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Abstract— Compressive sensing has attracted significant interest of researchers providing an alternative way 

to sample and reconstruct the signals. This approach allows us to recover the entire signal from just a small set of 

random samples, whenever the signal is sparse in certain transform domain. Therefore, exploring the 

possibilities of using different transform basis is an important task, needed to extend the field of compressive 

sensing applications. In this paper, a compressive sensing approach based on the Hermite transform is proposed. 

The Hermite transform by itself provides compressed signal representation based on a smaller number of 

Hermite coefficients compared to the signal length. Here, it is shown that for a wide class of signals characterized 

by sparsity in the Hermite domain, accurate signal reconstruction can be achieved even if incomplete set of 

measurements is used. Advantages of the proposed method are demonstrated on numerical examples. The 

presented concept is generalized for the short-time Hermite transform and combined transform.   

 

Index Terms—Compressive sensing, short-time Hermite transform, signal reconstruction in the combined 

domain   

 

1. INTRODUCTION 

 

 

The Hermite polynomials and Hermite functions have attracted the attention of researchers in various fields of 

engineering and signal processing [1]-[7], such as in quantum mechanics (harmonic oscillators), ultra-high band 

telecommunication channels, ECG data compression using Hermite functions representation of the QRS complexes, 

 
 

Compressive sensing approach in the Hermite 

transform domain 



etc. A set of Hermite functions forming an orthonormal basis is suitable for approximation, classification and data 

compression tasks [3]. Since the Hermite functions are eigenfunctions of the Fourier transform, time and frequency 

spectra are simultaneously approximated. Here, we are especially interested in a class of signals that are sparse in 

the Hermite transform domain. Note that, generally, such signals are not sparse in the Fourier transform domain. In 

the light of compressive sensing (CS) theory [8]-[12], we propose the method for efficient reconstruction of signals 

from its incomplete set of samples using the Hermite transform. The number of Hermite functions used in this 

approach is much smaller compared to the original length of the signal. The proposed approach is useful in the 

applications were the significant information is missing and the total signal reconstruction is required. Note that the 

large amount of missing signal samples may occur as a consequence of the compressed sampling strategy, but also 

as a consequence of discarding damaged signal parts [13]-[15]. The theory is illustrated through examples showing 

that the Hermite transform based CS for certain types of signals can outperform the Fourier transform related 

reconstructions. Furthermore, in analogy with the time-frequency analysis based on the Fourier transform, the short-

time Hermite transform is defined as a linear representation that reveals the local behavior of windowed signal parts. 

If the signal components are of short duration, then the short-time Hermite transform is more suitable for 

compressive sensing than the standard Hermite transform. Finally, the possibility of combing different transforms 

depending on the signal characteristics is explored.       

The paper is organized as follows. The theory behind the Hermite transform and the fast method for Hermite 

coefficients calculation is given in Section II. The formulation of Compressive sensing approach in the Hermite 

transform domain is given in Section III. The possibilities to exploit other sparsity domains based on the short-time 

Hermite transform and combined transform are presented in Section IV. The experimental evaluation of the 

proposed approach is given in Section IV, while the concluding remarks are given in Section V.  

2. HERMITE TRANSFORM 

 

The Hermite functions provides good localization and the compact support in both time and frequency domain 

[4]. The i-th order Hermite function is defined as: 
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The Hermite functions provide an orthonormal basis set for an optimal representation of different signals using the 

fewest number of basis functions. Signal expansion into Hermite functions, known as the Hermite transform, has 

been used for both 1D and 2D signals in various applications. The Hermite expansion for a signal  f(t) can be 

defined as: 
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where ( )i tψ  are the Hermite functions and N is the number of functions used for the approximation. The number of 

Hermite functions N could be usually much smaller than the number of signal samples M (N≤M). The Hermite 

coefficients can be defined by using the Hermite polynomials as follows: 
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where,              
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represents the Hermite polynomial. An efficient procedure for calculation of Hermite coefficients, can be done by 

applying the Gauss-Hermite quadrature [5]: 
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where tm are zeros of Hermite polynomials. By using the Hermite functions instead of polynomials, a simplified 

expression is obtained:   

  1
1

1
( ) ( ).

M
i

i M m m
m

C t f t
M

µ −
=

≈ ∑  (6) 

The constants 1( )i
M mtµ − are calculated as: 
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3. COMPRESSIVE SENSING FORMULATION IN THE HERMITE TRANSFORM DOMAIN 

 

Generally, the compressive sensing scenarios are focused on the new sampling strategy, which results in a large 

number of randomly missing samples comparing to the standard sampling methods [8]. Hence, based on a small set 

of acquired measurements, the entire signal needs to be reconstructed. The missing samples in compressive sensing 

generally cannot be recovered using standard interpolation methods due to the complexity of nonstationary signals 

in real applications. Namely, the interpolation methods such as polynomial fit, cubic spline interpolation, or similar 

usually assume certain model function, which is mostly inappropriate for time domain signal modeling. Therefore, 

the compressive sensing reconstruction is formulated in the literature as an optimization problem (rather than 

interpolation) which reconstructs the signal by finding the sparsest transform domain solution corresponding to the 

available small set of samples.  

In the CS context, we are dealing with a small set of randomly chosen samples of f(t). Let us assume that we have 

only MA out of M available samples (M is the total number of signal samples and M>>MA). The vector of available 

measurements is denoted as y. Now we may write: 

 y =Φf , (8) 

 

where f is original full signal (of length M) written in the vector form, while ΦΦΦΦ (MA×M) is the measurement matrix. 

The original signal f can be expressed using the Hermite transform as follows: 

 f =ΨC , (9) 

 

where C is the vector of Hermite transform coefficients, while the is the inverse Hermite transform matrix of size 

M×N (N≤M): 
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The direct Hermite transform matrix is given by H. In the extended form, (9) can be written as follows: 
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The Hermite basis functions are calculated using the fast recursive realization defined as: 
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According to (8) and (9) we have: 

 =y =ΦΨC ΘC . (12) 

 

The reconstructed signal f can be obtained as a solution of M linear equations with MA unknowns. The system is 

undetermined and can have infinitely many solutions. Now we assume that the signal is sparse in the Hermite 

transform domain. It means that the observed signal can be efficiently represented by a very small number K of 

Hermite expansion coefficients, such that K<MA. Therefore, the optimization based mathematical algorithms should 

be employed to search for the sparsest solution. A near optimal solution is achieved by using the 1l  norm based 

minimization as follows:  
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where 
∧
C  is the Hermite transform vector of reconstructed signal f.  

In order to solve the previous minimization problem, first we need to calculate the initial Hermite transform using 

the available set of MA samples with the time support Ω: ( )= = Ωy Φf f . Therefore, we observe the signal in the form: 
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The initial vector of Hermite transform coefficients can be then calculated using N Hermite functions (N≤M) as 

follows: 
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where 
 
H

Ω
 contains only the columns of H that corresponds to instants  n∈Ω . Alternatively, we can write: 
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In order to determine the signal support in the Hermite transform domain, the initial vector of the Hermite transform 

coefficients C0 is compared by the threshold T:  

 { }0 arg .T= >k  C    (17) 

  The exact values of Hermite coefficients at positions selected in vector k are obtained as a solution of the CS 

problem:  

 Θ =cs 0C y . (18) 

The CS matrix ΘΘΘΘcs is obtained from the inverse Hermite transform matrix ΘΘΘΘcs=ΨΨΨΨ(Ω, k), using columns that 

correspond to frequencies k and rows corresponding to measurements with support Ω. The system is solved in the 

least square sense as follows:  
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where (*) denotes the conjugate transpose operation. 

 

Analysis of components reconstruction: Let us consider the isometry property of Hermite transform matrix Ψ:     
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The previous equation can be written as follows: 
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Now, observe the first term on the right side given by: ( ) ( )
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particularly the sum of squared values of different Hermite functions. Fig. 1 illustrates the sum of squared values of 

different Hermite functions calculated in the zeros of Hermite polynomials for: N=(128, 100, 70 and 50). Unlike in 

the case of the Fourier transform basis, where the sum of absolute values of complex exponential basis would be 

constant for any frequency k, from Fig. 1 we can note an approximate low-pass characteristic of the curves, meaning 



that the lower order coefficients are favored compared to the higher order coefficients. Consequently, when applying 

the threshold for components detection, it would be easier to detect a set of low order coefficients than the high 

order ones.     

 
 

Fig. 1 Sum of squared values of Hermite functions for different N 

 

 

4. INTRODUCING THE SHORT-TIME HERMITE TRANSFORM AND SHORT-TIME COMBINED TRANSFORM 

A) Short-time Hermite transform 

Let us assume that N=M in (10) and to define an M×M Hermite matrix: 
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The short-time Hermite transform (STHT) can be defined as a composition of Hermite transform matrices whose 

size is defined by the window width. Without loss of generality, we may assume the non-overlapping unit 

rectangular windows (with the width of M samples). The total transform matrix for the STHT can be created as 

follows: 
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where I is identity matrix of size (L/M × L/M), 0 is M×M zero matrix, L is the total length of the signal, while ⊗  

denotes the Kronecker product. The STHT can be defined using transform matrix W as: 

   
  
STHT=Wf = WΨLC , (24) 

where f is a time domain signal vector of size L×1, C is a Hermite transform vector of size L×1, while STHT is a 

column vector containing all STHT vectors STHTMi (mi), i = 0,1,..., P (P is the number of windows). Furthermore 

we may write: 

   
 
STHT= AC, (25) 

where 
  
A=WΨ

L
 is matrix of size L×L that maps the global transform domain information in C into local 

information in STHT. In the case of windows with variable length over time (time-varying windows), the smaller 

matrices within W will be of different sizes. Particularly, for a set of P rectangular windows of sizes M1, M2, … , MP 

instead of HM we will have: 
1 2

, , ...,
PM M MH H H .  

In the context of compressive sensing, the STHT allows us to define two types of CS problem. A common CS 

problem is defined by assuming that the missing samples appear in the time domain, while the sparsity is exploited 

in the transform domain. However, the missing samples may also appear in the STHT domain, after applying certain 

filter forms such as the L-estimate filtering in the presence of strong noisy pulses. The two CS optimization 

problems are discussed in the sequel. 



 1) Assume that CS procedure is done in the time domain, such that the measurements are taken from each 

windowed signal part: 
   
y

i
= f

M i
(Ω) . Based on the definitions given in Section III, the minimization problem is 

given by: 

 1min|| ||i i M isubject to ΨC y = C , (26) 

for i=1, 2, …, P, where P is the total number of windows, while MΨ  is the inverse Hermite transform of size M×M 

corresponding to HM from W.  

   

2) Let us observe the missing values in the STHT domain, where the measurements vector is denoted by STHTcs. 

The CS problem formulation is defined using the linear relationship (25). The CS matrix, denoted by 
  
Acs

, is formed 

by omitting the rows from A corresponding to the positions of missing values in STHTcs. Then, a simple linear 

relationship can be established between the reduced observations in STHTcs and the sparse Hermite transform 

vector C (corresponding to the entire signal). Hence, the CS problem is given in the form:  

 
   
min||C||

1
subject to STHT

cs
=A

cs
C . (27) 

 

It means that the missing samples in the STHT can be reconstructed such as to provide the best concentrated C. The 

above CS optimization problem can be solved using various existing CS reconstruction algorithms.  

B) Short-time combined transform 

On the basis of the STHT, we can also define the short-time combined transform as follows: 

 

  X = Zf , (28) 

 

where the transform matrix Z is made as a combination of Hermite transform matrices and other transforms:  

 

1

2

...

...

... ... ...

...
P

M

M

M

 
 
 

=  
 
 
 

Z 0 0

0 Z 0
Z

0

0 0 Z

, (29) 



where ZMi can be either the Mi×Mi Hermite transform or some other suitable transform matrix of the same size. For 

instance, we may observe one example of the combination of Hermite transform and Fourier transform as a special 

case: 
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The combined matrix Z is thus composed of Hermite transform matrix H of size M×M, two sequential Fourier 

transform matrices F of size M×M, and again one Hermite transform matrix of the same size. In the case of 

compressive sensing scenario, the combined  
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where 
   
f

M1
represents the vector containing first M1 samples in f, vector

   
f

M2
contains the next M2 samples from f, 

while 
  
f

M P
contains the last MP samples from f such that 

  
M1+ M2 +...+ M P = L  .  

We can again observe the set of measurements corresponding to different signal parts: 
   
y

i
= f

M i
(Ω)  where 

( )i iM Minv=Θ Z . Therefore, the CS minimization problem is given by: 

 
 

 1min|| ||
i i iM i M Msubject toX y =Θ X , (32) 

 

for i=1, 2, …, P,  where the inverse transform denoted by 
iMΘ  can be changed in each window depending on the 

signal characteristics.   

 

 

5. EXPERIMENTAL EVALUATION 

Example 1: In order to illustrate efficiency of the proposed method, let us observe a signal that is sparse in the 

Hermite transform domain. The time domain signal is shown in Fig. 2a. The Hermite transform of the observed 

signal consists of ten components with unit amplitudes, as shown in Fig. 2b. The available number of samples is 



60% of the total signal length, while the maximal order of Hermite functions used in the expansion is limited to 

N=60.  

  After calculating the initial Hermite transform using available signal samples, the threshold is applied to select 

signal support in the Hermite domain. The threshold is set empirically to T=αmax{C}, α=0.4, after performing a 

large number of experiments. Moreover, the results are not very sensitive on threshold settings, and even lower 

thresholds (e.g. α=0.3, α=0.2) can be used, because all additional (false) components selected by such a threshold 

would obtain their true zero-values afterwards. The suitable threshold can be even theoretically derived (under 

certain assumptions). Namely, the effects caused by missing samples in time domain can be modeled by the noise in 

the Hermite transform domain. The noise can be described using two random variables: the first one corresponds to 

the noise appearing at non-signal components (noise-alone), while the second one corresponds to the noise 

appearing at the signal components positions. The two random variables can be described by the corresponding 

mean values and variances that could be further employed to define the threshold level. Namely, with certain 

probability, we may define the threshold value that is just above the level of noise components. Consequently, such 

a threshold would select only the signal components determining the signal support used in the reconstruction 

procedure. Since the threshold derivation would require significant space and analyzes, it could be a topic of some 

further work.   

 

Fig. 2 The original signal: a) Time domain representation, b) Hermite transform of signal calculated using N=60 Hermite 

functions 

 



 

Fig. 3 Hermite coefficients of signal with missing samples –o, and the Reconstructed Hermite coefficients –x 

 

 

Fig. 4 The reconstructed signal: a) Time domain representation, b) The absolute error between original and reconstructed signal, c) For 

comparison: reconstructed signal based on the Fourier transform reconstruction approach(-o) and the corresponding error (solid line) 

 

The selected components in the Hermite transform domain are shown in Fig. 3. Using the detected positions of 

components, the exact values of Hermite coefficients are calculated according to (19), (Fig. 3, marked by -x). The 



reconstructed signal, as well as the absolute error between original and reconstructed signal are shown in Fig. 4 (a 

and b, respectively). For the comparison, the reconstruction based on the Fourier transform is considered. However, 

it is shown that the Fourier transform based reconstruction cannot be used in this case, because it produces a 

significant error (Fig. 4c, 10 largest Fourier transform components are used for reconstruction). The reason is in the 

fact that the signals that are sparse in Hermite transform domain, do not exhibit sparsity in the Fourier transform 

domain (or some other transform domains). This means that the exact results, in this case, can be obtained only 

using the Hermite transform providing the sparse signal representation.  Similar conclusion holds for other transform 

domains where the signal is not sparse (Fractional Fourier, Wavelet, etc.). 

Example 2: In this example we have observed different sparse signals (having 10 components) in the Hermite 

domain through the 1000 repetitions of the previously described procedure. The aim is to test how the accuracy of 

the proposed method changes for different number of missing samples. Namely, the number of missing samples was 

increased in steps of 10% starting from zero up to 80% of missing samples. For each instance on the y-axes, we 

performed 1000 iterations with different 10-component signals, and the mean square errors between original and 

reconstructed signals are calculated and shown in Fig. 5a. We can observe that up to 70% of missing samples, the 

MSE is still low, but it starts to increase significantly afterwards (for values higher than 70%). This means that the 

reliable reconstruction cannot be guaranteed for such a large number of missing samples (such as 80% of missing 

samples). 

   

a)                      b) 

Fig. 5 a) MSE calculated for 1000 realization and for different number of missing samples, b) MSE calculated for different values of SNR 

in 1000 realizations of external noise 

Additionally, the proposed approach is tested in the presence of external additive Gaussian noise. Namely, the MSE 

is calculated for different values of SNR (for each SNR, we assume 1000 realizations of random noise). The results 



are presented in Fig.5b, showing that the proposed approach can be efficiently used for SNR>8dB. For SNR<8 dB 

the MSE starts to increase rapidly.       

Example 3: This example illustrates the concept of combined Hermite-Fourier transform and CS reconstruction. 

Observe the signal with the total length of L=32 samples composed of two parts: first part exhibit sparsity in the 

Hermite transform domain with K=2 components (HT components) at positions 7 and 12 with amplitudes 0.8 and 

0.65; second part exhibit sparsity in the Fourier transform domain with K=2 components (FT components) at the 

positions -3 and 4 with amplitudes 1 and 0.8, respectively. Now consider the compressive sensing scenario with only 

50% of samples available (original full length signal and available measurements are shown in Fig. 6). The original 

short-time combined transform obtained using windows width equal to 16 samples is shown in Fig. 7a, where the 

white fields represent 0 value. Thus, the signal represented by a full set of samples is sparse meaning that it is fully 

concentrated on a few non-zero components. In the case when we deal with 50% of missing samples, the 

corresponding short-time combined transform is shown in Fig. 7b. Note that in this case the sparsity is disturbed as a 

consequence of missing samples. Instead of zero values at non-signal position, the noise appear as a consequence of 

missing samples. 

 

Fig. 6 Original full length signal and available measurements in time domain  

 



   

a)                       b) 

Fig. 7 a) Original short-time combined transform of full length signal (FT-Fourier transform,  HT- Hermite transform), b) short-time 

combined transform of available measurements 

 

 

          a)                       b) 

Fig. 8. Selecting the components of interest by applying threshold to: a) FT components, b) HT components 

 

 

Fig. 9. Reconstructed signal components 

 



The threshold based components selection and signal reconstruction (in analogy to (17) and (19)) is applied to both 

parts of the signal, FT components and HT components (Fig. 8a and b, respectively). Based on the identified 

positions of components, the exact signal reconstruction is done using the procedure presented in Section 3. The 

reconstructed signal components are shown in Fig. 9. 

 

6. CONCLUSION 

The possibility of using the Hermite transform in Compressive sensing applications was explored in this work. 

The Compressive sensing set up and signal reconstruction approach in the Hermite transform domain was defined. A 

simple and fast procedure for the total reconstruction of signals using selected Hermite transform coefficients, 

provides the results very close to the original signal even when we deal with significant missing information. It is 

important to emphasize that the proposed concept in the Hermite transform domain can be also combined with other 

known Compressive sensing solvers. The entire concept is generalized and extended by defining the short-time 

Hermite transform as well as the short-time combined transform. These two transforms open more possibilities to 

apply the compressive sensing approach in different scenarios.  
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