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Shannon-Nyquist sampling 

Standard acquisition approach 

  

◦ sampling 

◦ compression/coding 

◦ decoding 

 

 

 

• Sampling frequency - at least twice higher than 

the maximal signal frequency (2fmax)  

• Standard digital data acquisition approach 



Audio, Image, Video Examples 

 Audio signal:  

- sampling frequency 44,1 KHz 

- 16 bits/sample 

 

 Color image:  

-256x256 dimension  

– 24 bits/pixel 

- 3 color channels 

 

 

 

 

 

 

 

 

• Video: 

- CIF format (352x288) 

-NTSC standard  (25 frame/s) 

-4:4:4 sampling scheme  (24 bits/pixel) 

 

Uncompressed: 

 

86.133 KB/s 

 

 

Uncompressed: 

 

576 KB 

 

 

 

 

Uncompressed: 

 

60.8 Mb/s 

 

 

MPEG 1 – compression 

ratio 4: 

 

21.53 KB/s 

 

 

JPEG – quality 30% : 

 

7.72 KB 

 

 

 

 

MPEG 1- common  

bitrate 1.5 Kb/s 

MPEG 4  

28-1024 Kb/s 

 



 

 

 

 

 

 

 

Compressive Sensing / Sampling   

• Is it always necessary to sample the signals according to the 

Shannon-Nyquist criterion? 

 

• Is it possible to apply the compression during the acquisition 

process? 

Compressive Sensing: 

• overcomes constraints of the traditional sampling theory  

• applies a concept of compression during the sensing procedure 

 



CS Applications 

Biomedical 

Appl. 

MRI 

CS promises SMART acquisition and processing 

and SMART ENERGY consumption 

Make entire “puzzle” having just a few pieces:  

Reconstruct entire information from just few measurements/pixels/data 

Compressive sensing is useful in the 

applications where people used to make a large 

number of measurements 

Standard sampling CS reconstruction 

using 1/6 samples 
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L-statistics based Signal Denoising 
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Sorted samples - Removing the extreme values 
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Discarded samples are declared  

as “missing samples” on the corresponding 

original positions in non-sorted sequence 

 This corresponds to CS formulation 

After reconstructing “missing samples” 

the denoised version of signal is obtained  



Video sequences 

*Video Object 

Tracking 

 

*Velocity 

Estimation 

 

*Video 

Surveillance 



CS Applications 

Reconstruction of 

the radar images 

 

50% available pulses reconstructed image 

30% available pulses reconstructed image 

ISAR image with full 

data set 

Mig 25 example 



Compressive Sensing Based Separation of 

Non-stationary and Stationary Signals 

Absolute STFT values Sorted values 

CS mask in TF 



STFT of the 

composite signal  

STFT sorted 

values 

STFT values that 

remain after the L-

statistics 

 

Reconstructed 

STFT values 

Fourier transform of the 

original composite signal  

The reconstructed 

Fourier transform 

by using the CS 

values of the STFT 

(c) 



CS Applications 

• Simplified case:  Direct search reconstruction 

of two missing samples (marked with red) 

Time domain Frequency domain 

If we have more missing samples, the direct search would  

be practically useless 



CS Applications-Example 
  ( ) sin 2 2/ 0,..,20xf n N n for n    • Let us consider a signal: 

[0 0 0 0 0 0 0 0 10.5 0 0 0 10.5 0 0 0 0 0 0 0 0];x i i F

• The signal is sparse in DFT, and vector of DFT values is: 
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1. Consider the elements of inverse and direct Fourier 

transform matrices, denoted by  and -1 respectively 

(relation              holds) 

• CS reconstruction using small set of samples: 

2 2 2 2
2 3 20

21 21 21 21

2 2 2 2
2 4 6 40

21 21 21 21

2 2 2 2
19 38 57 380

21 21 21 21

2 2 2 2
20 40 60 400

21 21 21 21

1 1 1 1 ... 1

1 ...

1 ...1

... ... ... ... ... ...21

1 ...

1 ...

j j j j

j j j j

j j j j

j j j j

e e e e

e e e e

e e e e

e e e e

   

   

   

   

 
 
 
 
 
 

  
 
 
 
 
 
 

Ψ

2 2 2 2
2 3 20

21 21 21 21

2 2 2 2
2 4 6 40

21 21 21 21
1

2 2 2 2
19 38 57 380

21 21 21 21

2 2 2 2
20 40 60 400

21 21 21 21

1 1 1 1 ... 1

1 ...

1 ...

... ... ... ... ... ...

1 ...

1 ...

j j j j

j j j j

j j j j

j j j j

e e e e

e e e e

e e e e

e e e e

   

   

   

   

   

   



   

   

 






 





 

Ψ













x xf ΨF

2. Take M random samples/measurements in the time domain  

It can be modeled by using matrix : 
xy Φf

•  is defined as a random permutation matrix 

• y is obtained by taking M random elements of fx 



• Taking 8 random samples (out of 21) on the positions: 

 5 9 10 12 13 15 18 20

x x y ΦΨF AF

A=ΦΨ

obtained by using the 8 

randomly chosen rows 

in  
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Blue dots – missing samples 

Red dots – available samples  

 

The initial Fourier transform  
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A

{2,19}

Components are on the 

positions -2 and 2 (center-

shifted spectrum), which 

corresponds to 19 and 2 in  

nonshifted spectrum 

A

 A is obtained by taking  

the 2nd and the 19th column of A  



Least square solution 
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CS Applications 
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CS problem formulation 

 The method of solving the undetermined system of equations                      

, by searching for the sparsest solution can be described as: 

0
min subject to x y Ax

0
x l0 - norm 

• We need to search over all possible sparse vectors x with K 

entries, where the subset of K-positions of entries are from the 

set {1,…,N}. The total number of possible K-position subsets is 

N

K

 
 
 



 A more efficient approach uses the near optimal solution 

based on the l1-norm, defined as:  

1
min subject to x y Ax

CS problem formulation 

• In real applications, we deal with noisy signals.  

• Thus, the previous relation should be modified to include the 

influence of noise: 

1 2
min subject to  x y Ax

2
e

L2-norm cannot be used because the minimization problem 

solution in this case is reduced to minimum energy solution, 

which means that all missing samples are zeros  



CS conditions  

 CS relies on the following conditions: 
 

Sparsity – related to the signal nature;  

 Signal needs to have concise representation when expressed in a 

proper basis (K<<N) 

 
Incoherence – related to the sensing modality; It 

should provide a linearly independent measurements 

(matrix rows)  

Random undersampling is crucial 

 

Restriced Isometry Property – is important for 

preserving signal isometry by selecting an appropriate 

transformation 



Signal   - linear combination of the 

orthonormal basis vectors 

Summary of CS problem formulation  

1

( ) ( ), : .
N

i i
i

f t x t or


 f =Ψx𝐟 

y=ΦfSet of random measurements: 

random measurement 

matrix 

transform 

matrix 

transform 

domain vector 



CS conditions 

 
 Restricted isometry property 

◦ Successful reconstruction for a wider range of sparsity 

level 

◦ Matrix A satisfies Isometry Property if it preserves the 

vector intensity in the N-dimensional space: 

 

◦ If A is a full Fourier transform matrix, i.e. : 

 

 

 

 

2 2

2 2
Ax x

NA Ψ

2 2

2
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1
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N Ψx x

x



 RIP 

CS conditions 

 

• For each integer number K the isometry constant K 

of the matrix A is the smallest number for which the 

relation holds: 

2 2 2

2 2 2
(1 ) (1 )    K Kx Ax x

2 2

2

2 2

2 K



Ax x

x

0 1 K - restricted isometry constant 



CS conditions 

 Matrix A satisfies RIP  
the Euclidian length of 

sparse vectors is 

preserved 

• For the RIP matrix A with (2K, δK) and δK < 1, all subsets 

of 2K columns are linearly independent 

( ) 2spark KA

spark - the smallest number of dependent columns 



CS conditions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 ( ) 1spark M  A

( ) 1spark A - one of the columns has all zero 

values 

( ) 1 spark MA - no dependent columns 

A (MXN) 

 
1 1

( ) 1
2 2

  K spark MA

the number of measurements should be at 

least twice the number of components K: 

2M K



Incoherence 
 Signals sparse in the transform domain , should be dense in the 

domain where the acquisition is performed  

 

 Number of nonzero samples in the transform domain  and the 

number of measurements (required to reconstruct the signal) 

depends on the coherence between the matrices  and Φ.  

 

  and Φ are maximally coherent - all coefficients would be 

required for signal reconstruction 

22

,
( , ) max

i j

i j
i j

 


 


  

Mutual coherence: the 

maximal absolute value of 

correlation between two 

elements from  and Φ 



Incoherence 

Mutual coherence:   

 

 

 

 

 

 

 

 

22,1 ,

,
( ) max ,

i j

i j i j M
i j

A A

A A


  
A A = ΦΨ 

maximum absolute value of normalized inner product 

between all columns in A 

Ai and Aj - columns of matrix A 

 

• The maximal mutual coherence will have the value 1 in the 

case when certain pair of columns coincides 

• If the number of measurements is: ( , ) logM C K N   Φ Ψ

then the sparsest solution is exact with a high probability (C is a 

constant) 



Reconstruction approaches 

• The main challenge of the CS reconstruction:  solving an 

underdetermined system of linear equations using 

sparsity assumption 

1 - optimization,  based on linear programming methods, 

provide efficient  signal reconstruction with high accuracy 

• Linear programming techniques (e.g. convex 

optimization) may require a vast number of iterations 

in practical applications 

 

• Greedy and threshold based algorithms are fast 

solutions, but in general less stable 



f

Transform matrix

Measurement matrix

y Measurement vector





 

Greedy algorithms – 

Orthogonal Matching 

Pursuit (OMP) 



Influence of missing samples to the 

spectral representation 

• Missing samples produce noise 

in the spectral domain. The 

variance of noise in the DFT 

case depends on M, N and 

amplitudes Ai: 

2
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• The probability that all (N-K) 

non-signal components are 

below a certain threshold value 

defined by T is (only K signal 

components are above T): 

Consequently, for a fixed value of P(T) (e.g. 

P(T)=0.99), threshold is calculated as: 

1
2

1
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N K
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N
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T P T
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When ALL signal 

components are above the 

noise level in DFT, the 

reconstruction is done 

using a Single-Iteration 

Reconstruction algorithm 

using threshold T 



 How can we determine the number of available samples 

M, which will ensure detection of all signal components?  

 Assuming that the DFT of the i-th signal component (with the 

lowest amplitude) is equal to Mai, then the approximate 

expression for the probability of error is obtained as: 

 

argmin{ }opt err
M

M P

• For a fixed Perr, the optimal value of M (that allows to detect all 

signal components) can be obtained as a solution of the 

minimization problem: 

For chosen value of Perr and expected value of minimal amplitude ai, there 

is an optimal value of M that will assure components detection.  

2 2

2
1 1 1 exp

N K

i
err i

MS

M a
P P
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Optimal number of available samples M 



 

 

 

 

 

 

Algorithms for CS reconstruction of sparse signals 

y – measurements 
 

M - number of measurements 

N – signal length 

T - Threshold 

• DFT domain is assumed as sparsity domain 

• Apply threshold to initial DFT components 

(determine the frequency support) 

• Perform reconstruction using identified support 

 

Single-Iteration Reconstruction Algorithm in DFT domain 
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25% random measurements 

Original DFT is sparse 

Incomplete DFT is not sparse 

Threshold 

Reconstructed signal in frequency Reconstructed signal in time 



 

 

 

 

 

• External noise + noise 

caused by missing samples 
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Case 3: External noise 

1
2 log(1 ( ) )NT P T  

• To ensure the same probability of 

error as in the noiseless case we need 

to increase the number of 

measurements M such that: 

( )
1

( ) ( 1)




  N N

M N M SNR

M SNR N M N

2 2( 1) ( ) 0        N NM SNR M SNR N N SNR MN M

Solve the equation:  



Dealing with a set of noisy data – L-estimation 

approach 
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incomplete set of samples 
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General deviations-based 

approach 

( )x n -compressive sampled 

signal, K-sparse in DFT 

domain 

-Navail – positions of the 

available samples 

- M-number of available samples 

2 /{ ( )} { ( ) ( )}j kn NF e n F x n e X k 

Loss function 

2
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{ ( )}
robust form
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For the standard form, FT of the signal ( ) is:

( ) { ( ) ,..., ( ) }

For the robust form, FT of the signal ( ) is:
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General deviations-based approach 

• The number of 

components and the 

number of iterations 

might be known from 

the nature of physical 

processes appearing in 

real application 



General deviations-based approach 

• If the number of 

components/number of iterations is 

unknown, the stopping criterion can be 

set 

• Stopping criterion:  
Adjusted based on  the l2-

norm bounded residue that 

remains after removing  

previously detected 

components 



Variances at signal 

(marked by red 

symbols) and non-

signal positions  

Fourier transform of 

original signal  

General deviations-based approach 

Example 



 

 

 

 

 

 

 

 

 

 

 

 

in - missing samples positions 

( )y n - Available signal samples 

 - Constant; determines 

whether sample should be 

decreased or increased 

 - Constant that affect 

algorithm performance 

P - Precision 

Gradient algorithm 

jn - Available samples positions 

Form gradient vector G 

Estimate the differential of the signal 

transform measure 

1/1
[ ( ( ))] ( ) ,

1

p

p
k

T x n X k
N

p



  

M



Gradient algorithm - Example 

Signal contains 16 samples  

 

Missing – 10 samples (marked with red) 

 

Signal is iteratively reconstructed using Gradient algorithm 



Web application 

Some Developments 

http://www.cs-ict.ac.me/Demo.php


Virtual instrument for 

Compressive sensing 



EEG signals: QRS complex is sparse in Hermite transform domain, 

meaning that it can be represented using just a few Hermite 

functions and corresponding coeffs.   

CS of QRS complexes in the Hermite transform domain 
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