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Abstract — Compressive Sensing approach allows 

reconstruction of under-sampled sparse signals, by using 
different optimization techniques. These techniques solve 
undetermined systems of equations which may be recast as 
least square problems. Since there is a growing need for real-
time hardware implementations of the reconstruction 
methods, it is important for these methods to be fast enough 
and not be computationally demanding.  Here, we will focus 
on QR decomposition based approach for solving least 
square problems. Least square problem solution is defined in 
such way that does not require Q matrix, obtained as a result 
of QR decomposition of the measurement matrix, to be used 
in calculation and leads to the lower computational 
complexity. 
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I. INTRODUCTION 

 
rocessing and analysis of discrete signals can be done 
in different domains (e.g. time, frequency, time-

frequency). Signals can have different representations in 
different domains - e.g. in one domain signal can cover 
whole interval while in transform domain can express 
sparsity property. Sparsity of the signal means that only 
few non-zero components of the signal exist in the sparse 
domain, i.e. signal energy is concentrated within only 
those small number of non-zero coefficients [1]-[3]. 
Sparse signal can be sampled or reconstructed from an 
incomplete set of samples, by using Compressive Sensing 
(CS) approach and under certain conditions. 

CS [4]-[5] is newly used approach for signal sampling 
and for its recovering from small amount of available 
samples. It allows signal to be samples by acquiring 
significantly smaller number of samples, compared to the 
Shannon-Nyquist theorem. In some cases and from some 
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reasons we have left with reduced set of signal samples 
(e.g. signal samples are omitted as a result of noise). In 
such cases, CS allows recovering signal with high 
accuracy from this incomplete set. In order to recover the 
signal, a least square problem has to be solved [6]-[10]. It 
is set of linear equations with more equations than 
unknowns. Therefore, different optimization algorithms 
for solving least square problems are used [11]-[16].  

When considering hardware implementation of the least 
square problems, the most demanding task is matrix 
inversion. Different methods for matrix inversion 
problems solving, suitable for hardware implementations, 
have been proposed in the literature [7]. In this paper, we 
will focus on the QR decomposition – a method for 
factorization of the matrix into two matrices, an upper 
triangular and an orthogonal one [17]. The inversion is 
then reduced to the inversion of the triangular matrix. QR 
decomposition method is widely used for solving least-
squares problems in various applications. Several methods 
for QR matrix factorization exist, and they are used 
depending on the nature of the matrix and computational 
requirements. The least square problem is defined in a way 
that does not require matrix Q to be calculated and stored. 
The problem is recast to the triangular matrix R 
calculation and its inversion, which is less computationally 
demanding compared to the calculation both, Q and R 
matrices. 

The paper is organized as follows: In Section II 
theoretical background on the CS approach is given. Least 
square problem is introduced in this section as well. 
Methods for solving least square problems are considered 
in the next section. In section IV, CS least square problem 
is simplified by using the QR decomposition. Block 
scheme for hardware architecture are given in this part. 
Conclusion is given in the section V.  
 

II. COMPRESSIVE SENSING  

 
Traditional signal sampling is done according to the 

Nyquist sampling theorem with the sampling rate at least 
twice higher than the maximal signal frequency. As an 
alternative way of signal sampling, the CS strategy has 
been recently introduced allowing the signal to be sampled 
with much fewer samples if the certain conditions are 
satisfied.    
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One of the required conditions for CS application is 
related to the nature of the signal. If the signal, in sensing 
domain, has dense representation and, at the same time, 
the sparse representation in some other domain, it is said 
that signal is sparse. Hence, the sparsity is the first CS 
condition, and it assures that the signal energy is 
concentrated in small number of coefficients. The second 
condition is related to the sampling procedure, which 
needs to assure incoherent measurements. It was shown 
that random selection of signal samples can provide 
incoherence allowing signal reconstruction using small 
number of samples. Reconstruction of the full signal from 
an incomplete set of samples is done by using 
optimization techniques [15]. The CS procedure will be 
shortly described in the sequel, and optimization problem 
will be introduced.  

Let x be discrete signal that can be represented by using 
transform domain  as [1], [3]: 
 s x , (1) 
where s represents transform domain coefficients. By 
randomly selecting M signal samples, the measurement 
vector y is formed as: 
   y x s   (2) 

where  M×N performs random selection of the rows of 
the N×N matrix . The system of equations (2) is an 
undetermined system, since there is larger number of 
unknowns (N) than equations (M). In order to find the 
sparsest solution s among very large number of possible 
solutions, optimization problems are used (e.g. l1 
minimization): 

1
min . .s t s y s . If the number of 

detected signal components K is smaller than the number 
of available signal samples M (i.e. K<M), than the problem 
(2) can be solved in the least square sense as [12]: 

 T 1 T( ) ( ) CS CS CSA A As y . (3) 

Matrix ACS denotes M×K CS matrix, and it is obtained by 
selecting rows that correspond to the M available 
measurements and columns that correspond to the K signal 
frequencies from the original transform matrix . Note 
that, starting from the incomplete set signal samples y, the 

overdetermined system (3) is obtained. Vector s  is a 

solution of the optimization problem, while T
CSA  denotes 

Hermitian transpose of the CS matrix. 
 

III. LEAST SQUARE PROBLEMS AND QR DECOMPOSITION 

BASED SOLUTION 

A. Methods for least square problem solving 

The most challenging part for hardware implementation 
of the CS procedure, is the least square problem. Although 
the matrix ACS is not full matrix, but random partial 
transform matrix, it can still have large dimensions 
(depending on the number of available samples). 
Inversion, as well as multiplication of such matrices is a 
demanding task. Therefore, different methods that 
facilitate solving least square problems are defined: 

1. Normal equations method by using Cholesky 
factorization; 

2. Singular value decomposition (SVD); 

3. Transformation to a linear system; 
4. QR decomposition. 

 
Each of the mentioned methods has its drawbacks and 

advantages. The Cholesky factorization is the fastest 
method for solving least square problems, but it is 
numerically unstable. The method based on SVD requires 
more computational work, and cannot work with the rank 
deficient matrices. The third procedure is the fastest but 
least accurate. Although the method based on SVD is 
more stable and robust than the QR approach, QR method 
can be applied on rank-deficient matrices and, therefore, 
we will focus on QR decomposition for solving least 
square problem.   

QR decomposition (QR factorization) decomposes 
matrix A into two matrices: an orthogonal matrix Q and 

upper triangular matrix R. Consider matrix m nA  , 
with full rank n. QRD of the matrix A results in: 
 A QR , (4) 

where m mQ   is an orthogonal matrix, with 
T T Q Q QQ I , 1T Q Q . Matrix n nR  is an 

upper triangular matrix.  
Several algorithms for QR decomposition calculation 

exist:  Householder reflections/transformations [18], Gram 
Schmidt (GS) decomposition [19] and Givens rotations 
(GR) [20]. All of the methods have been considered for 
hardware realization, and all of the methods have their 
advantages and disadvantages. Householder 
transformation is more complex for hardware realization 
compared to the rest of the algorithms and cannot be 
efficiently parallelized. Therefore, we will focus on the 
GS and GR methods. Regarding the computational 
complexity, GS is numerically equivalent to the GR 
method. 

Gram-Schmidt method allows parallel computations 
with high processing throughput. Therefore, GS-QR 
decomposition is commonly used in applications where 
the parallelization of computations is desirable. There are 
two variants of the GS method: 

 
 -Classical Gram-Schmidt method (CGS); 
-Modified Gram-Schmidt method (MGS). 
 

Both, CGS and MGS may produce a set of vectors which 
is far from orthogonal [19]. Also, in some cases the 
orthogonality can be completely lost. CGS algorithm 
requires re-orthogonalization, which increases 
computational complexity of the algorithm. The MGS 
algorithm never requires re-orthogonalization and 
therefore has much better numerical properties. It is 
important to note that there are applications where the 
orthogonality of computed vectors does not play a crucial 
role. In such applications CGS algorithm can be used. 

The method based on Givens rotation algorithm and the 
coordinate rotation digital computer (CORDIC) algorithm 
can reduce hardware area and can be easily parallelized 
compared to the Householder reflections. However, this 
method has longer clock latency in the QRD procedure. 
Here, we will present and compare the Gram-Schmidt and 
the Givens rotation methods.  

 



 

B. GS and GR methods  

Let us summarize both versions of the Gram-Schmidt 
algorithm. Having the starting matrix A={a1, a2, ..., an}, a 
set of orthogonal vectors {q1, q2, ..., qn} can be obtained 
as: 
 1 1q a , (5) 
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
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Vectors {q1, q2, ..., qn} are the columns of the matrix Q, 
while pi,j are obtained as: 

    , /T T
i j i j i ip q a q q . (7) 

The MGS algorithm is similar to the CGS, with slight 
modification of the relation (7):  

    ( )
, / ,T i T

i j i j i ip q a q q  (8) 

where 

 
1

( )
,

1

.
i

i
j j k i k

k

a a p q



   (9) 

The second commonly used method for QR 
decomposition is based in GR. In recent years, QR 
decomposition based on this algorithm attracts much 
attention, because of good numerical properties and 
possibility to be easily parallelized.  The GR method is 
based on set of plane rotations of the original matrix A. 
Matrix G, used for performing plane rotations, is defined 
as follows: 
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where coefficients C  and S are defined as follows: 
 , ,cos( ), sin( )i j i jC S    . (11) 

Multiplication of the matrix A with the matrix G annuls 
(i,j) element of the matrix A. An upper triangular matrix R 
can be obtained through successive multiplication of the 
rotation matrix G: 
 , 1 2 32 1 21( )...( ... )( ... )n n n n G G G G G A R , (12) 

i.e. 

 T Q A R . (13) 
 

IV. QR BASED SOLUTION OF THE OPTIMIZATION PROBLEM  

 
Block scheme for CS procedure can be represented as 

in the Fig. 1. At the input of the block scheme, signal x, 

transform matrix  and matrix that models random 
selection of the samples  is fed. At the output of the first 
block, CS matrix ACS and vector of measurements y is 
obtained. The outputs of the Block 1 are then fed to the 
input of the Block 2 – block for optimization problem 
solving. It contains matrix transpose, matrix-matrix 
multiplication, inversion of the matrix and matrix-vector 
multiplication parts. The most numerically demanding part 
of the architecture is the matrix inversion part.  

x




y

CSA

s

x

T 1 T( ) ( )s y CS CS CSA A A

 
Fig.1. Block scheme for CS reconstruction 

 
Despite the dimensionality reduction, product of the 

ACS matrix and its transpose can still has large dimensions 
and can be computationally demanding. Therefore, the 
modification of the least square is proposed. By applying 
QR decomposition, the problem of inversion can be recast 
as inversion of triangular matrix. Inversion of triangular 
matrices is far less demanding for hardware 
implementation, compared to the inversion of the full 
matrix such as ACS. 

QR decomposition of the CS matrix ACS, results in: 
 

 ,CS CS CSA Q R  (14) 

 
where QCS is an orthogonal, while RCS is an upper 
triangular matrix. By substituting (14) in equation (3), the 
least square problem can be written as: 

      1T T( )s y


 CS CS CS CS CSQ R Q R A , (15) 

i.e. 
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 (16) 

Instead of multiplying matrices T
CSA  and CSA , and 

finding QR decomposition of the obtained matrix [21]: 
1 T y CS CSR Qs , the  ACS matrix is firstly QR decomposed.  

It is important to note that RCS matrix has K×K non-zero 
elements (where K is number of signal component), while 
matrix QCS is of M×M size. Number of available samples 
M, required for successful reconstruction, in some cases 
can be much larger than the number of components K. 
Consequently, matrix QCS can be much larger than RCS. 
The block scheme of the optimization problem solving is 
part is shown in Fig. 2. 
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Fig.2. Block for optimization problem solving 

 
 

V. CONCLUSION 

The methods for solving least square problem, found in   
most of the CS reconstruction algorithms, are discussed in 
this paper. The focus was on the QR method. It is used for 
matrix decomposition and facilitates hardware 
implementations, leading to the reduced matrix size and 
lowering the computational complexity. The modified 
version of the least square algorithm is proposed in the 
paper as well. The proposed form uses only original 
transform matrix and its corresponding upper triangular 
matrix, avoiding matrix Q in the computations. This leads 
to lower computational complexity, as matrix Q can have 
larger dimensions compared to the triangular matrix R. 
Block schemes for the CS procedure and optimization 
problem are shown in the paper as well.  
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