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Sadržaj: U radu je razmatrana problematika rekonstrukcije nestacionarnih signala sa 

nedostajućim odbircima korišćenjem mjera koncentracije vremensko-frekvencijskih reprezentacija 

i gradijentnog algoritma za rekonstrukciju. Kao vremensko-frekvencijska reprezentacija korišćen 

je S-metod. Teorijska razmatranja potkrijepljena su odgovarajućim primjerima, identifikovani su 

postojeći problem, kao i ideje za budući rad. 

 

Abstract: This paper addresses the reconstruction problem of non-stationary signals with missing 

samples, using concentration measures of time-frequency representations and a gradient-based 

reconstruction algorithm. As an example of a time-frequency representation, S-method is used in 

the proposed approach. Theoretical considerations are illustrated through the several examples, 

and the noticeable problems and the further work ideas are identified. 

 

 

1. INTRODUCTION 

 

Compressive sensing (CS) and sparse signals analysis 

have drawn significant research attention in the last decade 

[1]-[11]. These areas are closely related since the CS can be 

applied with the signal sparsity assumption in a 

transformation domain. Time-frequency signal analysis can 

be related with CS and sparse signals analysis in several 

aspects. It is recently proposed that S-method can be used not 

only for focusing the ISAR radar images and in that way 

improving the radar signal sparsity, but also it can be used as 

a sparse transform directly in the recovery process, in cases 

when these signals have missing samples (e.g. after noise 

reduction) [10]. The L-statistics, stationary and non-stationary 

signal separation and reconstruction are other representative 

illustrations of these fundamental connections between these 

areas [9]-[11]. The last few decades of the intensive research 

in the area of time-frequency produced a large number of 

algorithms, methods and different mathematical approaches 

for the analysis and processing of non-stationary signals, with 

a large number of applications in several areas [12]-[15]. 

The area of CS deals with signals which have a certain 

number of missing samples. The reduced set of observations 

in CS is usually a consequence of a strategically chosen 

sampling method. Usually, signal samples can be 

intentionally omitted due to high noise corruption, or 

eliminated using robust techniques and L-statistics. All these 

cases can be treated as equivalent problems in the context of 

CS [10]. Mathematical foundation of the CS usually lies in 

fact that it is possible to reconstruct a sparse signal by 

interpreting the problem as an undetermined set of linear 

equations using optimization approaches such as linear 

programming [1], [3], [4]. Other CS approaches and 

algorithms include signal processing techniques adopted 

based on the analysis on missing samples consequences, for 

example, on the signal transformation domain [7]. If the CS 

problem can be interpreted as an undetermined set of linear 

equations, then it can be solved using a direct search 

approach. However, this approach is identified as NP hard 

problem, very time-demanding and not possible to solve in 

real scenarios. The problem can be converted to a linear 

programming form, and solved by, for example, using the 

primal-dual algorithm, as it is commented in [2]. Other 

approaches for the reconstruction include gradient-based 

methods, such as ones introduced in [2], [5] and [10], also 

recognized as suitable in the context of our problem. These 

methods are iterative procedures based on a gradient descent 

optimization. 

The sparsity is a fundamental condition needed for the 

successful CS, and the performances and outcomes of the 

reconstruction process highly depend on the suitable choice 

of the transform domain in which the signal is sparse. The 

basic idea behind our analysis lies in fact that time-frequency 

representations concentrate the signal energy around the 

instantaneous frequency of the signal [12], [13]. Better 

concentration implies a smaller number of non-zero values of 

the time-frequency representation, and thus, it can be 

interpreted as a sparsity measure. Concentration measures of 

time-frequency representations have been studied in [15], and 

put into the context of CS in [2] and [10]. Concentration 

measures of linear transforms are used in gradient-based 

algorithms as a measure of signal sparsity in the 

transformation domain [2], [5]. 

Within this paper, we will try investigate the possibility to 

relate the concept of sparsity with high level of concentration 

of some time-frequency representations (TFRs) via 

concentration measures, with aim to reconstruct non-

stationary signals with missing samples. Although a time-

frequency representation can be considered as sparse for a 

specific class of signal, and used for its reconstruction, such 

as in [10] and [11], our main goal is to investigate the concept 

of sparsity through concentration measures for the general 

class of non-stationary signals. As an example of highly 

concentrated representation, S-method which is in detail 
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studied in [13] and [14] is used in this paper in a combination 

with the complex gradient reconstruction algorithm 

introduced in [5]. The main reason for using the gradient-

based algorithm instead of conventional compressive sensing 

algorithms lays in fact that S-method (as well as most of 

highly concentrated representations) as a domain of sparsity 

(in the context of concentration measures) has a non-linear 

relation with the signal, as it is stressed in [10]. 

 

2. BASIC THEORY AND PROBLEM DEFINITION 

 

The discrete S-method, as an example of a highly 

concentrated time-frequency representation is defined with: 
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where the parameter L with typical values between 3 and 5 

defines the quality (concentration) improvement of the 

spectrogram 
2

( , )STFT n k  towards the Wigner distribution, 

as explained in detail in [13] and [14]. A suitably chosen 

value of L suppresses the rise of undesired components 

known as cross terms. ( , )STFT n k  denotes the Short-time 

Fourier transform (STFT), which is for a discrete signal x(n) 

defined with: 
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with w(m) being the window function of length 
wN  . 

The concentration measures were studied and widely used 

for the optimization of time-frequency representations [13], 

[15]. Concentration of a TFR ( , )n k  of the signal x(n) can 

be defined with: 
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Different values of p define different concentration measures. 

Highly concentrated TFRs have smaller number of non-zero 

values in the time-frequency plane, and thus, lower values of 

concentration measures. As it is known, in the context of CS 

the most suitable measure of sparsity, i.e. the concentration 

measure for counting the number of non-zero values is the 
0l  

norm, obtained when p   in (3): 
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However, the minimization of this norm would imply a 

combinatorial search, which is a known NP hard problem. 

Additionally, since it only counts non-zero elements, even the 

smallest disturbances may cause problems in the 

minimization process [1]. This is the reason why in the CS 

other norms, such as 
1l , are used.  

 According to the definitions of the S-method and the 

STFT (1) and (2), it can be easily concluded that the 
1l  

equivalent norm (concentration measure) can be obtained by 

setting 2p   in (3) as: 
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If the signal ( )x n  with mM  missing samples is 

considered, the aim of reconstruction is to find a solution (i.e. 

the values of missing samples) which gives the sparsest S-

method of signal. If we denote with 
xN  the set consisted of 

positions of available samples, the problem of reconstruction 

can be formulated as: 
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where y(n) denotes the reconstructed signal. 

  

3. SOLVING THE MIINIMIZATION PROBLEM 

USING THE GRADIENT BASED ALGORITHM 

 

As discussed in the Introduction, previous optimization 

problem can be successfully solved with a gradient approach. 

The basic idea behind the gradient based algorithm presented 

in [2], [5] and [10] is to set to zero the values in the signal at 

all missing samples positions, and then to vary these values 

with a small, appropriately chosen step  . Since we aim to 

reconstruct a complex signal, both real and imaginary parts of 

missing samples should be varied with the step  . A good 

starting value of the step can be obtained as 

max ( ) , xx n n  N .  

Before the procedure starts, the signal ( )y n  with zeros at 

the positions of missing samples is formed: 
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Then, for each iteration k the following steps are repeated, 

until the desired precision is obtained: 

Step 1: For each missing sample at the position 
in , form four 

signals defined as: 
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Step 2: Estimate the real and imaginary gradient parts as 

differences of the concentration measures: 

1 2
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Step 3: Form the gradient vector ( )k
G of the same length as 

the analyzed signal x(n) with elements, defined as follows: 
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where ( )r ig n  and ( )i ig n  are calculated in the Step 2. 

Step 4: Correct the values of y(n) using the gradient vector 
( )k

G  with the steepest descent approach: 
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As (9) is proportional to the error ( ) ( )y n x n  for both 

real and imaginary parts, the missing values will converge to 

the true signal values. In order to obtain a high level of 

precision, the step   should be decreased when the algorithm 

convergence slows down. In this paper the fixed step is used.  

Since the values of missing samples are varied, the 

measure gradient enables approaching the optimal point 

which minimizes the measure of the S-method, meaning that 

the solution which gives the smallest number of non-zero 

values of the S-method is obtained. Until the optimal point is 

approached, the zero-valued or inaccurate missing samples 

cause a larger number of non-zero values, as it is analyzed in 

[7], and thus, the larger concentration measures. The 

satisfactory reconstruction results are obtained as long as the 

S-method concentration is high. 
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Figure 1: S-method of the LFM signal from the first example 
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Figure 2: Reconstruction of LFM signal from the first 

example using S-method and gradient algorithm. 
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Figure 3: The reconstruction error during the iterations in the 

case of mono-component LFM signal 
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Figure 4: S-method of the two-component signal analyzed in 

the second example. 
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Figure 5: Reconstruction of the multicomponent signal from 

the second example using S-method and gradient algorithm. 
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Figure 6: The reconstruction error during the iterations in the 

case of multicomponent signal 

 

4. EXAMPLES AND COMMENTS 

 

Example 1: In order to illustrate the described 

reconstruction procedure, a LFM signal of length 128N  , 

with 15 missing samples is considered: 

     2
( ) exp 200 /128 100 /128x n j n j n    

S-method with 6L   and Hanning window of length 

64wN   is used. S-method of the signal x(n) without missing 

samples, calculated with these parameters is shown on Fig. 1. 

The absolute value of the DFT of the considered signal with 

all samples, considered signal with missing samples and of 

the reconstructed signal are shown on Fig. 2. DFT is used to 

show the reconstruction results in order to emphasize the 

differences between signals. The MSE defined as: 

  2

1010log ( ) ( )MSE y n x n   (10) 

is shown on Fig. 3  to track the algorithm convergence. 

Example 2: The problem of the reconstruction of a two-

component signal: 
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of length 128N   is considered, having 10 missing samples. 

The S-method is calculated with 3L   and with Hanning 

window of length 64wN  . The S-method of the analyzed 

signal with all samples available is shown on Fig. 4. 

Reconstruction results are shown on Fig 5, while the error 

(10) is shown on Fig. 6. In this example a signal consisted of 

a linear and quadratic FM component is considered.  

This example emphasizes the fact that a suitable choice of 

the parameters L and wN  is significant for the success of the 

reconstruction, since the S-method concentration depend on 

these values. It is crucial to set the S-method parameters such 

that the highest possible concentration is achieved, in order to 

obtain a successful reconstruction. If the signal non-

stationarity is such that the sparsity property cannot be 

satisfied in the analyzed domain, the more concentrated time-

frequency representations should be considered. The problem 

of the optimal time-frequency representation choice in the 

sense of concentration is analyzed in detail in [12] and [13]. 

The satisfactory results were obtained for two-component 

signals consisted of linear and quadratic FM components. 

5. CONCLUSION AND FURTHER RESEACH  

 

Reconstruction of non-stationary signals using an iterative 

gradient based algorithm and S-method is addressed. The 

theoretical considerations are illustrated with two examples. 

The determination of the maximal possible number of signal 

samples which can guarantee the reconstruction will be a part 

of our further research, as well as the reconstruction using 

other highly concentrated representations. Our further work 

will also address the possibility to obtain a higher level of 

sparsity in the time-frequency domain for the general class of 

non-stationary signals with arbitrary non-stationarity level. 

This research is supported by the Montenegro Ministry of 

Science project NOISERADAR (Grant No. 01-455). 
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