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Abstract—In the inverse synthetic aperture radar (ISAR)
number of target reflectors is small resulting in the fact that
ISAR images are sparse. Since the ISAR image is obtained using
the Fourier transform of the input signal then this problems can
be treated within processing of sparse signals. The compressive
sensing (CS) theory proves that, under some conditions, exact
reconstruction of sparse signals is possible based on the reduced
set of observations. Here we will present a gradient based
reconstruction algorithm and apply it to the several ISAR
setups. In contrast to the common reconstruction algorithms
where the signal in its sparsity domain is reconstructed, this
algorithm solves minimization in an indirect way, by calculating
the missing samples/measurements. Obtained results show that
the presented simple reconstruction algorithm is reliable and
robust. Common problems in ISAR imaging, like uncompensated
motion or target nonuniform motion, make ISAR image only
approximately sparse. The presented procedure can provide
useful results in these cases as well.

Index Terms—ISAR, Compressive sensing, Gradient algorithm

I. INTRODUCTION

The Inverse Synthetic Aperture Radar (ISAR) is a radar
system capable to provide image of the illuminated moving
target [1], [2]. ISAR images are obtained by target motion
compensation in a such way that the rotational motion only
remains in the received signal. Two-dimensional Fourier trans-
form can be applied to the received and preprocessed signal
to obtain a high resolution target image.

In Compressive Sensing (CS) the main focus is on extracting
required information from a reduced set of observations [3],
[4]. The CS can be applied in signal processing to the
signal analysis and reconstruction using a reduced number of
samples [5]. Although first application of the CS theory was
in computed tomography today it is spread over wide area of
practical applications including, but not limited to, biomedical
signal analysis [6] and sparse signals reconstruction [5], [7].
Application of the CS theory to radar signal processing is
important research topic and many results in this area are
published recently [8]–[16].

In order to explain possible benefits of applying CS to ISAR
we can consider two scenarios. In the first scenario assume that
radar signal is jammed so that some of the radar pulses could
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be marked as jammed. If we cannot eliminate jammer then
it is better to avoid such pulses in the analysis. In this case
some radar pulses are intentionally omitted from the further
processing. They could be reconstructed based on the available
pulses by using the CS reconstruction techniques.

In the second scenario we can assume that radar does not
transmit every pulse. Some pulses are intentionally omitted,
for example, to make our system energy more efficient or to
lower possible electromagnetic interference with neighboring
devices. Although the reasons for pulses being missing are dif-
ferent, the reconstruction process is the same in all scenarios.

Here we will briefly review the ISAR signal model and a
simple gradient algorithm for missing samples reconstruction
for complex valued signals. The algorithm is then applied to
the simulated ISAR cases and results are presented for various
percentage of available pulses.

II. ISAR SIGNAL MODEL

Consider a continuous wave (CW) radar that transmits a
signal in the form of a coherent series of linearly frequency
modulated chirps [1]:

vp(t) =

{
ejπBfrt

2

for 0 ≤ t ≤ Tr
0 otherwise,

(1)

where Tr is the repetition time, fr = 1/Tr is the repetition
frequency, and B is the waveform bandwidth. The transmitted
signal consists of N such chirps:

v(t) = e−jω0t
N−1∑
n=0

vp(t− nTr), (2)

where ω0 is the radar operating frequency. The total signal
duration is Tc = NTr and represents the CIT (coherent
integration time).

Without loss of generality consider a single point target
scenario. If the target distance from the radar is d, then the
received signal is delayed with respect to the transmitted signal
(2) by td = 2d/c, where c is the speed of light. Phase of the
received signal is changed as φ = 2kd = 4πd/λ = 4πdf0/c =
2ω0d/c. Thus, the received signal is of the form

u(t) = σe−jω0(t−2d/c)
N−1∑
n=0

vp(t− 2d/c− nTr), (3)



where σ is the reflection coefficient. Received signal (3) is
mixed (multiplied) with appropriately delayed and conjugated
transmitted signal (2) and the result is low pass filtered. The
radar output is of the form

q(n, t) = σejω02d/ce−j2πBfr(t−nTr)2d/c. (4)

Motion compensation is performed in a such way that only
the rotational motion remains in the received signal [1], [2],
[17]. The signal is sampled in time with t− nTr = mTs and
the output signal is obtained as a two-dimensional discrete
sinusoid of the form

x(m,n) = σejωrmejωcrn, (5)

where the considered point range coordinate is proportional to
ωr and the cross-range coordinate is proportional to ωcr.

ISAR image is obtained as a two-dimensional (2D) Fourier
transform of the received signal

X(m′, n′) =

M−1∑
m=0

N−1∑
n=0

x(m,n)e−j
2π
M (mm′+nn′). (6)

In the considered case X(m′, n′) reduces to a single non-zero
value located at the positions proportional to ωr and ωcr. For
a target with KR reflectors, the sampled radar output is a sum
of components of form (5) and corresponding ISAR image has
KR non-zero points. This mean that signal x(m,n) is sparse
signal with sparsity equal to the total number of target points.

If we consider a single range bin m0, the corresponding
signal x(n) = x(m,n)|m=m0 is also sparse one-dimensional
signal with sparsity equal to the number of target points within
the considered range bin. This property of ISAR signal will
be used to reconstruct the range bins, i.e., the whole ISAR
image, based on the reduced set of samples.

III. ISAR IMAGE RECONSTRUCTION

Since we know that the ISAR signal is sparse we can apply
CS reconstruction methods in order to obtain full image from
a reduced set of observations. In CS it is shown that the
number of observations should be at least twice larger than
signal sparsity. In the ISAR case this condition is satisfied
even for a small number of observations since the expected
sparsity (target points in a single range) is small.

We will use the reconstruction algorithm described in
[18] suitable for complex-valued signals. It is based on the
algorithm for real-valued signal reconstruction proposed in
[7], [19]. Primary goal during the reconstruction process of
common reconstruction algorithms is to find the signal in the
domain of sparsity. In this case it is the Fourier transform
X(k) of the signal x(n), using the available samples. Vector
notation of X(k) is X. Assume that the signal x(n) is sparse
in the DFT domain and that some pulses are unavailable.
Denote unavailable (missing) pulse positions with n ∈ NQ =
{q1, q2, ...., qQ}, y(i) = x(qi). The task is to minimize ‖X‖1
subject to the available signal values y(i) = x(qi), i =
Q+ 1, Q+ 2, ..., N . Compared to the other CS reconstruction
algorithms, the presented algorithm is specific in the sense that

it does not solve the problem by a direct finding of the signal
values X(k) in the sparsity domain. This algorithm calculates
the missing sample (measurement) values in order to find a
complete set of samples x(n) which minimizes ‖X‖1. This
kind of approach, where the missing samples/measurements
are the reconstruction variables, is possible when the complete
set of samples/measurements exists, like in the case of a signal
and its common transformation domains. Here we will review
the reconstruction procedure.

Consider a single range bin. Note that it is possible that
the considered signal does not contain any target point at all
(no target points within the considered range). In this case we
should not proceed to further analysis. We can set whole range
bin signal to zero. This case can be detected by introducing
threshold based on the signal energy contained in each range
bin. In the examples we use a threshold between 1% and 5%
of the maximal energy detected in a single range bin.

The basic idea is to start from the minimum energy so-
lution y(0)(n). It is equal to the available samples of the
considered signal with zero-valued missing samples. Now we
should vary real and imaginary part of the missing sample
values for ±∆ where ∆ is appropriately chosen variation
step. We should analyze influence of these variations to the
concentration measure [20] of the signal in frequency domain.
The measures, defined as a sum of absolute values, are used in
order to obtain an estimation of the measure gradient. Next, the
missing sample values are adjusted and the whole procedure
is repeated. Good starting choice of the algorithm parameter
∆ is signal magnitude ∆ = max |x(n)|.

The iterative procedure of the reconstruction algorithm can
be summarized as
Step 1: For each missing sample at n = qi we form four
signals y1(n), y2(n), y3(n), and y4(n) in each next iteration
as:

y
(k)
1 (n) =

{
y(k)(n) + ∆ for n = qi
y(k)(n) for n 6= qi

y
(k)
2 (n) =

{
y(k)(n)−∆ for n = qi
y(k)(n) for n 6= qi

y
(k)
3 (n) =

{
y(k)(n) + j∆ for n = qi
y(k)(n) for n 6= qi

(7)

y
(k)
4 (n) =

{
y(k)(n)− j∆ for n = qi
y(k)(n) for n 6= qi

,

where k is the iteration number. Constant ∆ is used to deter-
mine whether the real and imaginary parts of the considered
signal sample should be decreased or increased.
Step 2: Estimate the differences of the signal transform
measure (norm-one measure in our examples) as

gr(qi) =M
[
DFT[y

(k)
1 (n)]

]
−M

[
DFT[y

(k)
2 (n)]

]
(8)

gi(qi) =M
[
DFT[y

(k)
3 (n)]

]
−M

[
DFT[y

(k)
4 (n)]

]
(9)

whereM[·] is norm 1 measure (sum of absolute values of the
considered DFTs).



Step 3: Form a gradient vector G(k) with the same length
as the signal x(n). At the positions of the available samples,
this vector has value G(k)(n) = 0. At the positions of missing
samples gradient vector values are

G(k)(qi) = gr(qi) + j gi(qi), (10)

calculated by (8) and (9).
Step 4: Correct the values of y(n) iteratively by

y(k+1)(n) = y(k)(n)− 1

N
G(k)(n). (11)

Repeating the presented iterative procedure, the missing
values will converge to the true signal values, producing the
minimal concentration measure in the transformation domain.
Stopping criterion and criterion for reduction algorithm pa-
rameter ∆ are discussed in [18]. The parameter ∆ is reduced
by
√

10 when the angle between successive gradient vectors
is close to 180◦ (for example higher than 170◦). The iterative
procedure is stopped when there is no significant change in
y(n) for two successive values of ∆.

In theory, the reconstructed signal uniqueness can be
checked using the restricted isometry property with appropri-
ate constants. However its calculation is an NP hard problem.
Uniqueness of the obtained solution can be checked in an
efficient way using the recently proposed uniqueness theorem
[21]. After the signal x(n) is reconstructed and its sparse
transform X(k) is obtained, with nonzero values at ki ∈ Ks =
{k01, k02, ...., k0s}, this theorem checks if there is another
signal X(k)+Z(k) with the same or lower sparsity. Here Z(k)
is the DFT of z(n), where z(n) assume arbitrary values at the
missing sample positions n ∈ NQ and z(n) = 0 for n /∈ NQ.
Note that the available sample values and positions in x(n)
and the nonzero positions in reconstructed X(k) are fixed,
while the positions of zero and nonzero values in Z(k) could
change to produce minimal possible sparsity of X(k) +Z(k).

Theorem [21]: Consider reconstruction of the signal x(n)
that is sparse in the DFT domain with unknown sparsity. As-
sume that the signal length is N = 2r samples and that Q sam-
ples are missing at the positions n ∈ NQ = {q1, q2, ...., qQ}.
Also assume that the reconstruction is performed and that the
DFT of reconstructed signal is of sparsity s. Assume that the
positions of the reconstructed nonzero values in the DFT are
k0i ∈ Ks = {k01, k02, ...., k0s} Reconstruction result is unique
if the inequality

s < N − max
h=0,1,...,r−1

{
2h (Q2h − 1)− s+ 2S2r−h

}
holds. Integers Q2h and S2r−h are calculated as

Q2h = max
b
{card{q : q ∈ NQ and mod(q, 2h) = b}}

b = 0, 1, ..., 2h − 1

S2r−h =

Q
2h
−1∑

l=1

Ph(l)

Ph(l) = sort
p
{card{k : k ∈ Ks and mod(k, 2r−h) = p}}

p = 0, 1, ..., 2r−h − 1

where Ph(1) ≤ Ph(2) ≤ ... ≤ Ph(2r−h) and card{·} is
cardinal number (number of elements) of the considered set.

IV. RECONSTRUCTION EXAMPLES

Presented procedure is demonstrated on three examples.
Signal analyzed in the first example is simulated radar output
signal that is sparse in each range bin with no more than 7
target points within the considered range. This signal is well
suited to the presented procedure. The signal is consisted of
256 pulses with 64 samples within each pulse. We assume that
some, randomly positioned pulses are missing (or omitted) and
perform ISAR image reconstruction with complex gradient
based reconstruction algorithm. Results are presented in Fig. 1
for 30%, 50%, and 70% of available pulses. The ISAR images
obtained directly from the available pulses (with samples all
samples corresponding to missing pulses set to zero, minimum
energy condition) are shown on the left side. Corresponding
images obtained after the reconstruction are given on the right.
It is clear that the presented algorithm is able to reconstruct
the original image in all considered cases.

More realistic scenario is used in the next examples.
Simulated Boeing 727 and Mig 25 signals are used. These
signals are commonly used as test signals for various ISAR
improvement methods. Mig 25 signal has 512 pulses with 64
samples within each pulse. Number of pulses in Boeing 727
signal is 256. These signals are only approximately sparse in
each range bin. Here we do not expect exact reconstruction
from the incomplete set of data. Moreover, ISAR images are
blurred due to possible nonuniform or uncompensated target
motion.

The results are presented in Fig. 2 and Fig 3. In the
case of 70% available samples (third row in the figures) the
reconstructed image is almost equal to the original one. Small
differences are notable in the case when half of the pulses are
unavailable (second row in the figures). Reconstructed image
in the case with 30% available pulses produce ISAR image
that is better than the image obtained without reconstruction
(presented left), but in this case difference with ISAR image
obtained by using full dataset (the last subplot) is notable.

From the presented examples we can see that reconstruction
of missing pulses is possible and that the reconstruction
procedure is very simple and robust to the signal sparsity
assumption.

Calculation complexity of the proposed algorithm is
O(NitN log2N) where M is number of samples within one
range bin and Nit is total number of iterations in the algorithm.

V. CONCLUSION

Common ISAR signals are sparse in the Fourier transform
domain with a low number of non-zero values in this domain.
Such signals are well suited to the Compressive Sensing
reconstruction techniques. In this paper, based on the model
of ISAR signal, we present an efficient and robust algorithm
for the ISAR image reconstruction using a reduced set of
observations. The proposed method is tested on simulated
examples. The obtained results are satisfactory even in realistic
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Fig. 1. Simulated example with ideally sparse signal. Maximal sparsity in
each range bin is 10. The reconstruction is performed based on 30%, 50%,
and 70% of the available pulses and reconstructed images are shown on the
right side. Images without missing pulses reconstruction are shown on the
left. In the last row ISAR image with full dataset is presented.
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Fig. 2. Boeing 727 example. This signal is only approximately sparse. The
reconstruction is performed based on 30%, 50%, and 70% of the available
pulses and reconstructed images are shown on the right side. Images without
missing pulses reconstruction are shown on the left. In the last row ISAR
image with full dataset is presented.
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Fig. 3. Mig 25 example. This signal is only approximately sparse. The
reconstruction is performed based on 30%, 50%, and 70% of the available
pulses and reconstructed images are shown on the right side. Images without
missing pulses reconstruction are shown on the left. In the last row ISAR
image with full dataset is presented.

cases when no ideal sparsity is assumed and ISAR images are
blurred due to uncompensated motion or nonuniform target
motion during the considered CIT.
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[2] L. Stanković, M. Daković and T. Thayaparan, Time–frequency signal
analysis with application, Artech House, 2013

[3] D. Donoho, “Compressed sensing,” IEEE Trans. on Information Theory,
vol. 52, no. 4, 2006, pp. 1289–1306.

[4] R. Baraniuk, “Compressive sensing,” IEEE Signal Processing Magazine,
vol. 24, no. 4, 2007, pp. 118–121.

[5] E. Candes, J. Romberg and T. Tao. “Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information,”
IEEE Trans. on Information Theory, vol. 52, pp. 489–509, 2006.
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