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On the Uniqueness of the Sparse Signals
Reconstruction Based on the Missing Samples

Variation Analysis
Ljubiša Stanković, Miloš Daković

Abstract—An approach to sparse signals reconstruction consid-
ering its missing measurements/samples as variables is recently
proposed. Number and positions of missing samples determine
the uniqueness of the solution. It has been assumed that analyzed
signals are sparse in the discrete Fourier transform (DFT)
domain. A theorem for simple uniqueness check is proposed.
Two forms of the theorem are presented, for an arbitrary sparse
signal and for an already reconstructed signal. The results are
demonstrated on illustrative and statistical examples.

I. INTRODUCTION

In many engineering applications, an incomplete set of sam-
ples/measurements arises due to physical system constraints.
In some cases randomly positioned samples/measurements are
heavily corrupted so that it is better to omit them and consider
as unavailable [1], [2]. In these applications reduction of the
considered dataset is not a result of an intentional compressive
sensing strategy [3]-[8]. Nevertheless, the primary goal is the
signal recovery, as in the compressive sensing theory [8],
[16]. Recently, an adaptive-step gradient-based method for the
reconstruction of sparse signals with missing/omitted samples
has been proposed [17]. The proposed method reconstructs the
remaining missing samples/measurements in order to make
a complete set of samples/measurements, in contrast to the
common reconstruction methods that recover the signal in their
sparsity domain. The final result in all algorithms is the same.
It is full recovery of the signal.

In general, the reconstructed signal uniqueness is guaranteed
if the restricted isometry property is used and checked with
appropriate isometry constants [5]. However, two problems
exist in the implementation of this method. For a specific
measurement matrix, it produces quite conservative bounds.
In practice, it produces a large number of false alarms for
nonuniqueness. In addition, uniqueness check with the re-
stricted isometry property requires a combinatorial approach,
which is an NP-hard problem (like the solution of the problem
itself using the norm-zero in the minimization). In the adaptive
gradient-based method, the missing samples/measurements
are considered as the minimization variables. The available
samples values are known and fixed. Obviously, the number
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of variables in the minimization process is equal to the
number of missing samples/measurements in the observation
domain. This approach is possible when the common signal
transforms are the domains of signal sparsity. Then missing
and available samples/measurements form a complete set of
samples/measurements.

The discrete Fourier transform (DFT), as the most important
signal transform, is considered in this paper as the sparsity
domain of the signal. A theorem for the uniqueness of the
reconstructed solution, based on the missing sample variations,
is presented. Two forms of the theorem are presented. One
stating the uniqueness condition for a given missing sample
transformation matrix and the other providing the uniqueness
check if a sparse signal is already recovered using a recon-
struction algorithm. The solution is unique in the sense that the
variation of the missing sample values can not produce another
signal of the same or lower sparsity. The theorems provide an
easy and computationally efficient uniqueness check.

The paper is organized as follows. After the introduction, the
uniqueness theorems and corollaries are defined and illustrated
on examples. The proofs are presented in Section 3. The worst
case signal is derived and related to the group delay function
in Section 4. Theoretical results are demonstrated on simple
illustrative and statistical examples as well.

II. ON THE RECONSTRUCTED SIGNAL UNIQUENESS

Consider a signal x(n) with n ∈ N ={0, 1, 2, ...., N − 1}.
Assume that Q of its samples at the positions qm ∈ NQ =
{q1, q2, ...., qQ} are missing/omitted. The signal is sparse in
the DFT domain, with sparsity s. The reconstruction goal is
to get x(n), for all n ∈ N using available samples at n ∈
M = N \NQ . We will consider a new signal of the form

xa(n) = x(n) + z(n)

where z(n) ≡ 0 for the available signal positions n ∈ M
and z(n) may take arbitrary values at the positions of missing
samples n = qm ∈ NQ = {q1, q2, ...., qQ}. The DFT of this
signal is

Xa(k) = X(k) + Z(k)

=

s∑
i=1

σiδ(k − k0i) +
Q∑

m=1

z(qm)e−j
2π
N qmk/N .
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Positions of nonzero values in X(k) are k0i ∈ Ks =
{k01, k02, ...., k0s} with X(k0i) = σi. In the minimization
process the values of missing samples of xa(n) = x(n)+z(n)
for n ∈ NQ are considered as variables. The goal of the
reconstruction process is to get xa(n) = x(n), or z(n) = 0
for all n ∈ N. This goal should be achieved by minimizing
the sparsity of the signal transform Xa(k). Existence of the
unique solution of this problem depends on the number of
missing samples, their positions, and the signal itself.

First, assume that the signal can take any form, including the
worst possible one. Then the number of missing samples and
their positions will be considered only. The uniqueness, in this
case, means that if a signal with the transform X(k) of sparsity
s, is obtained using a reconstruction method, with a given set
of missing samples, then there is no other signal of the same
or lower sparsity that satisfy the given set of available samples
values, using the same set of missing samples as variables.

Theorem 1 Consider a signal x(n) that is sparse in the
DFT domain with unknown sparsity. Assume that the signal
length is N = 2r samples and that Q samples are missing
at the instants qm ∈ NQ. Assume that the reconstruction is
performed and that the DFT of reconstructed signal is of
sparsity s. The reconstruction result is unique if the inequality

s < N − max
h=0,1,...,r−1

{
2h (Q2h − 1)

}
− s

holds. Integers Q2h are calculated as

Q2h = max
b=0,1,...,2h−1

{card{q : q ∈ NQ and mod(q, 2h) = b}}
(1)

Example: Consider a signal with N = 25 = 32 and Q = 9
missing samples at

qm ∈ NQ = {2, 3, 8, 13, 19, 22, 23, 28, 30}.

Using the theorem, we will find the sparsity limit s when we
are able to claim that the reconstructed sparse signal is unique
for any signal form.

-For h = 0 we use Q20 = Q and get 20 (Q20 − 1) − 1 =
(Q− 1)− 1 = 9.

-For h = 1, the number Q21 is the greater value of

card{q : q ∈ NQ and mod(q, 2) = 0} =
card{2, 8, 22, 28, 30} = 5

card {q : q ∈ NQ and mod(q, 2) = 1} =
card{3, 13, 19, 23} = 4,

i.e., the maximal number of even or odd positions of missing
samples. Thus Q21 = max {5, 4} = 5 with 21 (Q21 − 1) = 8.

-Next Q22 is calculated as the maximal number of missing
samples whose distance is multiple of 4. For various initial
counting positions b = 0, 1, 2, 3 the numbers of missing
samples with distance being multiple of 4 are 2, 1, 3, and
3, respectively. Then Q22 = max {2, 1, 3, 3} = 3 with
22(Q2h − 1) = 8.

-For Q23 the number of missing samples at distances being
multiple of 8 are found for various b = 0, 1, 2, 3, 4, 5, 6, 7. The

value of Q23 is 2 with 23(Q23 − 1) = 8.
-Finally we have two samples at distance 16 (samples at the

positions q2 = 3 and q5 = q2+N/2) producing Q24 = Q16 =
2 with 24(2− 1) = 16.

The reconstructed signal of sparsity s is unique if

s < N − max
h=0,1,2,3,4

{
2h (Q2h − 1)

}
− s

s < 32−max {9, 8, 8, 8, 16} − s
s < 32− 16− s

or
s < 8.

The theorem considers general signal form. It includes the
case when the amplitudes of signal components are related
to each other and related to the missing sample positions.
The specific signal form required by the theorem, to reach its
bound, is analyzed in Section IV. Since this kind of relation is
a zero-probability event, we will define a corollary, neglecting
the probability that the signal values are dependent to each
other and related to missing sample positions at the same time.

Corollary 2 Consider the signal x(n) that is sparse in the
DFT domain. Assume that signal length is N = 2r samples
and that Q samples are missing at the instants qm ∈ NQ.
Also assume that the reconstruction is performed and that the
DFT of reconstructed signal is of sparsity s. Assume that the
amplitudes of signal components are arbitrary with arbitrary
phases so that the case when all of them can be related to
the values defined by using the missing sample positions is a
zero-probability event. The reconstruction result is not unique
if the inequality

s ≥ N − max
h=0,1,...,r−1

{
2h (Q2h − 1)

}
− 1

holds. Integers Q2h are calculated in the same way as in the
Theorem 1.

Example: Consider a signal with N = 25 = 32 and Q = 9
missing samples at

qm ∈ NQ = {2, 3, 8, 13, 19, 22, 23, 28, 30}.

The sparsity limit s when we are able to claim that the
reconstructed sparse signal is not unique is

s ≥ N − max
h=0,1,2,3,4

{
2h (Q2h − 1)

}
− 1

s ≥ 32−max {9, 8, 8, 8, 16} − 1

s ≥ 15.

Pseudo-code for uniqueness check according to Theorem
1 and Corollary 2 is presented in Algorithm 1. Note that in
Corollary 2 we used the condition that the reconstruction result
is nonunique (instead of the condition that the reconstruction
result is unique in Theorem 1) since the zero-probability events
are included here.

Corollary 2 provides the uniqueness test for the given
positions of unavailable samples. In the cases with h > 0
it exploits the periodic structure of the transformation matrix
of missing samples. The periodical form assumes that the



MATHEMATICAL PROBLEMS IN ENGEENERING, 2015, ARTICLE ID 629759 3

Algorithm 1 Sparsity limits – Theorem 1 and Corollary 2
Require:

• Set of missing sample positions NQ
• Total number of signal samples N , N = 2r

1: KT ← N
2: KC ← N
3: for h← 1, r − 1 do
4: for b← 0, 2h − 1 do
5: Qb ← card{q : q ∈ NQ and mod (q, 2h) = b}
6: end for
7: Q2h ← max

b
Qb

8: if KT > (N − 2h(Q2h − 1))/2 then
. Theorem 1 check

9: KT ← (N − 2h(Q2h − 1))/2
10: end if
11: if KC > N − 2h(Q2h − 1)− 1 then

. Corollary 2 check
12: KC ← N − 2h(Q2h − 1)− 1
13: end if
14: end for

Output: KT , KC

• Every solution with sparsity s < KT is unique.
• Solution with sparsity s < KC is unique with proba-

bility one, excluding zero-probability event (when the
amplitudes of signal components are related to each
other with a relation defined by the missing sample
positions).

positions of possible zero values in Z(k) do not interfere with
the signal nonzero value positions. This is possible in the worst
case analysis. For example, with two missing samples at the
positions z(qm) and z(qm +N/2), the reconstruction process
assumes that there are N/2− 1 zero values in Z(k) and that
the same number of zero values is preserved in X(k)+Z(k).
This event can occur if we assume that all nonzero values of
X(k) have the same structure as Z(k). In this specific case,
it means that all of the signal nonzero coefficients are either
on odd or even positions in the frequency domain.

Numerical example: Signal with N = 64 samples is consid-
ered. The signal sparsity is varied from s = 1 to s = N − 1.
For each signal sparsity s number of missing samples is
varied from Q = 1 to Q = N − 1. For each pair (s,Q)
1000 trials are performed with Q randomly positioned missing
samples. Uniqueness is checked by Theorem 1 and Corollary
2. Percentage of trials where uniqueness is guaranteed is
presented in Fig. 1. We can clearly see two regions one where
uniqueness was achieved in each trial (P = 100%) and the
other where the solution was always nonunique (P = 0%).
In the transition between these two regions the uniqueness
highly depends on the missing sample positions, producing
0% < P < 100%.

We see that there is a sharp transition, for example at
Q = 16 (for N − Q = 48), from P (s,Q) = P (15, 16) ∼= 1
when s = 15 to P (s,Q) = P (16, 16) ∼= 0 for s = 16

(marked with white dots in Fig. 1(left)). It means that the
difference of probabilities P (15, 16) − P (16, 16) is almost
1. Let us explain this effect. Consider Theorem 1 condition
s < N − 2h (Q2h − 1) − s for h = 0, 1, ..., r − 1. If
32 = 64 − 2h (Q2h − 1) the solution will be unique for
s = 15 and nonunique for s = 16. This equality is satisfied for
Q32 = 2, Q16 = 3, Q8 = 5, and Q4 = 9. It means that at least
one of the following holds: 1) There are Q32 = 2 samples at
distance 32, 2) There are Q16 = 3 samples at the distance
being multiple of 16, 3) There are Q8 = 5 samples at the
distance being multiple of 8, 4) There are Q4 = 9 samples
at the distance being multiple of 4. Probability that among
Q = 16 samples out of N = 64 there are 2 samples at the
distance 32 is P = 0.92. Since other events are with lower
probabilities, this one is sufficient to explain the sharp change
in P (s,Q). We may write P (15, 16)− P (16, 16) ∼ 0.92.

After signal reconstruction, we are in a position to ad-
ditionally specify the uniqueness requirements using the re-
constructed signal. When a sparse signal is reconstructed we
want to check the uniqueness of this signal. It means that
the signal x(n), with its transform X(k) which is nonzero at
ki ∈ Ks = {k01, k02, ...., k0s}, is obtained and we want to
check if there is another signal X(k) + Z(k) with the same
or lower sparsity, where Z(k) is the DFT of arbitrary values
of samples at the missing sample positions. The positions of
nonzero values in X(k) are not arbitrary, while the positions
of zero and nonzero values in Z(k) could change to produce
minimal possible sparsity of X(k) + Z(k). In the previous
example with two missing samples z(qm) and z(qm +N/2),
when the signal is already recovered, it means that we can
not assume that all {k01, k02, ...., k0s} are either odd or even.
They are given since we have already reconstructed a sparse
signal.

Theorem 3 Consider the signal x(n) that is sparse in the
DFT domain with unknown sparsity. Assume that the signal
length is N = 2r samples and that Q samples are missing at
the instants qm ∈ NQ. Also assume that the reconstruction
is performed and that the DFT of reconstructed signal is
of sparsity s. Assume that the positions of the reconstructed
nonzero values in the DFT are k0i ∈ Ks = {k01, k02, ...., k0s}
Reconstruction result is unique if the inequality

s < N − max
h=0,1,...,r−1

{
2h (Q2h − 1)− s+ 2S2r−h

}
holds. Integers Q2h and S2r−h are calculated as

Q2h = max
b=0,1,...,2h−1

{card{q : q ∈ NQ, mod(q, 2h) = b}}

S2r−h =

Q
2h

−1∑
l=1

Ph(l)

Ph(l) = sort
b=0,1,...,2r−h−1

{card{k : k ∈ Ks, mod(k, 2r−h)=b}}

where Ph(1) ≤ Ph(2) ≤ ... ≤ Ph(2r−h).

Note that for S2r−h = 0 this Theorem reduces to the
Theorem 1. For the DFT values equally distributed over all
positions, this Theorem produces result close to s ≥ N −Q.
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Fig. 1. Uniqueness probability calculated for various sparsity s and number of available samples (N −Q) by using Theorem 1 (left) and Corollary 2 (right)
in 1000 random realizations. Lines s = N − Q and s = (N − Q)/2 are presented as guidelines. In this case the uniqueness is checked without using
information about nonzero DFT coefficient positions in the reconstructed signal.

Corollary 4 Consider the signal x(n) that is sparse in the
DFT domain with unknown sparsity. Assume that signal length
is N = 2r samples and that Q samples are missing at the
instants qm ∈ NQ. Also assume that the reconstruction is
performed and that the DFT of reconstructed signal is of
sparsity s. Assume that the positions of the reconstructed
nonzero values in the DFT are k0i ∈ Ks = {k01, k02, ...., k0s}.
Assume that the amplitudes of signal components are arbitrary
with arbitrary phases so that the case when all of them can
be related to the values defined by using the missing sample
positions is a zero-probability event. Reconstruction result is
not unique if the inequality

s ≥ N − max
h=0,1,...,r−1

{
2h (Q2h − 1)− 1 + S2r−h

}
holds. Integers Q2h and S2r−h are calculated as in the
Theorem 3. The case when all of signal components can be
related to the values defined by using the missing sample
positions is considered here.

Pseudo-code for uniqueness check according to Theorem 3
and Corollary 4 is presented in Algorithm 2.

Example: Consider a signal with N = 32 and Q = 9
missing samples at

qm ∈ NQ = {2, 3, 8, 13, 19, 22, 23, 28, 30}.

Assume that with these missing samples we have reconstructed
signals with nonzero DFT values at the positions

a) Ks={1, 3, 5, 7, 9, 11, 13, 15, 17, 21, 23, 25, 27, 29, 31},
b) Ks={1, 3, 5, 9, 13, 17, 21, 29, 31, 2, 4, 8, 12, 16, 20, 24, 30}.

By testing these two signals, we get the following decisions.
According to Theorem 1 we can not claim uniqueness in either
of these cases since s = 15 in the first case and s = 17
in the second case. Both are greater than the Theorem 1
bound s < 8. The same holds for Corollary 2 since both
are s ≥ 15. By testing these results with Theorem 3 we

get that that in case a) the solution is nonunique. It is due
to a very specific form of the reconstructed signal with all
components being found at the odd frequency positions. Since
the sparsity was defined by periodicity 16 in qm ∈ NQ, then
variations of two signal samples z(q2 = 3) and z(q5 = 19)
can produce a signal X(k) + Z(k) with the same sparsity as
the reconstructed signal. These two samples, as variables, are
able to produce many (N/2) zero values in Z(k) either at odd
or even positions in frequency (Section 4). In this case, they
are at even positions of X(k) + Z(k). However, in signal b)
that is not the case. Nonzero values are distributed over both
even and odd frequency positions. Although sparsity of this
signal is s = 17 the reconstruction is unique. The distribution
of nonzero values in the reconstructed X(k) is such that by
varying two samples z(q2 = 3) and z(q5 = 19) we can not
produce a signal X(k) + Z(k) of the same or lower sparsity
with nonzero z(q2 = 3) and z(q5 = 19). The limit, in this
case, is defined by the lower periodicity in z(q) than N/2.
Thus, if we obtain this signal using a reconstruction algorithm
the solution is unique.

Example: Consider a signal with N = 1024 and Q = 512
missing samples at qm ∈ NQ = {0, 2, 4, ...1022}. The
reconstructed signal is at the frequencies: a) Ks = {3}, b)
Ks = {3, 515}. We can easily check that in all cases with
Theorem 1, Corollary 2 and Theorem 3, the reconstruction is
nonunique although s = 1 or s = 2 is much smaller than
the available number of samples N − Q = 512. The answer
is obtained almost immediately, since the computational com-
plexity of Theorem 1, Corollary 2 and Theorem 3, is of order
O(N).

Numerical example: Signal with N = 64 samples is consid-
ered. The signal sparsity is varied from s = 1 to s = N − 1.
For each signal sparsity s the number of missing samples is
varied from Q = 1 to Q = N − 1. For each pair (s,Q) 1000
trials are performed with randomly positioned s nonzero DFT
values and randomly positioned Q missing samples. In each
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Algorithm 2 Uniqueness check – Theorem 3 and Corollary 4
Require:

• Set of missing sample positions NQ
• Set of nonzero values in the reconstructed DFT Ks
• Total number of signal samples N , N = 2r

1: R1 ← 1
2: R2 ← 1
3: K ← cardKs
4: for h← 1, r − 1 do
5: for b← 0, 2h − 1 do
6: Qb ← card{q : q ∈ NQ and mod (q, 2h) = b}
7: end for
8: Q2h ← max

b
Qb

9: for b← 0, 2r−h − 1 do
10: Pb ← card{k : k ∈ Ks and mod (k, 2r−h) = b}
11: end for
12: Sort array P in non-decreasing order

13: S2r−h ←
Q

2h
−1∑

l=1

Psorted(l)

14: if K ≥ N − 2h(Q2h − 1)−K + 2S2r−h then
. Theorem 3 check

15: R2 ← 0
16: end if
17: if K ≥ N − 2h(Q2h − 1)− 1 + S2r−h then

. Corollary 4 check
18: R1 ← 0
19: end if
20: end for
21: R← R1 +R2

Output: R
• R = 2 when the considered solution is unique.
• R = 1 when the considered solution is unique

with probability one excluding zero-probability event
(when amplitudes of the signal components are related
to each other with a relation defined by missing
sample positions).

• R = 0 when the considered solution is not unique.

trial the uniqueness is checked by Theorem 3 and Corollary
4. Percentage of trials where the uniqueness is guaranteed is
presented in Fig. 2. We can clearly see two regions one where
the uniqueness was achieved in each trial (P = 100%) and the
other region where the solution was nonunique in each trial
(P = 0%). The transition between regions is quite sharp. In
this transition region, for given (s,Q), the uniqueness highly
depends on the positions of DFT values and missing samples
producing 0% < P < 100%. The transition region is wider
for the Theorem 3 comparing to transition region for Corollary
4.

In Fig. 3, regions where the probability is higher than 99%
are presented. The first region is defined by Theorem 3, which
guaranties uniqueness for any signal. The second region is
defined by Corollary 4 and it guaranties uniqueness with a high
probability (this region is signal dependent). These regions are

combined in the third subplot.

III. PROOFS OF THE THEOREMS AND COROLLARIES

A. Proof of Theorem 1

Consider the DFT of a signal x(n) with N samples. For
the presentation simplicity we assumed common N = 2r

although the results can be generalized for any N . Assume
that M available samples are at the instants ni ∈ M =
{n1, n2, ...., nM} and the missing samples are at the instants
qm ∈ NQ = {q1, q2, ...., qQ} and Q = N −M . Assume that
the reconstruction process is done and the obtained signal is
sparse in the DFT domain. Its sparsity is s with nonzero coef-
ficients k0i ∈ Ks = {k01, k02, ..., k0s}⊂{0, 1, 2, 3, ...., N−1}.
Under this assumption the signal x(n) is

x(n) =
s∑
i=1

1

N
σie

j2πnk0i/N .

Amplitudes |σi/N | of the signal components are arbitrary with
arbitrary phases arg{σi}.

Let us form a signal

xa(n) = x(n) + z(n)

where z(n) = 0 for n ∈ M and takes arbitrary values z(qm)
at the positions of missing samples qm ∈ NQ. The DFT of
this signal is

Xa(k) =

s∑
i=1

σiδ(k − k0i) +
Q∑

m=1

z(qm)e−j2πqmk/N .

Denote the number of non-zero values in Xa(k) as ‖Xa‖0.
The DFT of signal z(n) is

Z(k) = DFT{z(n)} =
Q∑

m=1

z(qm)e−j2πqmk/N

Denote number of nonzero values in Z(k) as NZ = ‖Z‖0.
The aim of minimization of ‖Xa‖0 is to produce the smallest
possible value ‖Xa‖0 = s. If this is possible in trivial case
z(n) = 0 only, then our solution is unique. If there exists a
non-trivial solution for z(n) with ‖Xa‖0 = s then we have
two different solutions x(n) and x(n) + z(n) with the same
sparsity s meaning that our solution is not unique.

The DFT of signal z(n) can be written in a matrix form as
1 1 ... 1

e−j2πq1/N e−j2πq2/N ... e−j2πqQ/N

... ... ... ...

e−j2πq1
N−1
N e−j2πq2

N−1
N ... e−j2πqQ

N−1
N

×

z(q1)
z(q2)
...

z(qQ)



=


Z(0)
Z(1)
...

Z(N − 1)

 (2)

Since we look for zeros in Z(k), without loss of generality,
we can rewrite the system (2) in the form normalized with the
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Fig. 2. Uniqueness probability calculated for various sparsity s and number of available samples (N −Q) by using Theorem 3 (left) and Corollary 4 (right)
in 1000 random realizations. In this case the uniqueness is checked after reconstruction using information about nonzero DFT coefficient positions in the
reconstructed signal.
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Fig. 3. Regions with uniqueness probability greater than 99% for various sparsity s and number of available samples (N − Q) obtained with Theorem 3
(left), Corollary 4 (middle) and combined regions (right) in 1000 random realizations. Lines s = N −Q and s = (N −Q)/2 are presented as guidelines.

first column corresponding to q1 as
1 1 ... 1
1 e−j2πq12/N ... e−j2πq1Q/N

... ... ... ...

1 e−j2πq12
N−1
N ... e−j2πq1Q

N−1
N

×

z(q1)
z(q2)
...

z(qQ)



=


Z(0)

Z(1)ej2πq1/N

...
Z(N − 1)ej2πq1(N−1)/N

 (3)

where
q1n = qn − q1.

In general, during the minimization, we have Q variables
z(qm) (Q degrees of freedom). First assume that there is
no common period (smaller than N ) in columns of the
transform matrix for the missing sample positions qi. This case
corresponds to pairwise coprime numbers q12, q13, ...., q1Q.
Then Q variables z(qm) can be used to produce Q− 1 zeros
in Z(k) at the positions where there is no signal and, in the

worst possible case, to cancel out all s nonzero coefficients in
X(k). Therefore the largest possible number of zero values in
X(k) + Z(k) is (Q− 1) + s The lowest possible number of
nonzero values in X(k) + Z(k) is N − (Q− 1)− s. If

N − (Q− 1)− s > s

then the considered solution is unique since only the trivial
solution z(n) = 0 results in sparsity s and every nontrivial
solution results in ‖Xa‖0 > s. If we obtain the reconstructed
signal with sparsity

s ≥ N −Q+ 1

2

then the solution is not unique. However, if 2s < N −Q+ 1
then it still does not mean that the solution is unique since
we assumed that there is no periodicity in transform matrix
(3). Next we will include all possible cases when some of
the columns of transform matrix in (3) may have a common
period lower than N .

The matrix of coefficients Z(k) can not be periodic with
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period smaller than Q. Thus, regarding to the period of the
whole matrix the worst case would be the transformation
matrix which repeats after exactly Q rows, where Q is divisor
of N . Denote the number of repetitions as R = N/Q.

For periodic structure of transformation matrix in (3), with
such a period that the rows are repeated R times within N ,
the largest number of zero values in Z(k) is now R(Q− 1).
In addition, the nonzero values in Z(k), in the worst possible
case, can cancel all s nonzero DFT values of X(k). Thus,
in this case, the lowest possible number of nonzero values in
X(k)+Z(k) is N −R(Q− 1)− s. For the unique solution it
should be greater than the signal sparsity, i.e., N−R(Q−1)−
s > s or N/(2Q) > s. This is the result of the uncertainty
principle in the DFT, presented in Subsection III-B.

The process does not end here. In the minimization process,
we must also consider all subsets of missing samples qm ∈
NQ = {q1, q2, ...., qQ}. Namely, it can happen that the worst
case regarding the maximal number of zero values in Z(k) is
not the case with the full set of variables z(q). It could happen
that some subsets of the variables qm ∈ NQ may produce a
higher number of zero values in Z(k) than the whole set of
variables. It means that the reconstruction algorithm may find
some variables z(qi) to be zero valued and vary only a subset
of remaining variables z(qi).

Subsets of Missing Samples: We have concluded that
the periodicity R reduces the sparsity of X(k) + Z(k), by
increasing the number of possible zero values in Z(k). Con-
sider a general set of missing sample positions qm ∈ NQ =
{q1, q2, ...., qQ}. Then the algorithm for uniqueness should
check periods for all possible subsets of missing samples.
Assuming as in Theorem 1, without loss of generality, that
N = 2r the cases are as follows:

1) Using all missing samples, assuming that there is no
common period for all of them (in the sense of (3)), the unique
solution is obtained if s < N − (Q− 1)− s. The cases with
periodic matrix structure will be included in the steps that
follows.

2) Consider minimal possible number of periods R > 1 for
N = 2r. It is R = 2 repetitions in the matrix of coefficients
(3) with period N/2. Any subset of NQ = {q1, q2, ...., qQ}
containing only even or only odd positions can be considered
as a set of minimization variables with period N/2. The
number of missing samples qm ∈ NQ at even positions can
be written as

NE = card{q : q ∈ NQ and mod(q, 2) = 0}.

The same should be done for odd positions in qm ∈ NQ

NO = card{q : q ∈ NQ and mod(q, 2) = 1}.

Since we look for the worst case in our reconstruction algo-
rithm, we choose the set with more variables (more degrees
of freedom). It is

Q2 = max
b=0,1

{card{q : q ∈ NQ and mod(q, 2) = b}}.

Since the number of periods in matrix of coefficients is 2 for

these two subsets of missing samples it means that at most

2 (Q2 − 1)

zero values can be produced in Z(k). It can be larger than
(Q− 1). Therefore beside the condition s < N − (Q− 1)− s
considered in 1) we have also to check

s < N − 2 (Q2 − 1)− s.

and use the worst case as the limit for s. It means that, at this
point, we should compare Q and 2 (Q2 − 1).

Note that the largest possible Q2 is Q2 = N/2. In this case,
the solution is unique if

2s < N −N + 1 = 1.

This corresponds to the case when all even (or all odd) signal
samples are missing. Then we can not uniquely reconstruct a
signal even for sparsity s = 1.

3) This analysis should be continued for all possible periods
in N . For N = 2r the next possible period is N/4 with number
of periods R = 4. Coefficients in the matrix (3) are periodic
with N/4 if the distance between missing samples is four.
Thus, we should divide set of all missing sample positions
NQ into subsets where distances between qi are multiples of
4, i.e., when mod(qi, 4) is a constant. There are 4 such subsets
obtained for mod(qi, 4) = b where b = 0, 1, 2, 3. In the same
way as in step 2), denote the cardinality of the largest subset
by Q4

Q4 = max
b=0,1,2,3

{card{q : q ∈ NQ and mod(q, 4) = b}}.

If we find Q4 such that

4 (Q4 − 1) > 2 (Q2 − 1) and 4 (Q4 − 1) > (Q− 1)

then it means that in z(n) we can consider as variables (non-
zero values) only the samples from the set containing qi such
that mod(qi, 4) = b producing Q4. Then the unique solution
is obtained only if

s < N − 4 (Q4 − 1)− s

The worst case is when the positions of all missing samples are
such that Q4 = N/4. Then the solution is unique if s < 2. In
the worst case with as many as 3N/4 of available samples
(Q = Q4 = N/4) we may reconstruct only signals with
sparsity s = 1.

4) Next possible period for N = 2r is N/8. The periodicity
with period 8 should be considered for any subset of qm ∈
NQ = {q1, q2, ...., qQ} calculating

Q8 = max
b=0,1,2,3,4,5,6,7

{card{q : q ∈ NQ and mod(q, 8) = b}}.

If

8 (Q8 − 1) > max {(Q− 1), 2 (Q2 − 1) , 4 (Q4 − 1)}

then the sparsity further reduces to

s < N − 8 (Q8 − 1)− s

The worst case when the positions of all missing samples are
such that Q8 = N/8 the solution is unique for s < 4. I this
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case even with 7N/8 of available samples we may reconstruct
only the signals with sparsity s = 1, 2, 3.

5) The process should continue for all possible periods 2h <
N , h = 4, 5, ...r − 1. We should calculate

Q2h = max
b=0,1,...,2h−1

{card{q : q ∈ NQ, mod(q, 2h) = b}}.

If it is such that

2h (Q2h − 1) > max
{
(Q− 1), 2 (Q2 − 1) , 4 (Q4 − 1) ,

..., 2h−1 (Q2h−1 − 1)
}

then the sparsity constraint for uniqueness is

s < N − 2h (Q2h − 1)− s.

6) Summing up all the cases we get the theorem result that
the uniqueness condition is

s < N − max
h=0,1,...,r−1

{
2h (Q2h − 1)

}
− s

In the final stage if just two special samples

qi ∈ NQ and qi+N/2 ∈ NQ

are missing then Q2r−1 − 1 = 1 with the solution being non-
unique if

s ≥ N −N/2− s

Thus special positions of two missing samples reduce the
maximal number of components that can uniquely be detected
to N/4− 1.

7) This kind of proof can be generalized for any signal
length N with possible periods of matrix obtained as divisors
of N .

B. Uncertainty Principle and Theorem 1 Bounds

The bounds for sparsity are compared with the results
following from the uncertainty relation for the DFT

Q ·NQ ≥ N.

where the number of nonzero values in z(q) is denoted by Q
and the number of the nonzero values in its DFT Z(k) is NQ.
In the worst case, for a given Q and for the worst possible
distribution of positions qm ∈ NQ = {q1, q2, ...., qQ} we have

NQ =
N

Q
.

Consider first the case when we can not exclude the possibility
that the signal DFT assume values related to the missing sam-
ple positions and the worst possible distribution of positions
qm ∈ NQ = {q1, q2, ...., qQ}. The maximal number of nonzero
values is NQ. In the worst case s of nonzero signal DFT values
can cancel s nonzero values in Z(k) meaning that the minimal
number of nonzero values, in the worst case, is NQ−s. Since
it should not be the solution of our minimization problem, the
case with all z(q), producing the signal and its sparsity should
be lower, NQ − s > s or

s <
NQ
2

=
N

2Q
.

For arbitrary signal whose values can not be described
by the missing sample positions, and for the worst possible
distribution of positions we get NQ − 1 > s or

s <
N −Q
Q

=
N

Q
− 1.

These two cases are obtained trough the previous analysis
as the special worst cases of the Theorem 1 and Corollary 2
as well.

C. Proof of Corollary 2

In Theorem 1 we assumed that Z(k) takes maximal possible
number of Q − 1 zero values and that at the same time
the remaining nonzero values of Z(k) cancel out all signal
components X(k). This assumption is very unlikely since after
we assumed the maximal possible number of Q − 1 zeros
in Z(k), we have only one remaining degree of freedom. It
means that we can cancel out one signal component with one
remaining variable and we assume that all other components
have specific values so that they will also be canceled out.
Consider now the case when signal components are not
adjusted to these fixed values of Z(k). Then, in reality, we
can expect to cancel out only one component in X(k) with
one variable. Repeating Theorem 1 proof with

s ≥ N − 2h (Q2h − 1)− 1

for nonuniqueness instead of s < N − 2h (Q2h − 1) − s for
uniqueness produces the proof of Corollary 2.

D. Proof of Theorem 3

Here we will start with two missing samples qm1 and qm2

at the distance |qm1 − qm2| = N/2 = 2r−1 = 2h. The worst
case is Q2h − 1 = 1 with the uniqueness condition

s < N −N/2− 1 = N/2− 1

These special positions of two missing samples reduce the
maximal number of components that can uniquely be detected
to s = N/2−2. However in this case the positions of nonzero
DFT values k0i ∈ Ks = {k01, k02, ...., k0s} should be very
specific. All of them should be on either even or odd positions,
producing

S2r−h = S21 = min
b=0,1

{card{k : k ∈ Ks, mod(k, 2) = b}}

= min{0, 2} = 0

If that is not the case then

S21 = min
b=0,1

{card{k : k ∈ Ks, mod(k, 2) = b}}

= min{1, 1} = 1 > 0

will reduce the count of zero values that can be achieved in
the worst case in X(k)+Z(k). Since S2 of the signal nonzero
coefficients are not at the positions of nonzero values of Z(k)
then, in the best possible case, only (s−S2) out of s nonzero
values of the DFT can be canceled out by the predetermined
missing sample values (as in Theorem 1). In addition to N −
2r−1 (Q2r−1 − 1)− (s− S2) nonzero values of X(k) +Z(k)
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at the nonzero positions of Z(k), there are S2 nonzero values
of X(k) positioned at the zero-value positions of Z(k). They
can not be canceled by Z(k). The uniqueness condition for
h = r − 1 will therefore require

s < N − 2r−1 (Q2r−1 − 1)− (s− S21) + S21

s < N − 2h (Q2h − 1)− (s− S2r−h) + S2r−h .

This correction of the uniqueness condition with S21 should
be done only if Q2h = QN/2 = Q2r−1 = 2. Denote with
Ph(l) the sorted array

Ph(l) = sort
b=0,1

{card{k : k ∈ Ks and mod(k, 2r−h) = b}}.

The correction S21 = S2r−h with h = r− 1 can be calculated
as

S2r−h =

Q
2h

−1∑
l=1

Ph(l).

For Q2h = Q2r−1 = QN/2 = 1 (when there are no two
samples at the distance N/2) the upper summation limit will
be 0 and this kind of correction will not be done, S21 = 0.
Note that the sum of all Ph(l), l = 1, 2, ..., 2r−h is equal to
the signal sparsity s.

In the same way, for h = r − 2 (missing samples at a
distance being multiple of N/4) the period of Z(k) is 4. In the
worst case when QN/4 = Q2r−2 = 4, the maximal number
of nonzero values in X(k) at a distance being multiple of
4 can be canceled out (with nonzero values of Z(k)). The
remaining nonzero values in the DFT of signal will be on the
zero positions of Z(k) and can not be canceled out. Note that
if QN/4 = Q2r−2 = 3 then two nonzero values in Z(k) will
remain (with 3 variables we can make only 2 zero values in
each period of Z(k)). The total number of the nonzero values
of X(k) that can be canceled is the sum of two largest numbers
in Ph(l) defined by Ph(4)+Ph(3) = s−Ph(1)−Ph(2), where

Ph(l) = sort
b=0,1,2,3

{card{k : k ∈ Ks and mod(k, 4) = b}}.

The number of remaining nonzero DFT values that can not be
canceled out is

S22 = Ph(1) + Ph(2) =

Q2r−2−1∑
l=1

Ph(l).

Note that if Q2h = QN/4 = Q2r−2 = 2 then three nonzero
values exists in one period of Z(k) (only one zero value of
Z(k) can be obtained within a period) meaning that the total
number of signal values that can be canceled out is Ph(4) +
Ph(3)+Ph(2) = s−Ph(1). The number of remaining nonzero
values of X(k) is S22 = Ph(1) =

∑Q2r−2−1

l=1 Ph(l).

The uniqueness condition is that

s < N − 2h (Q2h − 1)− (s− S2r−h) + S2r−h (4)

with

Ph(l) =

sort
b=0,1,...,2r−h−1

{card{k : k ∈ Ks and mod(k, 2r−h) = b}}

S2r−h =

Q
2h

−1∑
l=1

Ph(l). (5)

and 2r−h = 4 for h = r − 2. The same analysis is done for
all h, using (4)-(5). The value of s satisfying (4) for all h
produces Theorem 3 statement.

E. Proof of Corollary 4

This Corollary follows from Theorem 3 neglecting the
probability that several DFT coefficients can be canceled out
by predetermined values of the missing samples. Then instead
of (s− S2r−h) in (4) we have just one sample and

s ≥ N − max
h=0,1,...,r−1

{
2h (Q2h − 1)− 1 + S2r−h

}
is used for nonuniqueness instead of the uniqueness condition

s < N− max
h=0,1,...,r−1

{
2h (Q2h − 1)− (s− S2r−h) + S2r−h

}
.

IV. THE WORST CASE SIGNAL FORM

For the worst case, defined by the Theorem 1, the set
of possible amplitudes and phases of signal components is
related to the missing sample positions. For the missing
sample positions qm ∈ NQ = {q1, q2, ...., qQ} used in the
minimization process, the worst case in the minimization
process is when the period of the transformation matrix is
such that it repeats immediately after Q samples, in the sense
described in the proof of Theorem 1. Then the minimal number
of nonzero values in DFT Z(k) is NQ = N/Q. It means that
Q variables z(q1), z(q2), ..., z(qQ) can be determined such that
Q − 1 values of Z(k) within k = 0, 1, 2, ..., Q − 1 are zero-
valued and only one Z(k) is nonzero. In the worst case, this
scenario repeats immediately after Q values (it repeats N/Q
times). The maximal number of zero values in Z(k) is then
(Q−1)N/Q. The number od nonzero values (sparsity) in Z(k)
is N/Q.

Now we will investigate the form of the signal DFT so that
the Theorem 1 sparsity bound holds with equality sign. The
worst case assumes existence of the maximal number of zeros
in Z(k) and one nonzero value of Z(k) in each period N/Q.
It also assumes that all s signal components can be canceled
out by this nonzero value of Z(k) and corresponding periodic
nonzero values Z(k + iQ). The maximal number of zeros in
Z(k) within one period defines values of all nonzero values
of variables z(n) in the time domain (with a possibility to
cancel out one signal component in X(k) + Z(k) within the
considered period).

Let us consider subsets of Q equations defined by (2). The
first subset will be written for frequencies k = 0, 1, 2, ..., Q−1,
the second for k = Q,Q+ 1, ..., 2Q − 1, and so on until the
last one for k = N −Q,N −Q+ 1, ..., N − 1. Assume the
signal DFT coefficient X(k0i) (the one that we want to use
along with Q − 1 zero values of Z(k) to calculate variables
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
e−j2πq1iQ/N e−j2πq2iQ/N ... e−j2πqQiQ/N

e−j2πq1(iQ+1)/N e−j2πq2(iQ+1)/N ... e−j2πqQ(iQ+1)/N

... ... ... ...
e−j2πq1k0i/N e−j2πq2k0i/N ... e−j2πqQk0i/N

... ... ... ...
e−j2πq1(iQ+Q−1)/N e−j2πq2(iQ+Q−1)/N ... e−j2πqQ(iQ+Q−1)/N



z(q1)
z(q2)
...

z(qQ)

 =


0
0
...

−X(k0i)
...
0

 (6)


z(q1)
z(q2)
...

z(qQ)

 =


e−j2πq1iQ/N e−j2πq2iQ/N ... e−j2πqQiQ/N

e−j2πq1(iQ+1)/N e−j2πq2(iQ+1)/N ... e−j2πqQ(iQ+1)/N

... ... ... ...
e−j2πq1k0i/N e−j2πq2k0i/N ... e−j2πqQk0i/N

... ... ... ...
e−j2πq1(iQ+Q−1)/N e−j2πq2(iQ+Q−1)/N ... e−j2πqQ(iQ+Q−1)/N



−1 
0
0
...

−X(k0i)
...
0

 (7)

z(q1), z(q2), ..., z(qQ)) is within the subset of equations for
k = iQ, iQ+ 1, ..., iQ+Q− 1. Then the solution of system
(6) will produce maximal sparsity for this frequency range,
i.e., Z(k) + X(k) = 0 for all considered frequencies k =
iQ, iQ + 1, ..., iQ + Q − 1. Solution for the missing sample
values is given by (7)

Values of z(q), obtained from this system, do not change for
other s − 1 nonzero signal DFT values X(k0m), k0m 6= k0i.
With the previous system of equations and its solution for
missing samples z(q) we have used all degrees of freedom
of Q-dimensional variable z(q). More zero values in the DFT
of the resulting signal X(k) + Z(k) (lower sparsity of this
signal) can be obtained only if the remaining signal DFT
values X(k0m) , k0m 6= k0i are canceled out, by chance. In
the worst case, assumed by the Theorem 1, all remaining s−1
nonzero DFT coefficients k0m 6= k0i should be canceled out,
with the already determined missing sample values z(q). Since
the transformation matrix is periodic, this will happen only
if all remaining signal DFT coefficients assume very specific
positions k0m = k0i + rmQ and specific values

X(k0m)ej2πq1k0m/N = X(k0i)e
j2πq1k0i/N

X(k0m) = e−j2π(k0m−k0i)Qq1/NX(k0i)

X(k0m) = e−j2πrmQq1/NX(k0i), (8)

since the periodicity is established with respect to q1.
For a given set of missing sample positions qm ∈ NQ =
{q1, q2, ...., qQ} probability that all components of a measured
signal assume specific positions with specific amplitudes and
phases (related to the missing sample positions) defined by (8)
is a zero-probability event.

A. Group Delay and Missing Sample Positions

Consider a signal y(n), periodic with period N/Q, and
defined for n = 0, 1, ..., N/Q− 1 as

y(n) = δ(n− n0)X(k0i)

where n0 is the reminder after q1 is divided with N/Q. Note
that the worst case requires that all missing sample positions
qm are at the positions being multiple of N/Q. It means that

the reminder after division of qm with N/Q is a constant
denoted by n0. The DFT of the considered signal is

Y (k) = e−j2πn0k/(N/Q)X(k0i) k = 0, 1, ..., N/Q− 1

It is interesting to note that the signal DFT values X(k0m),
defined with (8), are obtained as a subset of s values from
{Y (k) | k = 0, 1, ..., N/Q− 1}, i.e.,

X(k0m) ∈
{
e−j2πn0k/(N/Q)X(k0i) | k = 0, 1, . . . ,

N

Q
− 1

}
In the worst case, the DFT values of signal should be s

samples of a full DFT of a periodic signal which would have
group delay coinciding with the missing sample positions
qm ∈ NQ = {q1, q2, ...., qQ}, since qm = qn + lNQ in this
case. It means that if the missing samples produce a periodic
structure, then the signal values should follow this structure
as well.

Example: For the signal with N = 32 and missing samples
at

qm ∈ NQ = {2, 3, 8, 13, 19, 22, 23, 28, 30}

the limit for sparsity s (when we claim that the reconstructed
sparse signal is unique, assuming that all signal amplitudes
may be related to the missing sample positions) is s < 8.
In this example, we will show what properties a signal must
satisfy in the limit case s = 8 so that the solution is not
unique. To simplify the notation assume that one DFT value
of reconstructed signal is X(5) = 2.

The limit of sparsity s = 8 is obtained in the first example
with Q16 = 2 and 16(2−1) = 16. As explained, it corresponds
to the missing sample positions q2 = 3 and q5 = q2 + N/2.
It means that the missing sample values of other samples
z(qm) will be adjusted to their correct zero positions and
only z(q2) = z(3) = z3 and z(q5) = z(19) = z19 will
assume nonzero values. In this case the set of missing samples
variables reduces to qm ∈ NQ = {3, 19} with Q = Q16 = 2.
The DFT Z(k) of such a signal is equal to

Z(k) = z3e
−j2π3k/32 + z19e

−j2π19k/32

= e−j2π3k/32
(
z3 + (−1)kz19

)
for k = 0, 1, ..., 31

In the worst case Z(k) should have maximal possible number
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of zeros. We conclude that either z3 = z19 or z3 = −z19
should hold, otherwise the sparsity of Z(k) would be 32.
In addition, Z(k) should cancel out all signal components
including assumed X(5) = 2. Since z3 = z19 would produce
Z(2k+1) = 0 it would not be able to cancel X(5). Therefore
we must use z3 = −z19 with

Z(5) = e−j2π15/32 (z3 − z19) = −X(5) = −2.

It means z3 = −z19 = −ej2π15/32 and

Z(k) =

{
−2e−j2π(3k−15)/32 for odd k
0 for even k.

In order to cancel all nonzero values of X(k) they must be
located at odd positions (where Z(k) is nonzero)

{5, k02, k03, k04, k05, k06, k07, k08}

and must be of opposite sign and equal amplitude to the
corresponding (determined) values of Z(k)

X(k0i) = −Z(k0i) = 2e−j2π(3k0i−15)/32 for i = 2, 3, ..., 8

resulting in

X(k) =


2e−j2π(3k−15)/32 for k ∈ {5, k02, k03, k04, k05

, k06, k07, k08}
0 elsewhere.

(9)
In this case sparsity of X(k) + Z(k) is 8, the same as

the sparsity of the X(k). Two solutions of our minimization
problem are signal x(n) = IDFT[X(k)] and x(n) + z(n)
where

z(n) = IDFT[Z(k)] = δ(n− 3)− δ(n− 19).

Both of these signals have the same sparsity s = 8 and satisfy
the same set of available samples.

However, if sampled signal x(n) is not the signal of very
specific form (9) then the solution of sparsity s = 8 will be
unique for a given set of available samples. Then z(n) =
δ(n − 3) − δ(n − 19) will not be in position to cancel all 8
DFT values of signal and the sparsity of X(k)+Z(k) will be
8 only for z(n) = 0, producing unique solution.

Signal Y (k) = −Z(2k − 1) is

Y (k) = 2e−j2π(3(2k−1)−15)/32 = 2e−j2π(3k−9)/16.

It is periodic with period N/Q = 16. Group delay of this sig-
nal is n0 = 3 with period 16. Therefore within n = 0, 1, ..., 31
group delays n0 = 3 and n0 + 16 = 19 of Y (k) correspond
to the missing sample positions. The signal must have the
form X(k0m) ∈ {2e−j2π(3k−9)/16 | k = 0, 1, . . . , NQ − 1},
with k = 3 corresponding to k0m = 2k − 1 = 5 producing
X(5) = 2.

V. CONCLUSION

Reconstruction of a sparse signal, using recently proposed
gradient-based method, is done by considering missing sam-
ples as variables. Theorems for the uniqueness of the solution
obtained by varying missing samples, in the case of an arbi-
trary and already reconstructed signal, are stated and proved.

The calculation complexity of the proposed theorems is low.
The theory is illustrated on numerical and statistical examples.

Proposed approach can be extended to other signal trans-
forms including nonredundant basis (dictionaries). One of the
possible redundant basis closely related to the presented DFT
is short time Fourier transform with overlapping windows [18]
[19].
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