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On the STFT Inversion Redundancy
Ljubiša Stankovíc, Fellow IEEE

Abstract—Inversion of the short-time Fourier transform
(STFT) calculated with common windows is revisited. It has
been shown that using commonly windowed STFT a full signal
reconstruction may be achieved from the same number of the
STFT coefficients as the number of signal samples. Architectures
for the redundant and nonredundant STFT realization are
presented. Inversion stability is checked through a noise analysis
in the reconstruction process.

I. I NTRODUCTION

Most commonly used tool in time-frequency analysis is
the short-time Fourier transform (STFT) [1]-[13]. Significant
research efforts have been made to provide efficient signal
reconstruction schemes from the STFT, [1], [7]. The most
significant drawback of the STFT is its redundancy. A simple
nonredundant signal reconstruction from the STFT is pre-
sented in this paper, along with a noise analysis confirming
the inversion stability.

II. D EFINITIONS

The basic idea behind the STFT is to apply the Fourier
transform to a localized signalx(n), obtained by using a slid-
ing window functionw(m). Discrete time-frequency domain
form of the STFT, at an instantn and frequencyk, reads

SN (n, k) =
N/2−1∑

m=−N/2

x(n + m)w(m)e−j 2π
N mk.

The STFTSN (n, k) is calculated using signal samples within
a window of the widthN . Assuming a rectangular window
for a given time instantni we can write

SN (ni) = WNXN (ni), (1)

whereSN (ni) andXN (ni) are column vectors with elements
SN (ni, k), k = −N/2,..., N/2 − 1 and x(ni + m), m =
−N/2,..., N/2 − 1, respectively. MatrixWN is an N × N
DFT matrix with elementsexp(−j2πmk/N), wherem is the
column index andk is the row index of the matrix. A matrix
form for all STFT nonoverlapping values is

SM =








WN 0 ∙ ∙ ∙ 0
0 WN ∙ ∙ ∙ 0
...

...
...

...
0 0 ∙ ∙ ∙ WN








X = W̃M,NX, (2)
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where SM is a column vector containing all STFT vectors
SN (ni), at ni = N/2, 3N/2,...,M −N/2, andX is a column
vector with all signal samples

X = [x(0), x(1), ..., x(M − 1)]T ,

while W̃M,N is a block M × M matrix formed from the
smaller DFT matricesWN , as in (2).

Rectangular windows have poor localization in the fre-
quency domain. Study of well-localized window forms in the
time-frequency domain has been an important topic, since the
STFT concept was introduced. In general, for a nonrectangular
window, definition (1) is modified as

SN (ni) = WNHNXN (ni),

whereHN is a diagonalN×N matrix with the window values
on the diagonal,HN (m,m) = w(m), m = −N/2, ..., N/2 −
1. In a matrix notation, for the nonoverlapping case, we get

SM = W̃M,NH̃M,NX, (3)

whereW̃M,N andH̃M,N areM × M matrices formed from
smallerN ×N matricesWN andHN , respectively, as in (2).

Nonoverlapping cases are important and easy for analysis.
They also keep the number of the STFT coefficients equal to
the number of signal samples. However, in the case of nonrect-
angular windows some of the signal samples are weighted by
very small numbers. This is undesired in the signal inversion.

III. I NVERSION

The inversion of a nonoverlapping STFT with a rectan-
gular window, defined by (1) or (2), is straightforward us-
ing either XN (ni) = W−1

N SN (ni), or in full matrix form

X= W̃
−1

M,NSM . Inversion for a nonrectangular window is

H̃M,NX = W̃
−1

M,NSM . (4)

Problem in this inversion are small values iñHM,N . If there
is any disturbance in the calculated STFT it will be present
in the product H̃M,NX. The reconstruction of signalX,
after division ofH̃M,NX by small values inH̃M,N will be
extremely unreliable and unacceptable.

A common way to avoid this problem is to use redundant
STFT calculation, with overlap-add method. In the simplest
and the least redundant case with common windows, an
overlapping ofN/2 is used. The window function is chosen
such thatw(m) + w(m − N/2) = const. for the interval
where the windows overlap. This property is satisfied by the
Hann, Hamming, Bartlett, and Blackman window1. Then, in

1The number of input signal values isM . A nonredundant STFT cannot
contain less thanM independent values. The property that a sum of over-
lapping windows is constant holds for the common windows with time steps
N/2, N/4, N/8, and so on. With steps smaller thanN/2 the redundancy
is additionally increased. With an increase of downsampling factor in the
frequency domain good frequency coverage would be lost, Fig.2.
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 x(n)

 x(n-7) 
w(-4) w(-4)  x(n-7)   STFT(n-3,7)

↓

 x(n-6) 
w(-3) w(-3)  x(n-6) 

z-1

  STFT(n-3,6)
↓

 x(n-5) 
w(-2) w(-2)  x(n-5) 

z-1

  STFT(n-3,5)
↓

 x(n-4) 
w(-1) w(-1)  x(n-4) 

z-1

  STFT(n-3,4)
↓

 x(n-3) 
w(0) w(0) x(n-3) 

z-1

  STFT(n-3,3)
↓

 x(n-2) 
w(1) w(1) x(n-2) 

z-1

  STFT(n-3,2)
↓

 x(n-1) 
w(2) w(2) x(n-1) 

z-1

  STFT(n-3,1)
↓

 x(n-0) 
w(3) w(3) x(n-0) 

z-1

  STFT(n-3,0)
↓

R=N/2=4

N/2

STFT

(DFT)

  ..., STFT(n-7,k),  STFT(n-3,k),  STFT(n+1,k), ...

IDFT

z-4

+
 x(n-7) 

z-4

+
 x(n-6) 

z-4

+
 x(n-5) 

z-4

+
 x(n-4) 

Fig. 1. System for a redundant realization of the STFT transform based on overlap and add method. Illustration forN = 8 with STFT (n, k) =
STFT (n, k + N).

addition to the nonoverlapped STFT, calculated atni = N/2,
3N/2,...,M − N/2 according to (3), another set of STFT
values, overlapping with the previous one, is calculated at
ni = 0, N , ..., M . Its values are

SM+N = W̃M+N,NH̃M+N,N [0N/2 XT 0N/2]
T , (5)

where0N/2 is a row vector withN/2 zeros as its elements,
W̃M+N,N is an(M+N)×(M+N) matrix formed usingWN

matrix as in (2), and̃HM+N,N is the corresponding diagonal
window matrix, withM +N windowsw(m) on the diagonal.
NotationXZ will be used for the zero-padded signal,

XZ = [0N/2 XT 0N/2]
T .

The inversion of this STFT produces

H̃M+N,NXZ = W̃−1
M+N,NSM+N . (6)

A part of H̃M+N,NXZ from the previous relation, after
the added zero values at the beginning and ending intervals
(needed to produce anN/2 shift in the calculation) are

removed, will be denoted by
⌈
H̃M+N,NXZ

⌋

M
. Now this

vector is reduced to the same number of samples asX. If
we sumH̃M,NX from (4) and

⌈
H̃M+N,NXZ

⌋

M
, with the

assumption that the window is such that a sum of its values
w(m) with their shifted versionsw(m − N/2) is constant
(without loss of generality assume that this sum is equal to
1), we have

H̃M,NX+
⌈
H̃M+N,NXZ

⌋

M
= X,

resulting in

X = W̃
−1

M,NSM+
⌈
W̃−1

M+N,NSM+N

⌋

M
.

In this case the inversion is achieved from the STFT obtained
from (4) and overlapping STFT from (6) without need for a
division by (possibly small) window function values, Fig.1.
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Fig. 2. Illustration of the basis (transfer) functions, representing modulated
rectangular window (top) and the modulated Hann window in the STFT
analysis withN = 8.

However redundancy of this kind of inversion is high
(100%). In total an order of2M STFT coefficients are used
to getM signal values, if the signal is considered as circular
with N/2 first andN/2 last signal samples being used for one
STFT calculation. Otherwise the number of STFT coefficients
is 2M + N .

Here we will present a method to reduce/avoid the redun-
dancy in the STFT calculation. Since the STFT is calculated
with the frequency smoothing overlapping windows (corre-
sponding basis functions are presented in Fig.2) we may expect
that one such STFT coefficient is a good frequency represent
of two frequency points, Fig.2(bottom), in contrast to the
rectangular based basis functions, Fig.2(top). Then the STFT
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can be calculated only at the frequencies2k, as

SN (n, 2k) =
∑N/2−1

m=−N/2
x(n + m)w(m)e−j 2π

N m2k

=
N/2−1∑

m=0

[x(n + m)w(m)

+x(n + m −
N

2
)w(m −

N

2
)]e−j 2π

N/2 mk. (7)

In this way, the STFT is downsampled in frequency by a factor
of 2. The matrix form of this relation is

STFT = S↓2
M+N/2 = W̃M+N/2,N/2Xa (8)

whereS↓2
M+N/2 denotes the STFT downsampling in the fre-

quency domain. NotationSTFT will be used for this column
vector. Elements of vectorSTFT are frequency downsampled
STFT valuesSN (n, 2k). NotationW̃M+N/2,N/2 is used for
a (M + N/2) × (M + N/2) matrix formed from the DFT
matrices of sizeWN/2, andXa is a new signal formed from
the original signal, with aliasing and window functions, as in
(7). Elements of vectorXa are defined by (7)

xa(ni + m) = x(ni + m)w(m) + x(ni + m −
N

2
)w(m −

N

2
)

for ni = 0, N/2, N, ...,M andm = 0, 1, ..., N/2 − 1

with x(n) = 0 for n < 0 andn ≥ M. (9)

VectorXa is of durationM +N/2. It is important to note that
each signal valuex(n) appears exactly twice, in two values
of xa(n). For example, forN = 8 andM = 64 the value of
x(6) appears inxa(4 + 2) = x(6)w(2) + x(2)w(−2) and in
xa(8+2) = x(10)w(2)+x(6)w(−2). Valuex(6) appears with
weighting coefficientw(2) and with w(2 − N/2) = w(−2).
Sincew(2) + w(2 − N/2) = 1 it means that we will always
have at least one equation with a significant contribution of
x(6).

The matrix form of signal transformation (9) isXa = TX.
For example, forM = 8 and N = 4 for the Hann window
(with elements:wm = w(m) = 0, 1/2, 1, 1/2 for m = −2,
−1, 0, 1, respectively), the matrix

T =



















w0 0 0 0 0 0 0 0
0 w1 0 0 0 0 0 0
w−2 0 w0 0 0 0 0 0
0 w−1 0 w1 0 0 0 0
0 0 w−2 0 w0 0 0 0
0 0 0 w−1 0 w1 0 0
0 0 0 0 w−2 0 w0 0
0 0 0 0 0 w−1 0 w1

0 0 0 0 0 0 w−2 0
0 0 0 0 0 0 0 w−1



















(10)

is invertible in the least squared sense (THT is invertible) in
contrast to the diagonal form corresponding to the nonover-
lapping calculation with the Hann window,

T = diag(

[

0,
1
2
, 1,

1
2
, 0,

1
2
, 1,

1
2

]

).

Here we used the Hann window to emphasize small (here
exactly zero) values in the window.

A common assumption that the signalx(n) is periodic with
M would result in nonredundant calculation. In this case (9)
would be calculated as

for ni = 0, N/2, N, ...,M andm = 0, 1, ..., N/2 − 1

with x(n) = x(n + M) for n < 0. (11)

For N/2 = 2 last two rows in (10) would be just omitted and
their values added to the firstN/2 = 2 rows, T (1, 7) = w−2

andT (2, 8) = w−1. However, this matrix would be singular,
loosing the invertibility property. Therefore, with a simple
periodic signal assumption, redundancy free calculation of the
STFT is not possible.

It is possible to achieve a redundancy free STFT with the
assumption of periodicx(n) using a change in the calcu-
lation, in order to avoid matrix singularity. The coefficients
SN (n, 2k − 1) are used instead ofSN (n, 2k) for the STFT
part corresponding to the signal periodic extension. Note that
SN (n, 2k − 1) is just a value ofSN (n, 2k) for a signal
modulated byexp(j2πm/N). It means thatx(ni+m−N/2) in
(9) is multiplied byexp(j2πm/N) for n = ni+m−N/2 < 0,
whenx(n + M) is used instead ofx(n) in SN (n, 2k),

x(ni + m−N/2) = x(M + (ni + m−N/2))ej2πm/N (12)

for ni + m − N/2 < 0 in (11). The STFT is calculated for
this new signal, denoted byXap, as

STFT = W̃M,N/2Xap. (13)

Change in the example matrixT in (10) is such that the last
N/2 rows are omitted and added to the firstN/2 rows. Then
T (1, 7) = −w−2 andT (2, 8) = −jw−1 . The reconstruction
results are the same as in the slightly redundant case (9) and
(10). Matrix T is now complex.

The reconstructed signalXR is obtained either from (13)
or (8) with Xap = TXR or Xa = TXR as

TXR = Xa = W̃−1
M+N/2,N/2STFT

THTXR = THW̃−1
M+N/2,N/2STFT

XR =
(
THT

)−1
THW̃−1

M+N/2,N/2STFT. (14)

Redundancy in (14) is, for example, forM = 512 and
N = 32 only 3%. This form will be referred to as almost
nonredundant. For a redundancy free calculation using (13)
the matricesW̃−1

M,N/2 and correspondingTH should be used
with the signalXap.

Forms of (9) and (10) indicate a possibility of recursive
signal reconstruction for any window, instead of the matrix
THT inversion. Matrix THT is a tridiagonal matrix with
elementsw2(m)+w2(m−N/2) on the diagonal, periodically
extended up toM + N/2. Subdiagonal and updiagonal have
the elementsw(m)w(m − N/2), Fig.3. Note that the matrix
THT inversion is signal independent. Solving a linear system
of equations with a tridiagonal matrix has recently been a hot
topic in mathematics, with several solutions proposed to get
the result without matrix inversion calculation [14],[15]. In the
presented simulations we have used a direct inversion.

Within the reconstruction system framework the STFT
inverse vectorW̃−1

M+N/2,N/2STFT in (14) can be consid-
ered as an inputy(n) to M FIR systems, whose impulse



4

 x(n)

 x(n-7) 
w(-4) 
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w(-3) w(-1)  x(n-4) +w(3) x(n-0) 

z-1

  STFT(n-3,6)
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z-1
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Fig. 4. System for an almost nonredundant realization of the STFT transform. Illustration forM = 16 andN = 8.
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Fig. 3. Tridiagonal matrixTHT and transformation matrix
(
THT

)−1
TH ,

defining reconstruction coefficient filtershi. Absolute values are presented.

responses arehi, i = 0, 1, 2...,M − 1. Elements ofhi

are corresponding values of matrix
(
THT

)−1
TH rows in

each block of sizeN/2 = 4 (dotted lines in Fig.3(b)).
For the presented exampleh0 = (1, 0, 0, 0, 0), h1 =
(1.17, 0, 0, 0.0002, 0.001), h2 = (1.6, 0.4,−0.4, 0.4,−0.4),
h3 = (0.20, 1.13,−0.20, 0.03,−0.006), h4 = (0, 1, 0, 0, 0),
and so on. Then the output of these systems at instant
n = M − 1 will be the values of signalx(i), Fig.4.

IV. N OISE (ERROR) ANALYSIS

The inversion stability will be checked on the sensitivity to
noise (error) in the inversion. Assume that the values of

STFT = S↓2
M+N/2,N/2

contain a small noiseSTFT+ε introduced after the STFT
calculation. If the STFT inversion uses any division with a
small number or any low conditioned matrix, the output noise
will be highly amplified and the signal to noise ratio will
be significantly degraded. The reconstructed signal for noisy
coefficientsSTFT + ε is, (14),

XR =
(
THT

)−1
THW̃−1

M+N/2,N/2(STFT + ε) = X + εR,

where εR =
(
THT

)−1
THW̃

−1

M+N/2,N/2
ε. Input noise is

white with varianceσ2
ε . Variance of the output noise is

σ2
εR

= E{εH
R εR} = E{εHPHPε} =σ2

ε

∑M+N/2

i=1
λi (15)

whereP =
(
THT

)−1
THW̃

−1

M+N/2,N/2
andΛ is a matrix of

the eigenvaluesλi of the matrixPHP. Similar relations hold
for the redundancy free calculation.

Example 1: Random signal withM samples is used as an
input signalx(n). Its downsampled STFT is calculated with an
N sample Hann window using (8). The signal is reconstructed
using three presented methods. A Gaussian noise withσε =
10−5 is added to the STFT before reconstruction. The standard
deviation of error in the reconstructed signalσ̂εR

, averaged
over 100 signal realizations, is presented in following Table:

M =
N =

64
16

256
32

1024
64

R̂1 =
R̂2 =
R̂3 =

0.5299
0.4221
0.2165

0.3959
0.3357
0.1531

0.2991
0.2726
0.1083

RT = 0.5235 0.3964 0.3002

.

Ratio of input and reconstructed signal noiseR̂ = σ̂εR
/σε

is presented for the almost nonredundant STFT calculation



5

0 50 100 150 200 250
-3

-2

-1

0

1

2

3

Maximal reconstruction error is   1.2753e-05

Before reconstruction, added noise of variance 10-5

Fig. 5. Reconstruction of a signal whose duration isM = 256, using the
same total number of256 STFT coefficients, calculated with a Hann window
with N = 32. Signal is reconstructed after a noise is added to the STFT
values.

R̂1, nonredundant STFT̂R2, and redundant STFT with100%
redundancy factor,R̂3. The theoretical results for almost
nonredundant STFT using (15) are denoted byRT . All
these values are of the same order. As expected the standard
deviation is the smallest in the case of redundant calculation.
Reconstruction result for one realization and redundancy free
STFT is shown in Fig.5. Noise withσε = 10−5 is added.
The maximal error in512 samples is1.2753 ∙ 10−5. It is of
an 3σεR

= 1.3461 ∙ 10−5 order, as expected from three-sigma
rule for the Gaussian distribution.

Example 2: The redundant STFT with all frequency samples
and the STFT with reduced frequency samples are calcu-
lated for a sum of real-valued sinusoid, linear frequency
modulated signal and two chirps withM = 1024 samples
and a Hann window withN = 64. The STFTs are shown
in Fig. 6(a), (b). Time-frequency concentration is compared
using the norm-one based measure, [16]. The measure values,
normalized to the whole time-frequency range in each case, are
‖STFT‖1 = 2.36, ‖STFT‖1 = 2.34 and‖STFT‖1 = 2.34
for the redundant, almost nonredundant, and nonredundant
STFT, respectively. They are almost the same. Using every
other frequency sample the linearity property with respect
to the signal is preserved along with a good coverage of
the time-frequency plane. It means that filtering, by using
time-frequency masks, can be done as in the case when
each frequency sample is used. A noise is added to the
nonredundant STFT, Fig.6(c). The STFT is then filtered by
using a threshold at0.25max |STFT|. The nonredundant
filtered STFT is obtained, Fig.6(d). Noise overlapping with
the STFT values remains. The number of these points where
noise will remain is calculated for this signal in an ideal
nonnoisy case. It would guarantee the SNR improvement of
about7.54 dB. In the presented case the signal is recovered
from the filtered noisy noredundant STFT, Fig.6(d). The SNR
is 13.63 dB. An improvement of6.31 dB with respect to the
reconstruction without filtering is achieved, since some signal
samples (those bellow threshold) are lost as well.

The experiment is repeated with a noise-free STFT. Using
33% largest values, and setting the other values in the nonre-
dundant STFT to0, produces a signal with reconstruction error
−41.24 dB. Thus in addition to the fact that an exact recovery
with a nonredundant STFT is possible, it allows a significant
compression ratio with a small reconstruction error. Signal
with N = 1024 samples is recovered using341 STFT values.
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Fig. 6. (a) The STFT with all frequency samples of sum of real-valued
sinusoid, linear frequency modulated signal and two chirps. (b) The STFT
with reduced frequency grid. (c) Nonredundant STFT of noisy signal. (d)
Nonredundant filtered STFT of noisy signal.

V. CONCLUSION

A scheme for a full signal reconstruction from the STFT
calculated with a common window, without redundancy is
presented. The reconstruction stability is demonstrated on the
analysis of noise in the reconstruction process.
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