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Abstract—Inversion of the short-time Fourier transform  where S;, is a column vector containing all STFT vectors

(STFT) calculated with common windows is revisited. It has Sn(ni), atn; = N/2,3N/2,... M — N/2, andX is a column
been shown that using commonly windowed STFT a full signal vector with all signal samples

reconstruction may be achieved from the same number of the
STFT coefficients as the number of signal samples. Architectures X = [;L'(O)’ gg(l)7 ey :c(M — 1)]T,
for the redundant and nonredundant STFT realization are L~ . .
presented. Inversion stability is checked through a noise analysis While Wy, n is a block M x M matrix formed from the
in the reconstruction process. smaller DFT matricedV y, as in (2).
Rectangular windows have poor localization in the fre-
guency domain. Study of well-localized window forms in the
|. INTRODUCTION time-frequency domain has been an important topic, since the
Most commonly used tool in time-frequency analysis i§TFT concept was introduced. In general, for a nonrectangular
the short-time Fourier transform (STFT) [1]-[13]. Significantvindow, definition (1) is modified as
research efforts have been made to provide efficient signal Sn(ni) = WyHNX y (1),
reconstruction schemes from the STFT, [1], [7]. The most . . - .
significant drawback of the STFT is its redundancy. A simpl\e{hereH{V Is a diagonalV x V matrix with the window values
nonredundant signal reconstruction from the STFT is pr@D the diagonalfy (m,m) = w(m), m = —N/2, ..., N/2 —
sented in this paper, along with a noise analysis confirmir]lg In a matrix notation, for the nonoverlapping case, we get
the inversion stability. Sy =Wy nHuy nX, 3

whereW ;v andH,; x are M x M matrices formed from

II. DEFINITIONS smallerN x N matricesW y andH y, respectively, as in (2).
The basic idea behind the STFT is to apply the Fourier Nonoverlapping cases are important and easy for analysis.
transform to a localized signai(n), obtained by using a slid- They also keep_ the number of the STFT coefficients equal to
ing window functionw (m). Discrete time-frequency domainthe number of signal samples. However, in the case of nonrect-

form of the STFT, at an instant and frequency:, reads angular windows some of the signal samples are weighted by
very small numbers. This is undesired in the signal inversion.
N/2—1
27

Sn(n, k) = Z z(n +m)w(m)e I N ™k, I1l. I NVERSION
m=—N/2 The inversion of a nonoverlapping STFT with a rectan-

The STFTSy(n, k) is calculated using signal samples Withiri;UIar window, defined by (1) or (2), is straightforward us-

. . ; ) ng either X ) = Wi!S ;), or in full matrix form
a window of the widthN. Assuming a rectangular window g erne ~ (i) i Nf ~ (i) | ) )
for a given time instant; we can write X= W, xSy Inversion for a nonrectangular window is

~ ~ —1
Sn(ni) = WyXp(n), (1) HarnX = WarnSar “)
whereS y(n;) andX y(n;) are column vectors with eIementsPrOblem.m this inversion are small vaIues]iI.y\,LN.. If there
is any disturbance in the calculated STFT it will be present
Sn(ni k), k = —=N/2,.., N/2 — 1 and z(n; + m), m = . = . :
) . . in the productH,; yX. The reconstruction of signak,
—N/2,..., N/2 — 1, respectively. MatrixW is an N x N g0 qision of H,, xX by small values inly y will be
DFT matrix with elementsxp(—j2rmk/N), wherem is the N2 DY M.N

column index and: is the row index of the matrix. A matrix extremely unreliable and unacceptable.
. . ' A common way to avoid this problem is to use redundant
form for all STFT nonoverlapping values is

STFT calculation, with overlap-add method. In the simplest

Wy 0 - 0 and the least redundant case with common windows, an
0 Wy - 0 _ overlapping of N/2 is used. The window function is chosen
Sm = : : . : X=WununX, (2) such thatw(m) + w(m — N/2) = const. for the interval

where the windows overlap. This property is satisfied by the
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Fig. 1. System for a redundant realization of the STFT transform based on overlap and add method. lllustraNor=f& with STFT (n,k) =
STFT(n,k+ N).

addition to the nonoverlapped STFT, calculatechat= N/2, IH @ I=IFTia(mye*™ M|
3N/2,...M — N/2 according to (3), another set of STFT > T T T T
values, overlapping with the previous one, is calculated at 8
n; =0, N, ..., M. Its values are i:
SN = Waren vHargn v [0n/2 X7 0x 0], (5) 2l
0—3 2 1 0 1 2 3

v!hereON/Q is a row vector withN/2 zeros as its elements, frequency
Wiy, N isan(M+N)x (M+N) matrix formed usingW IH(@I=IFTi(m)e?™ )
matrix as in (2), andd ;4 n, n IS the corresponding diagonal ; : : : :
window matrix, withM + N windowsw(m) on the diagonal.
Notation Xz will be used for the zero-padded signal,

Xz =[0n2 X7 0pp0]".

The inversion of this STFT produces

frequency

H Xz =Wit nv vSuan. 6
M+N.N2Z M+N,NOM+N ( ) Fig. 2. lllustration of the basis (transfer) functions, representing modulated

= : : rectangular window (top) and the modulated Hann window in the STFT
A part of Hyyny nXz from the previous relation, afteranalysis WithN — 8.

the added zero values at the beginning and ending intervals
(needed to produce atv/2 shift in the calculation) are

removed, will be denoted byH,;, y nX o Now this
vector is reduced to the same number of sampleXadf

we sumH,, yX from (4) and ’VHM+N,NXZJ , with the  However redundancy of this kind of inversion is high
assumption that the window is such that a stm of its valué0%). In total an order oM STFT coefficients are used
w(m) with their shifted versionsv(m — N/2) is constant to get signal values, if the signal is considered as circular
(without loss of generality assume that this sum is equal vath N/2 first and N/2 last signal samples being used for one
1), we have STFT calculation. Otherwise the number of STFT coefficients

- - is2M + N.
Hy v X+ ’VHIVH-N,NXZJ " X,
Here we will present a method to reduce/avoid the redun-
dancy in the STFT calculation. Since the STFT is calculated
_vw ! 57—1 with the frequency smoothing overlapping windows (corre-
X = WanSurt [WMJ”N’NSMJFNJ I sponding basis functions are presented in Fig.2) we may expect
In this case the inversion is achieved from the STFT obtainéuat one such STFT coefficient is a good frequency represent
from (4) and overlapping STFT from (6) without need for a@f two frequency points, Fig.2(bottom), in contrast to the
division by (possibly small) window function values, Fig.1. rectangular based basis functions, Fig.2(top). Then the STFT

resulting in



can be calculated only at the frequenci¥s as A common assumption that the signdln) is periodic with
M would result in nonredundant calculation. In this case (9)

N/2—-1 —j=Em
Sn(n,2k) = Zm:—N/Q z(n 4+ m)w(m)e I Fm2k would be calculated as
N/2-1 forn, =0, N/2, N, .., M andm =0,1,... N/2—1
= > [z(n+m)w(m) with z(n) = z(n + M) for n < 0. (11)
m=0
N N\ 2z For N/2 = 2 last two rows in (10) would be just omitted and
+a(n+m - E)w(m - 5)]6 e (7)  their values added to the firdl/2 = 2 rows, T(1,7) = w_»
In this way, the STFT is downsampled in frequency by a factGnd _T(2= 8) = W-1- H_owever, this matrix would .be smgular,
of 2. The matrix form of this relation is Ioo§|ng the |nvert|b|I|ty_property. Therefore, with a.S|mpIe
) _ periodic signal assumption, redundancy free calculation of the
STFT =87, v /5 = Wariny2.n/2Xa (8) STFT is not possible.

12 o It is possible to achieve a redundancy free STFT with the
whereSy, . v/, denotes the STFT downsampling in the freassymption of periodie:(n) using a change in the calcu-
quency domain. NotatioBTFT will be used for this column |ation, in order to avoid matrix singularity. The coefficients
vector. Elements of vect&TFT are frequency downsampledSN(n, 2k — 1) are used instead ofy (n,2k) for the STFT
STFT valuesSy (n, 2k). Notation Wy /2, n/2 1S Used for - part corresponding to the signal periodic extension. Note that
a (M + N/2) x (M + N/2) matrix formed from the DFT g, (, 21 — 1) is just a value ofSy(n,2k) for a signal
matrices of s!zeVVN/Q., anc_inl is a new signal formed from.modulated byxp(j2mm/N). It means that(n;+m—N/2) in
the original signal, with aliasing and window functions, as If9) is multiplied byexp(j2wm/N) for n = n;+m—N/2 < 0,

(7). Elements of vectoX, are defined by (7) whenz(n + M) is used instead of (n) in Sy (n, 2k),
N N j2Tm
Za(ns +m) = w(n; + myw(m) +a(ni +m = Zwlm = ) @t m=N/2) = 2(M + (n+m = N/2)e>N (12)
for n; =0, N/2, N,..,M andm =0,1,..,N/2— 1 for n; + m — N/2 < 0 in (11). The STFT is calculated for

with z(n) = 0 for n < 0 andn > M. ©) this new signal, denoted bX,,, as

Vector X, is of duration)M + N/2. It is important to note that STET = Warn/2Xap: (13)
each signal value:(n) appears exactly twice, in two valuesChange in the example matrik in (10) is such that the last

of x,(n). For example, forV = 8 and M = 64 the value of N/2 rows are omitted and added to the firgf2 rows. Then

x(6) appears inr,(4 + 2) = z(6)w(2) + x(2)w(-2) and in T(1,7) = —w_» andT(2,8) = —jw_; . The reconstruction
24(842) = z(10)w(2)+x(6)w(—2). Valuez(6) appears with results are the same as in the slightly redundant case (9) and
weighting coefficientw(2) and withw(2 — N/2) = w(—2). (10). Matrix T is now complex.

Sincew(2) + w(2 — N/2) = 1 it means that we will always The reconstructed sign& r is obtained either from (13)
have at least one equation with a significant contribution of (8) with X, = TX or X, = TXy as

x(6).

TXp =X, = W} STFT
The matrix form of signal transformation (9) %, = TX. o r o f‘fl“\f/?’f\’/2
For example, forM = 8 and N = 4 for the Hann window T TXpr =T "W\ n/o nSTEFT
(with elementsw,,, = w(m) =0, 1/2, 1, 1/2 for m = —2, X — (THT) ! THW - STFT 14
—1, 0, 1, respectively), the matrix r=( ) M+N/2,N/2 L)

- - Redundancy in (14) is, for example, fdW/ = 512 and

wo 00 0 0 0 0 0 N = 32 only 3%. This form will be referred to as almost
0w 0 0 0 0 0 0 nonredundant. For a redundancy free calculation using (13)
wp 0w 00 0 0 0 the matriceé\f\/’;jN/2 and correspondin@? should be used
0 w,0 w 0 0 0 0 with the signalX,,,.

|0 0 w20 w 0 0 0 (10)  Forms of (9) and (10) indicate a possibility of recursive
0 0 0 w,0 w 0 0 signal reconstruction for any window, instead of the matrix
00 0 0 ws0 w 0 THT inversion. Matrix TZT is a tridiagonal matrix with
00 0 0 0 w,y0 w elementsw?(m) +w?(m— N/2) on the diagonal, periodically
0 0 0 0 0 0 w—z 0 extended up ta\/ + N/2. Subdiagonal and updiagonal have
0 0 0 O 0 0 0 w_

L L the elementsu(m)w(m — N/2), Fig.3. Note that the matrix
is invertible in the least squared senS(T is invertible) in T"T inversion is signal independent. Solving a linear system
contrast to the diagonal form corresponding to the nonoveéf equations with a tridiagonal matrix has recently been a hot

lapping calculation with the Hann window, topic in mathematics, with several solutions proposed to get
1 1 1 1 the result without matrix inversion calculation [14],[15]. In the
T = diag( |0, 3 1, 570, 3 1, 5 ). presented simulations we have used a direct inversion.

Within the reconstruction system framework the STFT
Here we used the Hann window to emphasize small (heényerse vectorWﬁJrN/Q’N/QSTFT in (14) can be consid-
exactly zero) values in the window. ered as an inpuy(n) to M FIR systems, whose impulse
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Fig. 4. System for an almost nonredundant realization of the STFT transform. lllustratidd fer16 and N = 8.

Fig. 3. Tridiagonal matrixT# T and transformation matrigT* T) —lrH,
defining reconstruction coefficient filteis;. Absolute values are presented.

responses aréh;, ¢ = 0,1,2....,M — 1. Elements ofh;
are corresponding values of matr(>2[‘HT)71TH rows in
each block of sizeN/2 = 4 (dotted lines in Fig.3(b)).
For the presented examplhy, = (1,0,0,0,0), hy =
(1.17,0,0,0.0002,0.001), hy = (1.6,0.4,—0.4,0.4, —0.4),
h; = (0.20,1.13,-0.20,0.03, —0.006), hy = (0,1,0,0,0),

IV. NOISE (ERROR) ANALYSIS

The inversion stability will be checked on the sensitivity to
noise (error) in the inversion. Assume that the values of

_ql2
STFT = SM+N/2,N/2

contain a small noisSTFT+-¢ introduced after the STFT
calculation. If the STFT inversion uses any division with a
small number or any low conditioned matrix, the output noise
will be highly amplified and the signal to noise ratio will
be significantly degraded. The reconstructed signal for noisy
coefficientsSTFT + ¢ is, (14),

Xp = (TAT) " THW,}

minan2(STET +¢) = X + g,

— ~ —1
whereer = (THT) 1THWM+N/2 /o€ Input noise is
white with variances?. Variance of the output noise is
M+N/2
o2, =E{efer} = E{e"P"Pc} =02 > A (15)

=1
whereP = (THT)_1 THWM1+N/2,N/2 andA is a matrix of
the eigenvalues,; of the matrixPZP. Similar relations hold
for the redundancy free calculation.

Example 1 Random signal with\/ samples is used as an
input signalz(n). Its downsampled STFT is calculated with an
N sample Hann window using (8). The signal is reconstructed
using three presented methods. A Gaussian noise avith
10~° is added to the STFT before reconstruction. The standard
deviation of error in the reconstructed sigrial,,, averaged
over 100 signal realizations, is presented in following Table:

= 64 256 1024
N = 16 32 64
Ry = 0.5299 0.3959 0.2991
Ry = 0.4221 0.3357 0.2726
Ry = 0.2165 0.1531 0.1083
Ry = 0.5235 0.3964 0.3002

and so on. Then the output of these systems at inst&utio of input and reconstructed signal noie= Oecp/0c

n = M — 1 will be the values of signat(i), Fig.4.

is presented for the almost nonredundant STFT calculation



Before reconstruction, added noise of varianca 10

W
W NP o RN
=T

(o} 50 100 150 200 250
Maximal reconstruction error is  1.2753e-05

Fig. 5. Reconstruction of a signal whose duratiomis= 256, using the
same total number df56 STFT coefficients, calculated with a Hann window
with N = 32. Signal is reconstructed after a noise is added to the STFT
values.

Ry, nonredundant STFRy, and redundant STFT with00% ©° 1 20 30,0 10 20 30
~ . time index time index
redundancy factor,R3. The theoretical results for almost
nonredundant STFT using (15) are denoted By. All Fig. 6. (a) The STFT with all frequency samples of sum of real-valued
these values are of the same order. As expected the standaioid, linear frequency modulated signal and two chirps. (b) The STFT
deviation is the smallest in the case of redundant calculatigfth reduced frequency grid. (c) Nonredundant STFT of noisy signal. (d)
. N Nonredundant filtered STFT of noisy signal.
Reconstruction result for one realization and redundancy free
STFT is shown in Fig.5. Noise witr. = 10~° is added.
The maximal error in512 samples is1.2753 - 10~°. It is of
an3o., = 1.3461- 1075 order, as expected from three-sigma V. CONCLUSION
rule for the Gaussian distribution. A scheme for a full signal reconstruction from the STFT

Example 2 The redundant STFT with all frequency samplegalculated with a common window, without redundancy is
and the STFT with reduced frequency samples are cald@resented. The reconstruction stability is demonstrated on the
lated for a sum of real-valued sinusoid, linear frequendynalysis of noise in the reconstruction process.
modulated signal and two chirps with/ = 1024 samples
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