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Abstract: This paper addresses the reconstruction problem of non-stationary signals 

with missing samples. The reconstruction is achieved by using concentration measures 

of time-frequency representations in combination with a gradient-based iterative 

algorithm. As an example of a time-frequency representation, S-method is used in the 

proposed approach. The sparsity of the transform domain, needed for the successful 

reconstruction, is interpreted through the concept of concentration measures, and 

limits for successful reconstruction are discussed. Several examples with non-

stationary signals which exhibit different concentrations in the time-frequency 

domain illustrate presented theoretical concepts. 

 

1. INTRODUCTION 

Compressive sensing (CS) and sparse signals analysis have drawn significant research 

attention during the last decade [1]-[11]. The CS can be applied with the assumption of 

signal sparsity in a transform domain. Time-frequency signal analysis can be related with 

CS and sparse signals analysis within several aspects, since it provides different transform 

domains which are sparse representations for certain classes of signals. It is recently 
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proposed that S-method can be used not only for focusing the ISAR radar images and in 

that way improving the radar signal sparsity, but it can be also used as a sparse transform 

directly in the CS based recovery process, in cases when these signals have missing 

samples, after their elimination due to high corruption caused by noise [10]. The robust 

signal processing, stationary and non-stationary signal separation and reconstruction are 

other representative illustrations of fundamental connections between these areas [9]-[11]. 

The last few decades of the intensive research in the area of time-frequency analysis 

produced a large number of algorithms, methods and different mathematical approaches for 

the analysis and processing of non-stationary signals, with a large number of applications in 

several areas [12]-[18]. 

The area of CS deals with signals which have a certain number of missing samples. The 

reduced set of observations in CS is usually a consequence of a strategically chosen 

sampling method. On the other side, there are cases when signal samples can be 

intentionally omitted due to high noise corruption, or eliminated using robust techniques. 

All these cases can be treated as equivalent problems in the context of CS [10]. 

Mathematical foundation of the CS lies in fact that it is possible to reconstruct a sparse 

signal by interpreting the problem as an undetermined set of linear equations, which is 

solved by using an additional constraint – sparsity of the solution in a specific transform 

domain. The reconstruction process can be described in fact as a process of finding the 

sparsest out of all possible solutions of the given undetermined set of equations.  

Although the l0 norm represents a reasonable choice of the measure of sparsity, finding 

the solution by using the l0 norm is a NP hard problem. Thus, by relaxing the reconstruction 

constraint and involving l1 norm as a measure of sparsity, it makes possible to involve 

different optimization approaches, such as linear programming [1], [3], [4]. Other 

approaches for the reconstruction include gradient-based methods, such as ones introduced 

in [2], [5] and [10], also recognized as suitable in the context of our problem. These 

methods are iterative procedures based on a gradient descent optimization. 

The sparsity is a fundamental condition needed for the successful CS, and the 

performances and outcomes of the reconstruction process highly depend on the suitable 

choice of the transform domain in which the signal is sparse. The basic idea behind the 

presented analysis lies in fact that time-frequency representations concentrate the signal 

energy around the instantaneous frequency of the signal [12], [13]. Better concentration 

implies a smaller number of non-zero values of the time-frequency representation and thus, 

it can be interpreted as a sparsity measure. Concentration measures of time-frequency 

representations have been studied in [15], and put into the context of CS in [2] and [10]. 

Concentration measures of linear transforms are used in gradient-based algorithms as a 

measure of signal sparsity in the transformation domain [2], [5]. 

Within this paper, we will try investigate the possibility to relate the concept of sparsity 

with high level of concentration of some time-frequency representations (TFRs) via 

concentration measures, with aim to reconstruct non-stationary signals with missing 

samples. Although a time-frequency representation can be considered as sparse for a 

specific class of signal, and used for its reconstruction, such as in [10] and [11], our main 

goal is to investigate the concept of sparsity through concentration measures for the general 

class of non-stationary signals, as well as limits of the reconstruction process. As an 

example of highly concentrated representation, S-method which is in detail studied in [13] 

and [14] is used in this paper in a combination with the complex gradient reconstruction 
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algorithm introduced in [5]. The main reason for using the gradient-based algorithm instead 

of conventional compressive sensing algorithms lays in fact that S-method (as well as most 

of highly concentrated representations) as a domain of sparsity (in the context of 

concentration measures) has a non-linear relation with the signal, as it is stressed in [10]. 

2. BASIC THEORY AND PROBLEM DEFINITION  

The discrete S-method, as an example of a highly concentrated time-frequency 

representation is defined with: 
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where the parameter L with typical values between 3 and 5 defines the quality 

(concentration) improvement of the spectrogram 
2

( , )STFT n k  towards the Wigner 

distribution, as explained in detail in [13] and [14].  

A suitably chosen value of L suppresses the rise of undesired components known as cross 

terms. ( , )STFT n k denotes the Short-time Fourier transform (STFT), which is for a discrete 

signal x(n) defined with: 
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with w(m) being the window function of length 
wN . The discrete pseudo-Wigner 

distribution is defined with:
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Concentration measures were studied and widely used for the optimization of time-

frequency representations [13], [15]. Concentration of a TFR ( , )n k  of the signal x(n) can 

be defined with: 

 
1/

( , )
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n k
n k    . (2) 

Different values of p define different concentration measures. Highly concentrated TFRs 

have smaller number of non-zero values in the time-frequency plane, and thus, lower values 

of concentration measures. As it is known, in the context of CS the most suitable measure 

of sparsity, i.e. the concentration measure for counting the number of non-zero values is the 

l0 norm, obtained when p   in (2): 
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However, the minimization of this norm would imply a combinatorial search, which is a 

known NP hard problem. Additionally, since it only counts non-zero elements, even the 

smallest disturbances may cause problems in the minimization process [2]. This is the 

reason why in the CS other norms, such as l1, are used.  
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 According to the definitions of the S-method and the STFT [12], [13], it can be easily 

concluded that the l1 equivalent norm (concentration measure) can be obtained by setting 

2p   in (2) as: 

 
1/2
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If the signal ( )x n  with 
mM  missing samples is considered, the aim of reconstruction is 

to find a solution (i.e. the values of missing samples) which gives the sparsest S-method of 

signal. If we denote with Nx the set consisted of positions of available samples, the problem 

of reconstruction can be formulated as: 
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where y(n) denotes the reconstructed signal. 

 

3. SOLVING THE MIINIMIZATION PROBLEM USING THE 

GRADIENT BASED ALGORITHM 

As discussed in the Introduction, previous optimization problem can be successfully 

solved with a gradient approach. The basic idea behind the gradient based algorithm 

presented in [2], [5] and [10] is to set to zero the values in the signal at all missing samples 

positions, and then to vary these values with a small, appropriately chosen step  . Since 

we aim to reconstruct a complex signal, both real and imaginary parts of missing samples 

should be varied with the step  . A good starting value of the step can be obtained as 

max ( ) , xx n n  N .  

Before the procedure starts, the signal ( )y n  with zeros at the positions of missing 

samples is formed: 
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Then, for each iteration k the following steps are repeated, until the desired precision is 

obtained: 

 

Step 1: For each missing sample at the position in , form four signals defined as: 
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Step 2: Estimate the real and imaginary gradient parts as differences of the concentration 

measures: 

1 2
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Step 3: Form the gradient vector ( )k
G of the same length as the analyzed signal x(n) with 

elements, defined as follows: 
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where ( )r ig n  and ( )i ig n  are calculated in the Step 2. 

Step 4: Correct the values of y(n) using the gradient vector ( )k
G  with the steepest descent 

approach: 
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( ) ( ) ( )k k k

w
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As (7) is proportional to the error ( ) ( )y n x n  for both real and imaginary parts, the missing 

values will converge to the true signal values. In order to obtain a high level of precision, 

the step   should be decreased when the algorithm convergence slows down. In this paper 

the fixed step is used.  

Since the values of missing samples are varied, the measure gradient enables to 

approach the optimal point which minimizes the measure of the S-method, meaning that the 

solution which gives the smallest number of non-zero values of the S-method is obtained. 

Until the optimal point is approached, the zero-valued or inaccurate missing samples cause 

a larger number of non-zero values, as it is analyzed in [7], and thus, the larger 

concentration measures. The satisfactory reconstruction results are obtained as long as the 

S-method concentration is high. 

 

4. EXAMPLES AND DISCUSSION 

The presented reconstruction approach will be illustrated within three examples, where 

signals exhibit different concentration levels. For all examples, S-methods will also be 

shown in order to illustrate the concentration level for every particular signal. Besides the 

reconstruction results, the reconstruction MSE: 

  2

1010log ( ) ( )MSE y n x n   (9) 

will be also shown, in order to track the convergence of the algorithm during the 

iterations. In all examples the algorithm is stopped when the number of iterations becomes 

equal to the length of the analyzed signal. 
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Example 1: A mono-component linear frequency-modulated signal (LFM) of 

length 256N  , with 50 missing samples is considered: 

 

2

64
256( )

n
j

x n e

 
 
  . 

This signal has very specific parameters (i.e. modulation coefficient), since its Wigner 

distribution achieves the highest possible concentration out of all LFM signals. Namely, the 

signal is located on the diagonal of the time-frequency plane, with all samples placed on the 

time-frequency grid. The higher order phase derivatives influence is eliminated, and thus, 

this signal exhibits the highest possible concentration in the domain of Wigner distribution 

(in the class of non-stationary signals). Here, S-method with 100L   and a rectangular 

window of length Nw = 128 is used. This particular choice of L enables that S-method of the 

signal x(n) is approaches the concentration of Wigner distribution.  

The proposed gradient approach is successfully applied, and the reconstruction results are 

shown on Fig. 1. This level of signal concentration enables that the reconstruction 

procedure is successfully applied for 20% of missing samples at random positions. The 

reconstruction MSE, calculated by (9), and the S-method of the original signal are shown 

on Fig. 2. 
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Figure 1: The reconstruction of LFM signal with 20% of missing samples: first row shows the real and imaginary 
parts of the original signal; signal with missing samples is shown in the second row, where missing values are 

denoted with red dots; third row presents real and imaginary parts of the reconstructed signal 
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Figure 2: The reconstruction error (left) during the iterations in the case of mono-component LFM signal from Fig. 

1 and the S-method of the analyzed signal (right). 

 

Example 2: Consider the mono-component polynomial-phase signal of the form: 

 

5
128 300

10
128 128( )

n
j j n

x n e
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and with length N = 128 as an example of signal with lower level of concentration. In this 

case, the influence of higher-order derivatives is present (since the S-method, as well as 

Wigner distribution belonging to the class of quadratic time-frequency representations are 

ideally concentrated for signals whose phase is up to the polynomial of order 2). This 

influence (inner interferences) is suppressed with Hanning window. The window length is 

Nw = 32.  

The reconstruction procedure is applied on the signal realization with 14 missing samples 

at random positions. The reconstruction results are shown on Fig. 3. The reconstruction 

MSE shown on Fig. 4 indicates that the reconstruction error can be decreased with larger 

number of iterations. The S-method shown on Fig. 3 for the original signal (without 

missing samples) illustrates the signal’s lower concentration. The experiment shows that 

the efficient reconstruction of this signal is possible for up to 11% of missing samples. 

 

Example 3: The problem of the reconstruction of a two-component signal: 

       3 2 2
( ) exp 40 /128 100 /128 30 exp 50 /128x n j n j n j n j n        

of length 128N   is considered, having 10 missing samples. This signal is consisted from 

a linear and a quadratic FM component, thus exhibiting significantly lower concentration 

than in previously studied cases. The corresponding S-method is calculated with L = 3 and 

with Hanning window of length Nw = 64.   

Fig. 5 presents the reconstruction results, while the S-method of the analyzed signal with 

all samples available is shown on Fig. 6 (right), with corresponding MSE during the 

iterations (left). By increasing the number of algorithm’s iterations, lower MSE can be 

achieved. This example emphasizes the fact that a suitable choice of the parameters L and 

Nw is significant for the successful of the reconstruction, since the S-method concentration 
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depends on these values. It is crucial to set the S-method parameters such that the highest 

possible concentration is achieved, in order to obtain a successful reconstruction.  
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Figure 3: The reconstruction of polynomial-phase signal with 11% of missing samples: first row shows the real 
and imaginary parts of the original signal; signal with missing samples is shown in the second row, where missing 

values are denoted with red dots; third row presents real and imaginary parts of the reconstructed signal 

 

 

 
Figure 4: The reconstruction error (left) during the iterations in the case of mono-component polynomial-phase 

signal shown on Fig. 3 and the corresponding S-method (right). 
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If the signal non-stationarity is such that the sparsity property cannot be satisfied in the 

analyzed domain, the more concentrated time-frequency representations should be 

considered. The problem of the optimal time-frequency representation choice in the sense 

of concentration is analyzed in detail in [12] and [13]. Satisfactory results were obtained for 

two-component signals consisted of linear and quadratic FM components, for up to 8% of 

missing samples. 
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Figure 5: The reconstruction of multi-component signal with 8% of missing samples: first row shows the real and 

imaginary parts of the original signal; signal with missing samples is shown in the second row, where missing 
values are denoted with red dots; third row presents real and imaginary parts of the reconstructed signal 

 

 
Figure 6: The reconstruction error (left) during the iterations in the case of multi-component signal shown on 

Fig. 5 and the corresponding S-method (right). 
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5. CONCLUSION AND FURTHER RESEACH  

The reconstruction of non-stationary signals using an iterative gradient-based algorithm 

and S-method is presented. The theoretical considerations are illustrated within three 

examples, by applying the reconstruction procedure on mono-component non-stationary 

signals with high and low level of concentration measures, as well as on a multi-component 

non-stationary signal. The determination of the maximal possible number of available 

signal samples needed for the successful reconstruction is connected with the signal 

sparsity, i.e. concentration measure, indicating that the reconstruction which involves 

highly concentrated representations may produce satisfactory results for the class of non-

stationary signals, if the domain of sparsity is suitably chosen.  

The extension of the presented research will move towards the analysis of the 

reconstruction process involving other time-frequency representations which are 

particularly developed in order to increase the level of signal’s concentration, such as, for 

example, the L-Wigner distribution. 
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