noise has 
attracted a significant research attention, since the estimation 
error which it induces dominates over other error sources when 
it occurs, as explained in [7], [8] and [9]. The high noise causes 
the estimation error since its high values, outside of the auto-
term, are for some time instants detected as maximum of the 
WD. Thus, this error is of impulse nature. The IF estimation in 
a high-noise environment is the main framework analyzed in 
this study. 

The artificial ant colonies concept is a representative 
example of multi-agent tools for problem solving without 

centralized control. Since they are introduced in the area of 
artificial intelligence, the whole set of optimization techniques 
based on ant colony systems, widely known as Ant colony 
optimization, have been developed and applied in different 
scientific areas, especially where the hard-solving local 
optimization problems arise [12]-[18]. The artificial ant 
colonies are one of many concepts in the so called swarm 
intelligence, where a population of artificial agents forms a 
collective intelligence over a specific environment [12]. 
Important application fields include edge detection, pattern 
recognition and segmentation of digital images [14]-[17]. Ant 
colony optimization usage in the area of data-mining is 
described in [18]. This paper presents a modification of the Ant 
colony optimization algorithm used for edge detection of 
digital images [15]. A new gradient which takes into account 
the fundamental properties of the IF described in [8] and [9] is 
developed and adopted in order to achieve a robust estimation 
in a high noise environment. 

II. INSTANTANEOUS FREQUENCY ESTIMATION 

In order to introduce basic definitions of IF and WD, as 
well as to define the IF estimation problem, we will start the 
analysis by considering the signal:  

 
( )( ) j ts t Ae  . (1) 

The instantaneous frequency of this signal is defined as the 

first derivative of signal phase: 

 ( ) '( )t t  . (2) 

In the further analysis it will be assumed that the 

considered signal is corrupted with additive, white, complex 

Gaussian noise ( )n : 

 ( ) ( ) ( )x t s t t 
,
 (3) 

with variance
2 . If ( )x t  is sampled with a sampling interval 

t , the Pseudo-Wigner distribution (PWD) of such discrete-

time signal is defined as: 

 
* 2( , ) ( ) ( ) ( ) j k t

h

k

PWD t w k t x t k t x t k t e 


 



      , (4) 

where hw  denotes the window function of the width h. For 

numerical realizations, the discrete PWD with window function 
of length N is defined as follows: 
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As it is emphasized in the Introduction, the estimation of 
the instantaneous frequency based on maxima of time-
frequency representations is an often used approach. If the 
discrete-time PWD given with (4) is used, the IF estimation 
problem can be written in the following form: 

 ( ) arg[max ( , )]t PWD t


  , (6) 

with ( )t  being the discrete instantaneous frequency, and 

( )t
 

being its estimate. In the analyzed framework the 

discrete PWD is used, and thus the equivalent formulation of 

(6) is given with: 

 ( ) arg[max ( , )]
k

k n PWD n k


 . (7) 

The optimization problem (6), i.e. (7) is the starting point of 
the topic analyzed in this paper. The time-frequency plane of 
(5) can be considered as a discrete grid, with n and k being the 
discrete time and frequency indices, respectively. In the further 
analysis, the absolute value of the representation should be 
calculated. Thus, the absolute PWD can be treated as a digital 
image in the context of the analyzed problem. The idea behind 
this study is to adopt the Ant colony optimization algorithm for 
edge detection for the purpose of IF estimation in the presence 
of high-level noise, since in that case the PWD maxima are 
allocated from the IF frequency points, thus producing the 
wrong estimation when solving (6), i.e. (7). 

III. ANT COLONY OPTIMIZATION ALGORITHM FOR EDGE 

DETECTION APPLIED ON THE PSEUDO-WIGNER DISTRIBUTION 

A digital image, as well as the absolute value of the discrete 

PWD, i.e. a matrix a  with dimensions M N  can be observed 

as a rectangular grid, on which artificial ants move to adjacent 
cells. At the beginning of the optimization algorithm, a certain 
number of these intelligent agents are placed on the grid at 
random positions. In the all following iterations all the ants 
move following certain rules. Every agent can move only to 
adjacent cells (discrete points of digital image or a TFR), 
reinforcing a certain level of pheromone on that spot. One cell 
can be occupied by one ant, and ants do not move if they are 
totally surrounded by other ants. An iteration ends when all the 
ants move to adjacent cells (except the totally surrounded 
ones), and at the end of the iteration a certain constant level of 
pheromone   evaporates from each cell. The ants 

communicate via the crucial concept of pheromone deposition 
and evaporation, which actually represents a positive and 
negative feedback of the system. If the n and k are the 
coordinates of considered point in the lattice, its pheromone 

level ( , )n k  is kept as ( , )S n k
 
in a matrix S denoted as the 

pheromone map [15], [16]. Thus, the pheromone deposition 
and evaporation is modeled by changing the appropriate values 
of the matrix S. Note that the ants positions and orientations are 
also placed in an auxiliary matrix. Ant’s movement and the 
pheromone deposition mechanisms are crucial for the control 
of the mass behavior of artificial ants. Every ant choses in 
which cell to move based on two criteria: the pheromone level 

in the adjacent cells and its current orientation. Since the 
discrete rectangular grid is considered, an ant at the position (n, 
k) can move to its eight adjacent cells. If the digital grid, i.e. 
digital image or the absolute PWD value is denoted with 

( , )a n k , then the 3 3  adjacency of the ant can be represented 

with the following matrix: 

 

( 1, 1) ( 1, ) ( 1, 1)

( , ) ( , 1) ( , ) ( , 1)

( 1, 1) ( 1, ) ( 1, 1)

a n k a n k a n k

n k a n k a n k a n k

a n k a n k a n k

     
 

  
 
      

A  (8) 

An ant at the position (n, k) has a certain orientation. At the 
beginning of the optimization algorithm this orientation is 
random for all ants. In the all following iterations the 
orientation of an ant is determined by its movement from the 
previous iteration. For example, if an ant in previous iteration 

is moved from the position ( 1, )n k  to the position ( , )n k , 

then it is oriented upwards. 
Another important parameter for the ant colony behavior 

control is ( )w   which influence how an ant choses to move 

based on its orientation. It is defined as a function of angles 

  between the current direction of an ant, and the adjacent 

cells positions. Since the discrete adjacency such as (8) is 

considered, the function ( )w   is defined with: 

 

1, 0

1/ 2, 45

( ) 1/ 4, 90

1/12, 135

1/ 20, 180

w





 





  


  


    
   

  

 (9) 

The other parameter on which depends the movement 
choice of an ant is the dependence on the pheromone level 

( , )n k , given by a function  defined as [15], [16]: 

 
( , )

( ( , )) 1
1 ( , )

n k
W n k

n k








 
  

 
 (10) 

A large value of the parameter   results in ants heavily 

attracted with the pheromone level and vice versa. The 

parameter   describes the decrease of the ants’ sensitivity on 

the pheromone when it is highly concentrated. The probability 
that an ant will move from the cell z, which in (8) is denoted as 
the position (n, k), to an adjacent position i which corresponds 
to the one of its eight adjacent positions is given with [15]: 

 

/

( ) ( )
,

( ) ( )

i

iz

jj z

W w
P

W w












 (11) 

where /j z  denotes the summation over all points adjacent to 

( , )z n k , and  1 2 1 2, ( , ) ,  with , 0, 1i j n i k i i i     . 

When an ant moves to a point (n, k), the pheromone level in 
matrix S changes according to: 

 ( , ) ( , ) ( , ) / an k n k n k M       , (12) 

with aM  being the maximal value of the matrix a ,   is a 

constant predefined level of pheromone,   is a positive step 
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constant and ( , )n k denotes the gradient, i.e. a dynamic value 

of pheromone which is added at the position (n, k) visited  by 

the agent. For the problem of IF estimation, gradient ( , )n k  is 

defined taking into account the specific nature of the 
considered problem. It is analyzed in the following section. 

The parameters  ,  ,  ,   and   are set as in [16]. 

Numerical results (and the convergence of the algorithm) have 
shown that the satisfactory results are obtained after 

max 20I   

number of iterations. Previously described algorithm can be 
summarized with the following steps: 

Step 0:  Place the intelligent agents on random positions, 
with random orientations on the discrete grid. Then, for 1 to 

maxI  repeat steps 1-3: 

Step 1: For every agent compute (11), based on (9) and (10) 
and move the agent to an adjacent cell, not occupied by other 
ants, with the probability (11). 

Step 2: For every grid point (n, k) visited by the agent in the 
Step 1 update the matrix S using the relation (12). 

Step 3: Decrease the pheromone level in the whole matrix 
S with a constant level  . 

During the iterations, due to the gradient influence on 
pheromone level (12) the pheromone map S will obtain the 
largest values at the IF points. The IF is finally obtained as: 

 ( ) arg[max ( , )]
k

k n S n k


 . (13) 

In order to suppress eventually obtained impulses at some 
points n, a median filter of length 3-5 might be applied on the 
estimate (13). 

IV. THE PROPOSED GRADIENT DEFINITION  

For the gradient definition the nature of the considered 
problem is taken into account. Namely, although the PWD 
maxima in a high noise environment are allocated from the 
signal’s IF positions with a certain probability [7], at each 
observed time instant n one of the largest PWD values will still 
be positioned at the IF. On the other side, it is known that IF 
variation between two consecutive time instants should not be 
too fast, which is the most common case in real scenarios [8]. 

Taking into account these two facts, a new gradient ( , )n k  

which defines the dynamic value of the pheromone added in 
(12) is defined as follows: 

 ( , ) ( ( , )) ( ( , )) ( ( , ))n k n k n k n k   A A A . (14) 

The matrix ( , )n kA  is defined in (8). Its elements might be 

denoted with ( , ) ( , )ijA n k n kA , with , 1,2,3i j  . The 

function ( ( , ))n k A  is defined with: 

 ( ( , )) ( , ) / 3ij

ij

n k A n k  A . (15) 

The (15) is defined as the product of the mean values of 

three columns of the matrix ( , )n kA . If the auto-terms appear 

within the matrix ( , )n kA , then the large value of (15) is 

expected, since the auto-terms would appear in all three 

columns with a high probability. If the matrix ( , )n kA contains 

only noisy PWD values, then (15) has a small value, since the 
noisy points are usually isolated in the time-frequency plane.  

The function ( ( , ))n k A  represents the median of the 

mean values of the columns of the matrix ( , )n kA : 

 ( ( , )) median / 3ij
j

i

n k A
 

   
 
A  (16) 

It is expected that this function has a small value for noisy 
PWD points, since they are usually isolated, not expected to 
appear in all three columns. The largest values of this function 
are expected for auto-terms, since they will appear in the all 

adjacent columns of the matrix ( , )n kA . Signals with IF 

variations which are not too fast are considered. If these 
variations were faster, this function could be modified in order 
to follow them, with the cost of higher numerical complexity. 
Additionally, if the signal is not ideally concentrated, even the 

whole matrix ( , )n kA  may contain auto-term values, thus 

producing a large value of (16). 

Finally, the function ( ( , ))n k A  takes into account the fact 

that IF has small variations in consecutive time instants n:  

 ( ( , )) max ( , ) ( , )ij ij ii j i j
n k A n k A n k

 
  
  A P   (17) 

The matrix with elements ( , )ijA n k  is obtained by reversing the 

column order of the original matrix A(n, k). Previous heuristic 
function calculates the maximal value of the vector consisted 

of products of elements on the diagonals of the matrix ( , )n kA  

and products of the values in the first, second and the third row 
of this matrix. These row products are defined with: 

 
1 2 3( , ) ( , ) ( , )i j j j

j j j

A n k A n k A n k
 

  
 
  P  (18) 

If the PWD values corresponding to the IF are within the 

matrix ( , )n kA , then one of these products will have a large 

value. On the other side, isolated one or two points with large 
value corresponding to the noise will probably produce a small 
value in all products of the values both on diagonals or in rows 

of the matrix ( , )n kA . PWD points outside of the IF regions 

will produce small values of this heuristic function. 

V. NUMERICAL EXAMPLES 

In our numerical examples two cases are considered. In the 
first experiment linear frequency modulated signal (LFM) is 
considered, defined with: 

 
2( ) exp( 16 )x t j t  (19) 

In the second experiment a sinusoidally modulated signal: 

 ( ) exp( 2 sin( 3 ) 25.6 )x t j t j t    . (20) 

is considered. Both signals are observed for 0 1t   and 

sampled with the step 1/128t  .  

The discrete IF frequency ω(n) was estimated using the 
PWD maxima approach (7) and the proposed approach, 
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calculating (13). The signals were observed in different signal-
to-noise levels (SNRs), and the estimation results are shown on 
the Fig. 1 for LFM, and on Fig.2 for the sinusoidally modulated 
signal, with SNRs: (a) 0 dB, (b) -1dB, (c) -2dB and (d) -3dB on 
both figures. The dotted line represents the IF estimate 
obtained using the PWD maxima approach, the thick line 
represents the estimate obtained using the proposed approach, 
while the solid line is the original IF. 

 

Figure 1.  Estimation of the instantaneous frequency of a noisy LFM signal 

with: (a) SNR=0dB, (a) SNR=-1dB, (c) SNR=-2dB and (c) SNR=-3dB 

 

Figure 2.  IF estimation of a noisy sinusoidally modulated signal with: (a) 

SNR=0dB, (a) SNR=-1dB, (c) SNR=-2dB and (c) SNR=-3 dB  

VI. CONCLUSION 

A modified version of the Ant colony optimization 
algorithm used for the edge detection in digital images is 
applied for the IF estimation of signals corrupted with a high 
level Gaussian noise. To this aim, a modified gradient for the 
pheromone level update is developed based on fundamental IF 
properties. The proposed algorithm successfully estimates the 
IF of signals whose variations which are not too fast. This kind 
of IF variation is common in real scenarios. However, if IF 

variations were faster, the heuristic functions associated to the 
proposed algorithm could be modified in order to follow them, 
with the cost of higher numerical complexity. Performances of 
the proposed algorithm are illustrated through numerical 
examples. Since the optimization problems arise in sensor 
networks, our future work will include the research of possible 
applications in this problem framework. 
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