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Abstract Sparse signals corrupted by impulsive disturbances are considered. The
assumption about disturbances is that they degrade the original signal sparsity. No
assumption about their statistical behavior or range of values is made. In the first part
of the paper it is assumed that some uncorrupted signal samples exist. A criterion
for selection of corrupted signal samples is proposed. It is based on the analysis of
the first step of a gradient based iterative algorithm used in the signal reconstruction.
An iterative extension of the original criterion is introduced to enhance its selection
property. Based on this criterion the corrupted signal samples are efficiently removed.
Then the compressive sensing theory based reconstruction methods are used for sig-
nal recovery, along with an appropriately defined criterion to detect a full recovery
event among different realizations. In the second part of the paper a case when all sig-
nal samples are corrupted by an impulsive disturbance is considered as well. Based on
the defined criterion the most heavily corrupted samples are removed. The presented
criterion and the reconstruction algorithm are applied on the signal with a Gaussian
noise.

Keywords— Sparse signals, Robust signal processing, Impulsive noise, Compres-

sive sensing, Sample selection, DFT

1 Introduction

A signal is considered to be sparse in a transformation domain if the number of
nonzero coefficients is much smaller than the number of signal samples. Signals
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having a sparse representation can be reconstructed from a reduced subset of ran-
domly positioned samples. Processing of these signals with a large number of miss-
ing/unavailable samples attracted significant interest in the recent years within the
theory of compressive sensing (CS) [2-19,22,30,31,33,34,36]. The number of sam-
ples required to reconstruct the signal is related to the number of nonzero coefficients
in the sparse domain [4, 12, 17]. If some samples of a sparse signal are heavily cor-
rupted by a disturbance it has been shown that it is better to omit them from the

analysis or processing [31,32].

Topic of this paper is the recovery of signals which are sparse in a transformation
domain, with samples corrupted by a disturbance in the time domain, at unknown
instants. Positions and the number of the nonzero coefficients of the signal transform
are considered to be unknown. In contrast to the methods that combine the robust es-
timation and the CS based signal recovery, here we assume that we cannot distinguish
the corrupted samples from the uncorrupted ones based on their values. This assump-
tion, along with signal sparsity assumption, makes this approach different from the
common robust filtering techniques [1,8,11,20,21,35,37]. Furthermore, the proposed
approach can provide reconstruction with a user-defined precision, rather than to ob-
tain its filtered approximation. The only fact that we assume about the disturbance is

that it degrades the signal sparsity in the transformation domain.

A gradient-based algorithm for reconstruction of sparse signal with missing sam-
ples has been proposed in [28]. In this paper the idea of gradient calculation is re-
viewed in Section 2 and used as a criterion for the detection of signal samples cor-
rupted by impulsive noise. These samples are then removed and considered as un-
available.

Three approaches to obtain noise free subsets of samples are proposed in Section
3. One is based on random selection of subsets of signal samples and detection of
the event when a disturbance-free subset is selected. In the second approach a simple
criterion is used in order to select disturbance-free subset of samples, while in the
third approach an iterative variant of samples selection is proposed. Uniqueness of
the reconstruction from the remaining subset of signal samples, after the corrupted
samples are removed using one of the proposed approaches, can be considered from
the theoretical point of view using the restricted isometry property or coherence index
analysis. In this paper we will use a simple and computationally feasible result for
the reconstruction uniqueness of signals sparse in the DFT domain, whose details are
given in [27], [29].

Analysis is extended to the case when all signal samples are corrupted by a dis-
turbance within Section 4. In this case a subset of disturbance-free samples does not

exist, but we can select samples with small disturbances and reconstruct heavily dis-
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turbed samples. It has been shown that the recovery process results in a significant
disturbance rejection and the signal to noise improvement.

2 Definitions and Reconstruction Algorithm

Consider a signal x(n) with N samples in the discrete-time domain. Assume that the
sparsity domain of the signal is the discrete Fourier transform (DFT) domain. The
signal and the DFT coefficients are related via

MWMM=XQ%=QKMﬁML (1)
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or X = Wx and x = W~!X, where for the DFT holds ¢;(n) = exp(j2nnk/N). In a
matrix notation the N-dimensional vector X has elements X (k), vector X has elements
x(n), and the N x N matrix W is with elements ¢;(n). The time presentation of a
signal which is sparse in this transformation domain is

() = Y Aiguiy ()., 3)
i=1

where A; are nonzero coefficients and k(i) are their positions in the transformation
domain for i = 1,2, ...,s. The sparsity of this signal is s < N.

Assume that there are M available/uncorrupted samples at the instants n; € Ny,
i=1,2,..., M (ny <np <---<ny). The vector of available signal samples, whose
length is M, is denoted by y. Its elements are

The task is to eliminate the corrupted samples x(n;), i =M+ 1,M +2,...,N and to
reconstruct the signal so that the number of nonzero transform coefficients X (k) is
minimal, subject to the available/uncorrupted sample values. The task can be defined
as to find the unavailable/corrupted signal samples from

min ||X]|, subject toy = AX, 4)

where y = AX is a matrix notation for the system of M linear equations

1 N—-1
x(m) =y X X(O@x(n) 5)
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fori=1,2,...,M. The matrix A is obtained from matrix W~! by eliminating the rows
corresponding to the unavailable/corrupted samples.

Simple counting of the nonzero values of X (k) is achieved using so called lp-norm
|IX||o- However, the lp-norm based solution is an NP-hard combinatorial optimization
problem. Its calculation complexity is of order (]?’ ) In theory, the NP-hard problems
can be solved by an exhaustive search. However, as the problem parameters N and
s increase the computational time increases and the problem becomes unsolvable
in realistic time. Moreover, in practical signal processing applications, the [y-norm
can not be used even for small values of parameters N and s, when the combinatorial
approach could be used within a reasonable computational time. In all real-life signals
at least A/D quantization noise (very small but not zero) exists. Even if all values of
an originally sparse signal in the DFT domain (s < N) are known, the /p-norm of
X (k) for a signal whose samples are stored into a computer with a finite precision
will be equal to N.

These are the reasons why commonly the /;-norm of the signal transform is used.

It is convex and more robust to the noise. Minimization problem is then
N—1
min )" |X (k)| subject to y = AX. (6)
k=0

It has been shown that if the signal and its transform satisfy the restricted isometry
property, with appropriate isometry constants, then the solutions of (4) and (6) are the
same [5], [29].

For a reconstruction of unavailable/corrupted samples in the time domain we will
use a very simple and efficient algorithm, based on the gradient of a sparsity mea-
sure [25,28,29]. This algorithm is inspired by the adaptive signal processing meth-
ods with an adaptive step size. It is based on the gradient descent, where the missing
samples are considered as variables and reconstructed as the values producing min-
imal sparsity measure of the signal transform in the sparsity domain. Based on the
properties of this algorithm, a criterion for selection of corrupted samples will be in-
troduced. The reconstruction algorithm belongs to the wide class of gradient based
CS algorithms [15,23]. Its pseudocode is given in Algorithm 1.

Comments on Algorithm 1: The Algorithm 1 is iterative with m as an iteration
index. The initial iteration for the reconstructed signal is

0) ) x(n) for available samples, n € Ny,
x(n) = ,
' 0  for unavailable/corrupted samples, n € N,

where set N, contains the positions of unavailable/corrupted samples. It is the com-
plement of N,..
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Algorithm 1 Reconstruction procedure GRADREC
Require:

— Set of unavailable/corrupted sample positions N,
— Available samples x(n)

1: function GRADREC(x(n),Ny)
2 Set 1\ (n) < x(n) > for n ¢ Ny
3 Set ") (n)«0 > forn € Ny
4: Set m <+ 0
5 Set A + max \xﬁo) (n)]
6 repeat
7 repeat
8 A (n) « xm (n) > for each n
9: for n; € Ny do
10: X, (k) eDFT{xgm) (n)+A8(n—n;)}
11: Xa(k) < DFT{x™ (n) — A8 (n—ny)}
1 N=l
12: gni) < Y X0 = X2 (k)]
k=0
13: KD (ni) A (i) — g(ny)
14: end for
15: m<—m+1
16: until stopping criterion is satisfied
17: A+ AJ3
18: until required precision is achieved
19: return xEm) (n)

20: end function

Output:
— Reconstructed signal xg(n) = A (n)

In the next iterations, for each missing sample at n; € N, we consider two signals

x1(n) and x(n) which are defined as

X"(n)+A  forn=n;

xXi\n)= m
() xl )(n) forn #n;
A (n)—A forn=mn;
X2 (n) = (m) .
X (n) for n # n;
The parameter A is used to determine whether the considered signal sample
xﬁm) (n;) should be decreased or increased. Then we estimate a correction for the

considered sample based on the finite difference of the sparsity measure in the trans-
formation domain as
1 N—-1

gm) =< Y [IXi(k)| = X2(k)]], 7
Nk*O
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where X (k) and X, (k) are the transformations of x| (n) and x;(n) for a given n;.

We should stop the inner repeat loop in Algorithm 1 (lines 7-16) when we ap-
proach the stationary error zone, i.e., when the reconstruction result does not change
any more for the considered A, [29].

Outer loop (lines 6-18) repeats the reconstruction with a smaller A, for example
A < A/3. The stopping criterion for this loop can be based on the minimal value
of A or on the sparsity measure of the reconstructed signal. The rate of algorithm
convergence is considered in detail in [28,29].

Convergence analysis in a gradient-based algorithm is related to its behavior for
large values of step A. Small step value influence only the rate of the algorithm con-
vergence, [28, 29]. In order to examine the algorithm behavior for a large A note
that

X1 (k)| = [Xa2 (k)|

x™ (k) + AD,,, (k) ’ .

X" (k) ~ AD,, (k)|

) |

For any complex-valued a = x" (k)/(ADy,(k)), when |a| < 1 for a large value of

X" (k)
AD,, (k)

=A |Dni(k)| ( 1+

| xw
AD,, (k)

A, we can easily derive the bounds 0 < ||1 4+a| — |1 —a|| < 2]al. It means

0< |0~ X0l | <2

x™ (k) ‘ .

This is an important conclusion stating that the difference |X; (k)| — |X2 (k)| does not
depend on the algorithm step A, for a large A. This difference is used in the adap-
tation of the missing sample values in the algorithm. It means that the adaptation of
variables will be done for a value that does not depend on A if A is large. In the real-
ization it results in the missing sample values oscillations around the original signal
values (being of order ’X,(m) (k)‘ /N) until the step A is reduced in the next iterations.
After the value of A is reduced within few iterations the missing samples will start
convergence toward the positions of the sparsity measure minimum [26], [29].
Efficiency of the presented algorithm will be tested on a sparse signal with various
sparsity coefficients, sets of available samples, and random signal parameters.
Example 1: Consider a signal
K
x(n) =Y Ajcos(2mkin/N + ¢;) ®)
i=1
with N = 128. The sparsity of this signal is s = 2K. It has been varied from s =2 to s =
N/2 with step 2 (i.e., values s =24, ... N/2 are used). The amplitudes, frequencies,
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and phases were taken randomly within 1 <A; <2, 1 <k; <63 and 0 < ¢; < 27,
for each realization. The reconstruction is performed by using 100 realizations for
each number of missing samples Q = N — M from 4 up to 124 (with step 4) and the
reconstructed signals xg(n) are obtained. The results are presented in Fig.1 in a form
of the signal-to-reconstruction-error ratio (SRR) in [dB]

N—1 2
SRR = 10log —="=0 e)l”
Yoo [x(n) —xg(n)|

Bright colors indicate the region where the algorithm had fully recovered missing

€))

samples, while the dark colors indicate the region where the algorithm could not re-
cover missing samples. The minimal possible number of available samples for the
reconstruction can roughly be estimated as M > 2s [12, 19]. In the transition region
for M slightly greater than 2s we have cases when the signal recovery is not achieved
as well as cases of full signal recovery. A practical way to make a decision on the
recovery of a sparse signal in this region is in considering the values of the sparsity
measure close to the /p-norm. For the case when the recovery is not achieved the
sparsity measure value will be high (in theory equal to N). For the event when the
recovery of a sparse signal is achieved its value is close to the sparsity s < N. A theo-
rem to check if the recovered sparse signal is unique will be presented and discussed
later.

In this example, a stopping criterion is set to the precision of about 120 [dB]. This
level of precision corresponds to an input quantization noise in the signal obtained
from a high precision 20 bit A/D converter. By increasing the number of iterations,
with a sufficient number of available samples (Fig.1), the value of SRR could be of
the computer precision order, [28].

3 Disturbance in some Signal Samples

Consider a signal x(n), 0 <n < N — 1 that is sparse in a transformation domain with
a sparsity s < N. Assume that I samples of the signal x(n), at unknown positions
n € Ny, are corrupted with a signal €(n). The disturbing signal €(n) is modeled as:
€(n) =0 for n ¢ N; and €(n) assumes arbitrary values for n € N;. The original signal
can be fully recovered if a sufficient number of uncorrupted samples exists.

The sufficient number of uncorrupted samples is directly related to the full re-
covery conditions studied in the CS theory [4, 12, 19]. A rough estimation of this
number can be made based on the statistical results presented in Fig. 1, while a pre-
cise uniqueness check is provided in Section III.D.

The three methods for signal recovery from such corrupted samples are described
below.
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Fig. 1 Signal-to-reconstruction-error (SRR) obtained by using Algorithm 1, averaged over 100 realizations
for various sparsity s and number of available samples M.

3.1 Direct Search Procedure

In order to solve the stated problem we will begin with a simple idea of eliminating
random subsets of samples and performing the reconstruction using the remaining
samples. For each realization the sparsity measure of the recovered signal is used for
detection of the full recovery event. By using a sparsity measure close to the /op-norm
all realizations containing disturbed samples will produce a value of sparsity measure
close to the total number of samples N. In the case when only the uncorrupted samples
are used in the reconstruction, the measure value is of order s. It is much lower than
the total number of samples N. Thus by setting a threshold 7, within s < T;; <N we
can detect a full recovery event.

We have assumed that the signal length is N and the number of arbitrary corrupted
samples is up to /. For each realization the observation set of the signal positions is
denoted as n € N, with M < N randomly positioned signal samples. Since the con-
sidered signal is sparse in the considered transformation domain it can be recovered
based on 2s < M < N uncorrupted samples if the recovery conditions are meet. In

order to estimate the computational complexity of this method, we will find the prob-
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ability that within M randomly selected observation samples there are no corrupted
samples.

Probability that the first randomly chosen sample is not affected by disturbance is
(N —1I)/N since there are N samples in total and N — I of them are disturbance-free.

Then we continue the process of random samples selection. The probability that both

N—IN—I—1
N NI .In

this way we can calculate the probability that all of M randomly chosen samples at

the first and second chosen samples are not affected by disturbance is
the positions n € Ny, are not affected by a disturbance. This probability is

M—1 .
N—-I—i
P(M,N) = _ (10)
lI;I N—i
N—I—i
N—i

of terms in the product increases. Thus, in this kind of reconstruction it is important

Since

< 1 we can see that the probability P(M,N) decreases as the number

to keep the number of samples M in the observation set as low as possible, while
satisfying the reconstruction conditions.

In general, for an expected number of pulses /, the expected number of random
realizations to achieve at least one disturbance-free reconstruction using a subset of
M samples is 1/P(M,N).

Example 2: Consider a signal x(n) from the previous example corrupted by an
impulsive disturbance €(n). Impulse disturbance is expected in about 12% of the
signal values, corresponding to / = 15 corrupted signal samples, Fig.2(a). A signal
x(n) of sparsity s = 6 is used in this example. Thus, by using M = 32 samples in the
reconstruction we are well within the full recovery region, with a high probability
(Fig.1). The probability that a randomly chosen subset of M out of N samples will
be disturbance free is P(32,128) = 0.0099. It means that in 1000 realizations, we
can expect about 10 full recovery realizations. The calculation is performed with
an impulsive disturbance of the form €(n) = € (n)/&,(n) + €3(n)/€4(n) + 10€5(n)
where €(n), i = 1,2,3,4,5, for n € Ny, are the unite variance Gaussian noises. It is
important to note that the results do not depend on the disturbance amplitude values
or their distribution. The /;-norm is used as sparsity measure in the reconstruction
process.

As we can see from Fig.2(b) there are some realizations of sparse signal recovery
corresponding to the algorithm precision value of SRR. Now we have to define an
appropriate procedure for their detection. Since the assumption is that the signal is
sparse in the considered transformation domain, the measure of reconstructed signal
sparsity is an obvious criterion for sparse signal recovery detection. Here, the task
is in a posteriori measuring of the signal sparsity. In this case the measures based

on the norms close to the /p-norm, will give much clearer threshold for the detection



10 LjubiSa Stankovic et al.

of a sparse recovery event the /{-norm. What is a weak point of the /p-norm in the
optimization process, it may be an advantage in the detection. The /y-norm can clearly
distinguish the cases of the full sparse signal recovery from nonrecovery cases. It will
produce N as the measure of sparsity value for every signal reconstructed based on a
subset containing some corrupted samples, while its value will be s < N for the full
recovery event, when the samples without disturbance are used.

In practice, a measure calculated using an /,-moment, with a value of p close to 0
should be used. In the calculation with a finite precision, a sparse recovery will pro-
duce very small (but nonzero) transformation coefficients values X (k) at the positions
where they should be zero. Value of p should be such that | X (k)|? at these positions
is much lower than the value of | X (k)|? at the original nonzero signal positions. Thus,
instead of the [y-norm, in the detection we will use sparsity measure

N-1

Xk} = Y

k=0

1 p

X (k)

N (1)

With a small p the behavior of this sparsity measure is close to the /y-norm, but ro-
bustness to the small errors in the reconstructed signal is achieved, Fig.2(d). If the
input data or the reconstruction precision is of order 10™¢ with the signal values of
order 10° then the value p should be such that 1077 < 10°. For example, if the re-
construction algorithm works with a precision of 107°, then the sparsity measure for
the case of full recovery will be of order s if p is such that pc > 1. Thus, the value
p = 1/4 will keep the original zero-valued transform coefficients X (k) at a level of an
order bellow the nonzero coefficient values, in the full recovery case. Quite similar
conclusion can be made even if we assume ¢ = 16. The sparsity measure values for
the cases when a nonsparse signal is recovered will be much higher than s. Therefore,
a low value of sparsity measure corresponds to a high SRR, Fig.2(b). In Fig.2(c), the
realization with the smallest sparsity measure is used to reconstruct the signal x(n).
The reconstructed signal is xg(n). In reality we need only one full recovery realiza-
tion. Calculation efficiency can be improved if we set a threshold for the sparsity
measure U{X(k)}, and stop further random selections of sample subsets when the
sparsity measure threshold 7}, is reached. For example, in this case a threshold level
of u{X(k)} < T, =20 would stop search after just a few realizations.

Note that in simulations the reconstructed signal is compared with the original
signal for all instants n. In theory, there is a probability that the available samples
do not guarantee a unique solution for a given signal sparsity. In such cases, other

solutions may exist. The uniqueness check of the solution will be discussed later.



Reconstruction of Sparse Signals in Impulsive Disturbance Environments 11

2 14
0 x(n]+&(n) 0 SRR [dB]
10 100
0 60
-10 20
20 @ _pg (b)
0 50 100 0 200 400 600 800 1000
time realization index
80
10 1x(n), X4(n) W{X(K)}
60
5
0 40
-5 20
-10 © o (@
0 50 100 0 200 400 600 800 1000
time realization index

Fig. 2 Reconstruction of a signal with 7 = 15 out of N = 128 samples being affected by an impulsive
disturbance. In each realization 96 randomly chosen samples are removed. Total number of realizations
is 1000. a) The available corrupted signal; b) The SRR for each of 1000 realizations; c) The original
(line) and the reconstructed (dots) signal for the best realization; d) The sparsity measure for each of 1000
realizations.

3.2 Procedure with a Criterion for Selecting Preferred Samples

The direct search procedure can be used on signal with a small number of corrupted
samples. An average number of the random realizations required to have an uncor-
rupted subset of signal samples increases with the number of corrupted samples. In
the case when the disturbance is much stronger than the signal, then the trimmed L-
statistics can be used to eliminate the corrupted signal samples, without any search
procedure. Then, a direct application of the recovery algorithm on the remaining sam-
ples is possible, [32] (or in image processing [24]). This kind of approach can be used,
in general, when a knowledge about the disturbance behavior can help us to detect
the positions of the corrupted samples [1,8,11,20,21,37].

The L-statistics method can also be used in combination with the presented direct
search method when some of the corrupted samples may be eliminated based on their
values, while a small number of corrupted samples at unknown positions remains.
The extension is straightforward.
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With this kind of approaches we have to know the signal range or behavior in
order to eliminate heavily corrupted signal samples. In general, some of the highly
corrupted and most of the moderately and low corrupted signal samples of unknown
behavior cannot be easily distinguished from the uncorrupted signal values.

Our next analysis will be focused on a criterion that will mark some signal sam-
ples as probably more corrupted than the others, without assuming any particular
distribution or the number of corrupted samples. Then these signal samples will be
marked as unavailable and reconstructed in the process of signal recovery.

Some insight into the basic idea of favorable samples selection in the recovery
process can be obtained from a simplified analysis. If just one sample is considered
as corrupted at n = n; then we can form the signals x;(n) = x(n) + (¢(n) + A)8(n —
ny) and xp(n) = x(n) + (¢(n) — A)6(n —ny). The pulses (g(n) £A)d(n—n;) will
spread over all coefficients in the transformation domain X; (k) = X (k) + (e(n1) +
A)el2TMkIN and X, (k) = X (k) + (€(ny) — A)e/>™K/N_ The changes at the positions
of the nonzero coefficients X (k) are of the same order as the changes at the zero co-
efficients X (k). Since the signal is sparse, the number of nonzero coefficients is much
smaller than the total number of coefficients, s < N. Therefore, in the approxima-
tive analysis, we may neglect the total value of changes in the nonzero coefficients
X (k). Then, we may approximately write w; = Y2 |X1 (k)| = po + |e(n) + AN
and pp = YV X2 (k)| = po + |€(ny) — A|N, where Lo is the sparsity measure of
the uncorrupted signal x(n) and N — s = N. Therefore, the difference of measures,

normalized with N, is (7)
g(n1) =[e(n) + Al —[e(m) — Al

For A > |e(n;)| we get
g(ny) =2¢(ny). (12)

It means that the finite difference value, for a large A, can be used as an indicator of
the signal value deviation from its correct value, i.e., an indicator of the disturbance
€(n) intensity.

Of course, this is not an exact criterion about the significance of a disturbance
in a signal with many corrupted samples. For a large number of corrupted samples,
the signal deviation significance follows this criterion in the most cases, as it will be
presented and statistically checked in the rest of the paper.

The idea for this criterion is illustrated on a two-dimensional case, Fig.3, for two
corrupted samples x(n;) + €(n;) and x(ny) + €(n2). The first signal sample x(n;)
possible values are presented on the horizontal axis, while the second sample x(n;)
possible values are on the vertical axis. The true signal values are presented by hori-

zontal and vertical lines (passing through the measure minimum). The cross indicates
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Fig. 3 Sparsity measure as a function of the signal values in the case of two corrupted samples (horizontal
and vertical lines represent true values). Crosses indicate the position on the measure function for the
corrupted samples x(n) and x(ny). Difference of measures (thick lines) calculated at x(n;) + &(n;) + A
and x(n1) +€(n1) — A or x(np) + €(n2) + A and x(np) + €(n2) — A (positions are indicated on the contour
plot by circles) are proportional to the disturbance (displacement of the crosses from the horizontal and
vertical lines representing the true signal values). The cases with one corrupted sample (left) and with both
corrupted samples (right) are shown.

position of the measure function for corrupted samples x(n;) and x(ny). Horizontal
and vertical displacement of the cross from intersection of lines representing the true
signal values are equal to the disturbances €(n;) and €(n2) respectively. On the left
side of Fig.3 a case with £(n;) = 0 is shown, while on the right side of Fig.3 a case
with |e(n1)| < |e(n2)| is shown. Measures are calculated at x(n;) + €(n;) + A and
x(n;)+€(n1) — A and then at x(np) + €(n2) + A and x(n2) 4 €(n2) — A. Their values
are indicated by circles on the contour plot in all cases. The measure contour plot is
calculated for all possible values of these two samples for a given signal. Differences
g(n;) of the corresponding measures are presented by thick lines. Obviously the dif-
ferences of the corresponding measures are proportional to the deviations €(n;) and
€(ny) of the signal samples from their true values, (12).

A procedure of choosing samples which are probably less corrupted than the oth-
ers, according to the presented criterion, is summarized into Algorithm 2.

Comments on Algorithm 2: A corrupted signal x(n) is assumed. For each instant
m=0,...,N—1, the signals x| (n) =x(n) + Ad (n—m) and x,(n) = x(n) —AS(n—m)
are formed. The difference of measure values is calculated as

1 N—1 N—-1
glm) = (), X)) %K), (13)
k=0 k=0

where X; (k) =DFT[x; (n)] and X, (k) = DFT|x;(n)]. The signal values with the largest
|g(m)| are eliminated and considered as unavailable in the reconstruction. Parameter
A, used in algorithm, should be higher than the disturbance magnitude. We can, for

example, put a value of an order of A = max|x(n)|.
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Algorithm 2 Disturbance-free Samples Selection Procedure
Require:

— Signal x(n)
— Parameter A

— Number of required samples M

1: for m<O0toN—1do

2: X (k) + DFT{x(n)+A6(n—m)}
3: X (k) +~ DFT{x(n) —A&(n—m)}
N-1
£ glm ey ¥ K0 D)
=0

5: end for
: Sort |g(m)| in nonincreasing order

[=))

lg(mi)| < [g(ma)| < -+ < [g(mp)|

Output:
— Positions of selected samples my, my, ..., my.

Example 3: Consider N = 128 samples of signal (8) with sparsity s = 6, and
A1 =4, Ay =3, A3 = 0.7, where 64 of them (50%) are affected by an impulsive
disturbance of the form 40€(n), where €(n) is a Gaussian unit variance noise. The
term impulsive is used here for the disturbance existing in some signal samples only.
The amplitude of this disturbance is of signal amplitude order and many corrupted
signal samples are within the signal amplitude range. For example, a threshold that
would eliminate disturbance whose amplitudes are certainly outside the signal range
2A = 15.4 (if the amplitude were known), would leave 30% of the corrupted samples.
This number of corrupted samples would require a large number of reconstruction
realizations in direct search.

The selection procedure described by Algorithm 2 is applied to this corrupted
signal. Just in order to illustrate the trivial case if the algorithm is applied on the
disturbance only case (without signal), we present results in Fig.4(left). In this case,
when there is no signal, the criterion works as an exact sorting procedure. It means
that Algorithm 2 applied on the described disturbance will perform exact sorting of
its values. However, in all cases of interests the signal is also present. The result
of procedure described by Algorithm 2 applied on corrupted signal is presented in
Fig.4(right). Disturbance amplitudes in samples selected and sorted by the algorithm
are presented. Assume that we mark the first 64 samples as corrupted ones. A few
corrupted samples in the remaining 64 samples (sorting indexes 65-128), Fig.4(right)
are still left. This is the consequence of the fact that the criterion is not able to locate

all corrupted samples. In this example, we will continue with a direct search proce-
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dure. We will use 32 randomly positioned samples in the reconstruction, from the
set of 64 remaining samples. The results are presented in Fig.5. A disturbance-free
realization is detected based on the sparsity measure of the reconstructed signal. If
we set a threshold for measure at pu{X(k)} < T, = 20 (approximately s < 20 com-
plex signal components), we would achieve sparse signal recovery within a small
number of realizations. In Fig.5(d) the sparse recovery event was detected in the 58th
realization. Further direct search is then stopped. The recovered result was with the
reconstruction Algorithm 1 precision of about SRR = 120 [dB], Fig.5(b).

80

disturbance in
a corrupted signal

L disturbance only
60 [k

40

20

disturbance value
disturbance value
'S
o

0 b
20 40 60 80 100120 20 40 60 80 100120
sorting index sorting index

Fig. 4 Disturbance values in the signal sorted according to the introduced significance criterion. Criterion
applied to the disturbance only (left). Criterion applied to the signal corrupted by the same disturbance
(right).

3.3 Iterative Procedure for Remaining Noise

Further improvement can be achieved if the direct search is replaced with a “smart”
iterative procedure for choosing samples to be removed and reconstructed in each
iteration. It is presented in Algorithm 3.

Comments on Algorithm 3:

The criterion from Algorithm 2 could be applied to remove an initial set N, of
the most heavily corrupted samples. We can also start the selection with the criterion
defined by Algorithm 3 only, when the initial set is N, = 0.

Then we perform the reconstruction under the assumption that samples at the
positions from the set N, are available. The reconstructed signal is denoted by xz(n).
For each signal sample from the set of selected samples N, the reconstruction is
performed, assuming that only the considered sample is unavailable. The sparsity
measure difference is calculated before and after the reconstruction. It is denoted by
g(m). This difference is used for the selection of samples which are probably the
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Fig. 5 Reconstruction of a corrupted signal with 64 out of N = 128 samples being removed using the
criterion. The signal to reconstruction error ratio (SRR) corresponds to the concentration measure values
for each realization. a) Input noisy signal; b) The SRR as a function of iteration index; c) The original
(line) and the reconstructed (dots) signal for the last realization; d) The concentration measure for each
realizations.

most corrupt. A highly corrupted sample will give a high |g(m)|, while a sample with
a low or no corruption will produce small |g(m)|. In the next step r samples with the
highest measure difference g(m) are selected, marked as the corrupted samples, and
added to the set of unavailable sample positions Nj.

The presented procedure is repeated with the new sets N, and N,.. At the end of

Nj; iterations, in total rN;; most corrupted samples will be removed.

Example 4: Consider N = 128 samples of a signal defined by (8), for two different
sparsity values s = 6 and s = 10. The number of samples affected by a disturbance
is I = 64. The disturbance of form €(n) = 40(g; (n) — 0.5) +40(&,(n) — 0.5) is used,
where € (n) and & (n) are white uniform noises. This kind of disturbance has a large
number of values within the signal amplitude range at the positions where the distur-
bance exits. In the reconstruction, the iterative removal procedure is used with r =4
sample positions being added to the set of unavailable/corrupted sample positions N
in each iteration. The iterative procedure detects the remaining most corrupted sam-
ples in each next iteration. In an ideal case if there is no miss-detection, all corrupted

samples from this example will be removed in 16 iterations. Of course, it can happen
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Algorithm 3 Iterative Denoising
Require:
— Noisy signal xg(n) = x(n) +€(n), n=0,1,...,N — 1. It is known that nonnoisy signal x(n) is
sparse in the DFT domain with unknown sparsity.

— Number of samples r to be removed in each iteration.
— Reconstruction procedure GRADREC defined by Algorithm 1.

1: SetN,. ={0,1,....N—1}

2: SetN, =0

3: repeat

4: xg(n) + GRADREC(x¢(n),Ny)

5: Xg(k) <DFT{xg(n)}

6: for m € N, do

7: xg1(n) < GRADREC(xg(n),{m})

8: XRl(k) — DFT{)CRI(H)}

1 Nl N—1

9: g(m) N(Z IXr (k)| = ) |Xri (K)])

k=0 k=0

10: end for

11: Select r samples with highest |g(m)|

12: Remove selected sample positions from the set N,

13: Add selected sample positions to the set Ny
14: until stopping criterion is satisfied
15: return xg(n)

Output:
— Reconstructed signal xg(n).

that an uncorrupted signal value is marked as a corrupted one in an iteration. Results
of reconstruction are presented in Fig. 6. We can see that the number of omitted sam-
ples for the considered signals is Q = 68, meaning that just a few miss-detections
existed. Disturbance values, in the order as they are detected and omitted by the algo-
rithm, are presented in Fig. 7. It can be seen that the algorithm followed quite well the
significance order of the disturbance in their omission. The same process is repeated
100 times with arbitrary signal amplitudes and frequencies. In the case of signal with
sparsity s = 6, in all realizations the corrupted samples where among 68 samples
selected by the criterion. A sparse signal recovery was achieved in all cases.

3.4 Uniqueness of the Obtained Solution

After a sparse signal is reconstructed form a reduced set of samples its uniqueness
should be confirmed. The restricted isometry property is used as a tool to define
the uniqueness of a sparse signal reconstruction. With appropriate isometry constant
for /;-norm based minimization it guaranties that the solution is the same as if /o-
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Fig. 6 Reconstruction of a sparse signal when corrupted samples are removed by using the criterion in
iterative way. In each iteration r = 4 samples are removed. a) The SRR during the iterations for a signal
of sparsity s = 6; b) The sparsity measure during the iterations for a signal of sparsity s = 6; d) The SRR
during the iterations for a signal of sparsity s = 10; b) The sparsity measure during the iterations for a
signal of sparsity s = 10;.

disturbance samples
s=6 300 .

disturbance samples
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2A 2A

B L 0 I L
20 40 60 80 100120 20 40 60 80 100120
sorting index sorting index

Fig. 7 Disturbance values in the signal, sorted according to the introduced significance criterion, with
signal range in amplitude 2A. Sorting of the disturbances in corrupted signals of sparsity s = 6 and s = 10
are presented.

norm were used and that the solution is unique. However, the check of the restricted
isometry property requires a combinatorial approach, which is an NP hard problem.
In addition, for a specific measurement matrix it produces quite conservative bounds
for nonuniqueness.
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A theorem for the solution uniqueness [27] will be presented and used here. The

gradient-based algorithm considers omitted samples as variables
xq(n) = x(n) +z(n).

For the available sample positions z(n) = 0, n € N,. This variable takes arbitrary
values at the missing sample positions n = ¢,, € Ny = {q1,¢2,....,q¢}. The DFT of

this signal is

Xo(k) = X (k) + Z(k)

Y A
0i8(k —koi)+ Y z(qm)e 27 mk/N

1 m=1

-

i
In the process of sparsity measure minimization the missing samples y(n) = x,(n),
n € Ny, are variables. The goal is to obtain x,(n) = x(n), with z(n) = 0 for all n. The
uniqueness means that if a sparse signal, with the transform X (k), is reconstructed
using the set of available sample positions then there is no other signal transform
of the same or lower sparsity that can be obtained by varying values of the missing
samples. Solution uniqueness depends on the number of missing samples Q =N —M,

their positions Ny, and the available signal values [27].

Theorem 1 Consider a signal x(n) that is sparse in the DFT domain with unknown
sparsity. Assume that the signal length is N = 2" samples and that Q samples are
missing at the instants q € N,. Also assume that the reconstruction is performed and
that the DFT of reconstructed signal is of sparsity s. Reconstruction result is unique
if the inequality

s<N— max 1{2h(Q2h —1) —s}

h=0,1,....r—
holds. Integers Q,i are calculated as
O = b:()’I]I’l.e.l.)’(zhil{card{q :q € N, and mod(q,2") = b}}.

The answer is obtained almost immediately, since the computational complexity
of the Theorem is of order O(N). The proof is given in [27].

Here we will illustrate the uniqueness test on the signal from the Example 4,
whose sparsity is s = 10 and the algorithm has removed Q = 68 out of N = 128
samples. Using the theorem for the specific set of removed samples N, we obtained
the sparsity limit s < 16. It means that the reconstruction is unique.

For the same number of missing samples the theorem is run 100,000 times with
arbitrary possible distribution of Q = 68 removed sample positions. The probability
that a signal with sparsity s is unique, with randomly removed Q = 68 samples is
presented in Fig.8. Probability that the worst case signal with sparsity s = 10 is unique
for 0 = 681is 0.9188.
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Fig. 8 Sparsity limit probability distribution for the worst possible case of signal with Q = 68 out of
N = 128 samples in 100,000 random realizations.

4 Disturbance in all Signal Samples

The results from the previous section will be generalized to the case when all signal
samples are corrupted.

Consider a signal x(n), 0 <n < N — 1 that is sparse in a transformation domain
with unknown sparsity s < N. Assume that all samples of signal x(n) are corrupted
with an arbitrary signal €(n). The original signal can be recovered with the signal-to-
noise ratio

SNR = SNR; — 10log (CQ%) (14)

where SNR; is the input signal-to-noise ratio, M is the number of samples used in the
reconstruction, and the disturbance suppression ratio is

2

ﬁ):?il le(n)|
_ 2

¥ Inso le(n)]

where n;, i = 1,2,...,M are positions of the samples used in reconstruction.

Co= (15)

By using a criterion for selective choice of samples, the average disturbance en-
ergy in the reconstructed samples is much smaller than the average energy in the
whole signal. Then the disturbance suppression ratio is small, Cp < 1. A signif-
icant signal to-noise ratio improvement can be achieved in this way. In an ideal
case, when the remaining samples do not contain disturbance a full recovery can
be achieved, with SNR — oo as Cp — 0 (the case presented in Section 3). If no
selection of the signal samples is used in the recovery process then Cp = 1 with
SNR = SNR; — 10log(s/M).
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Fig. 9 Reconstruction of signals corrupted in all samples. Using the criterion r = 4 the most corrupted
samples are removed in each iteration. (a)-(b) The SNR and concentration measure during the iterations
for s = 6. (c)-(d) The SNR and concentration measure during the iterations for s = 10.

We will illustrate the case of disturbance in all signal samples on an example.

Example 5: Let us consider signal (8) with additive impulsive noise 1.5¢3(n),
where €(n) is the Gaussian noise with o, = 1 and two sparsity values s = 6 and
s = 10. In the reconstruction, the iterative removal procedure is used, with r = 4 sig-
nal sample positions being added to the set of unavailable/corrupted sample positions
N, in each iteration. The SNR increases in each iteration, as shown in Fig.9. The fi-
nal reconstruction is with an SNR improvement greater than 20 [dB] in both cases,
Figs.9(a),(c). In the case when the noise existence is expected in all remaining sam-
ples we should avoid to use the lowest possible number of signal samples sufficient
for reconstruction. The influence of residual disturbance increases when the number
of samples in the reconstruction approaches to the reconstruction limit.

The same procedure is repeated for signal (8) with random parameters and vari-
ous s in each realization. Theoretical and statistical results for the signals of sparsity
s = 6,10,14,20 and 30, obtained in 100 realizations, are presented in Table 1. Sta-
tistical and theoretical results for the output SNR without using information about
the sparsity s and assuming that the sparsity s is known or properly estimated are
presented. The results are given for an average input SNR of about —5.3 [dB]. Num-

ber of samples was N = 128. The average number of omitted samples, denoted by
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Table 1 Statistical and theoretical results for the SNR as a function of the sparsity s

[Spasiys [ 6 [ 10 [ 14 | 20 | 30 |
SNR; 537 | —543 | —541 | —5.34 | —5.27
(N—M) 62 75 84 97 105

Co 0.003 | 0.0095 | 0.019 | 0.042 | 0.081
SNR 2464 | 1872 | 1500 | 1034 | 6.89
SNR; 3057 | 23.71 | 19.77 | 1501 | 10.85
SNRy 3004 | 2353 | 19.61 | 1527 | 11.09

Input signal to noise ratio SNR;; Average number of omitted samples (N — M) in 100 realizations; The
average disturbance reduction ratio Cp; Output signal to noise ratio SNR improvement without using
information about sparsity s; Output signal to noise ratio SNR, assuming that the sparsity s is known or
properly estimated; Theory expected output signal to noise ratio SNRy with the sparsity s being known or
properly estimated.

(N —M), in the presented procedure and the average disturbance reduction ratio Cp,
obtained by using the proposed selection criterion in 100 realizations, are given for
each sparsity s.

4.1 Analysis of the Residual Disturbance Influence

The signal-to-noise ratio (SNR) in the input signal, x(n) + €(n), is

— 2
TR 100 Er
— 2 = .
V- le(n)] Ee

Assume that by using the described procedures (the criterion based sorting, random

SNR; = 10log

search, and/or their combinations) we have found M samples that are the favorable
samples for the signal reconstruction (to be used as “available” samples). Then the
reconstruction is performed based on

y(ni) = x(n;) + €(n;) (16)
i=1,2,..,M.

The same holds for the original compressive sensing formulation when M samples
are available.

If the noisy signal contains at least M noise-free samples, where M is a number
of samples that guarantees a successful signal reconstruction, then the perfect recon-
struction can be achieved, in theory, up to the computer precision. Then the signal to
reconstruction error ratio tends to infinity, SNR = SRR — oo. The matter here is only
the number of calculations that have to be performed to find and correctly detect the

case when only the disturbance-free samples are used in the reconstruction.
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In the case when we cannot provide that there are M disturbance-free samples,
then the influence of the residual disturbance to the reconstruction error is analyzed.

Assume that in the remaining M samples the disturbance energy is
o 2
Eea =) le(m)]”. (17)
i=1

For the beginning consider the simplest case when the signal is reconstructed in a
direct way, by using the signal transform calculated with the available M samples at
the instants »n;

M

Xr(k) =Y y(ni) @i (ni). (18)

i=1

Omitting the unavailable samples in summation is the same as assuming that their
values are zero. This kind of calculation corresponds to the result that would be

2 . .
, 1s used in

achieved for the signal transform if the ,-norm, i.e., min Yy ' |X (k)
the minimization, [28, 30, 32]. Then the available signal values y(n;), i = 1,2,...,M,
for a frequency corresponding to a signal component are summed in phase, while
the unavailable samples are omitted in summation. This summation produces value
MA; at a frequency of the ith component of signal (3), where A; is the component
amplitude in the time domain. The total disturbance energy in both the signal and the
signal transform is equal to the disturbance energy in available samples (according to
Parseval’s theorem).

The true amplitude in the signal transform at the frequency k;, in the case if all
signal samples were used, would be NA;. To compensate the resulting transform for
the known bias in amplitude when only M available samples are used we should
multiply the coefficient by N/M. The same is done by any reconstruction algorithm
that produces (reconstructs) the correct amplitude of the signal component. It means
that in a full recovery, a signal transform coefficient should correspond to the coef-
ficient of the original signal with all signal samples being used. The disturbance in
the transform coefficients will be also multiplied by the same factor. Therefore, its
energy would be increased to E¢4N?/M?. The signal to noise ratio in the resulting
signal would be

Lo ()

SNR = 10log — 5
37 Lity le(m))|

19)
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If the distribution of the disturbance in the available samples is the same as in other

signal samples (no selection criterion is used), then Y | |e(n;)|* = M2 and
N 2
SNR = 1010g Z2=0 P01 o ()
N
MZ MGe
E, N
= 10log— — 101 — 20
e (¥) o
N
= SNR; — 10log (M) Q1)

Therefore, this kind of signal reconstruction, using (18), would worsen SNR, since
N>M.

An improvement in the direct reconstruction can be expected only if we remove
the corrupted samples in a selective manner so that the remaining samples are less
disturbed than the omitted samples. If a selection criterion, for example the one pro-
posed in this paper, can remove the disturbance in such a way that

N2M

MZZ|gn, < Z|£

then the reconstruction can be improved, even by the direct calculation (18).

The direct calculation is used in a combination with the assumption that the sig-
nal is sparse, with a sparsity s < M. Positions of the nonzero coefficients in trans-
formation domain are assumed to be known (or estimated based on (18) by using a
threshold or an iterative procedure) for the s signal components. In an ideal case all
the DFT values other than the values at the known s frequencies are then set to zero.

The following system,
N
Z (ki) @y, (n;) = x(n;), (22)

of M linear equations (for all available signal samples x(n;), i = 1,2,...,M), based
on (2), is solved for s unknown coefficients X (k;), I = 1,2,...,s, M > s. A matrix
notation of this relation is X =y. Its solution follows from X, = cIDHy as X, =
(®H®)~!®Hy. In this notation y is the vector of available signal samples, X is the
vector with s unknown nonzero transform coefficients (X (k;), I = 1,2, ...,s) and ® is
the inverse transformation matrix with omitted rows corresponding to the unavailable
signal samples and omitted columns corresponding to zero transform coefficients.

In this way the energy of the reconstruction error is reduced for the factor of s/N,
since only s out of N DFT coefficients could be used in the signal reconstruction. The
disturbance energy in the signal reconstructed in this way, is

s N2 M
EgR M2 Z|8 I’l,
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The overall signal to noise ratio in the reconstructed signal, with s components at
known (or estimated) frequency positions, is
N—1 2
o |x(n
SNR = 10log M.
sN vM N2
w2 i—1 1€(n)]
Consider two special cases of this kind of reconstruction:

(23)

(a) The special case of random distributed noise, without any criterion for cor-

rupted samples selection, when

le(n)|* = Mo?. (24)

o

Il
-

Then SNR can be calculated as

YV x(m)

SNR = 10lo
g %Mog

(25)
Lo Ix(n)?

=101
o8 5 O2N

s
= SNR; — IOlogM.

In this case the improvement depends on the ratio of available samples and the num-
ber of signal components whose frequencies we know. This relation is statistically
checked for reconstructions with various N, M and s and the agreement with the pre-
sented theory is exact.

(b) If a criterion for corrupted samples selection is used then the mean disturbance
energy (variance) in the remaining samples is lower than the mean disturbance energy
in all samples, and 0 < Cp < 1 where Cp is the criterion selection efficiency (15).
With the coefficient 0 < Cp < 1 the overall improvement is

N-1 2
SNR = 10log —513: -~ ail 3
i1 |€(ni)]

M2
YN x(n)?
2Co XN le(m))?

— SNR; — 10log (CQ %) . (26)

= 10log

This relation holds for the case when s DFT values are used. If we do not have any

knowledge about the signal sparsity s then

N—1 2
SNR = 10log NZ": ()

2 2
X le(n)]
- 2
Yoo lx(n)]
2 Z 2
MCoxN =) le(n)]

N
= SNR; — 10log (MCQ) . Q27
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Improvement in the reconstruction algorithms, without using knowledge about s, is
achieved if the criterion for the noisy samples selection is such that Cyp < M/N.

4.2 Gaussian Noise Analysis

In the Gaussian noise case the best scenario would be to eliminate signal samples
with higher noise values and to keep for the reconstruction the samples with lower
noise values. For the case of N signal samples and the reconstruction based on M
samples we can find the interval of amplitudes A;, for the lowest M noisy samples
based on

1 b &2 AL M
\/EA/L e &2 —erf<ﬁ> =N
The calculation of Ay, value is easily related to the inverse erf(x) function denoted by
erfinv(x). For a given M/N, the amplitude is A; = v/2 erﬁnv( ). For example, for
M = N/2 ahalf of the lowest noise samples will be within the interval [—0.67450,
0.67450¢] since Ay = v/2erfinv(0.5) = 0.6745. The variance of this new noise (formed
from the Gaussian noise after the largest N /2 values are removed) is much lower than
the variance of the whole noise. It is

| ferﬁnv %
2 2,-8%/(203)
oj = e ds. 28
L MoeV2m 5 ﬁ/M 5 § (28)
—V2erfinv( % )o;

The factor M/N in (28) comes from the probability density normalization. For the
new noise being formed using the Gaussian noise values below a certain value, the
integral over its pdf is 1. For M /N = 1/2 the variance of the new noise that consists
of 50% the lowest input Gaussian noise values is 67 = 0.142602.

Thus, the input noise to the reconstruction algorithm will have lower variance if
a sorting criterion is applied. The mean energy of noise (variance) of M out of N
the lowest values of the Gaussian noise with respect to the input signal mean energy
is shown in Fig.11 (line with + marks). It is calculated theoretically using (28) and
statistically for various M. The agreement is complete. For example, for M = N/2
the noise mean energy is reduced by sorting for

2
IOIOg% = 101og(0.1426) = —8.46 [dB].
€

If the criterion for selecting samples is applied on the noise only with a large A
it produces the same result as the noise sorting. Then the ideal noise reduction would

be achieved with SNR improvements described in the previous section.
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Fig. 10 A realization of small Gaussian noise in all signal samples, sorted according to the criterion.

The presented algorithm reconstructs the signal, with a tendency to reduce the
noise in the reconstructed signal in such a way that the sum of absolute DFT val-
ues is as small as possible (minimization of the sum of absolute values is completely
different than the minimization of the sum of squared absolute values). The improve-
ment in the mean noise energy in the reconstructed signal with respect to the input
noise energy, in the noise-only case, for different number of omitted samples N — M
is calculated statistically over 100 realizations and presented in Fig.11 (line with x
marks). In the case of large number of omitted samples, close to N, the remaining
noise energy tends to zero. However, this region can not be used in the reconstruction
since there is not sufficient number of samples to reconstruct the signal, Fig. 1. Thus,
this region should be avoided. Based on the way the presented algorithm works, it is
interesting that a slight noise reduction will result even for a random selection of the
noise samples. For example, M = N/2 and a random selection of samples the output
variance of the reconstructed signal is 63 = %682 corresponding to an improvement
of 10log(2/3) = —1.76 [dB]. This kind of a slight improvement was reported in [28].

In the case of noisy signal the criterion deviates from pure sorting. However in
average the criterion produces the noise values with greater amplitudes first, while
the lower amplitudes are at the end of the criterion preferred values Fig. 10. The
improvement with criterion is calculated for various number of omitted samples and

presented in Fig.11 (line with o marks). For M = N/2 the improvement is

2

O,
101og6—§ =10log(0.31) = —5.1 [dB].

&

It is just about 3 [dB] worse than the best possible case that could be achieved if the
noise values could be sorted in perfect order and removed accordingly from the noisy

signal (line with + mark).
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Fig. 11 The improvement in the mean noise energy in the reconstructed signal with respect to the input
noise energy, in the noise-only case (line denoted by x) and the noisy signal (line with o marks), for
different number of omitted samples N — M and the criterion based selection. The line with + marks
represents the mean energy of input noise after the criterion for selection is applied in noise-only case
(corresponding to pure noise sorting). Ratio values in [dB] are presented as well (right).

5 Conclusion

Reconstruction of sparse signals in impulsive disturbance environments is consid-
ered. In the case of a small number of disturbing samples the direct search over a
disturbance-free subset of samples can be performed. The sparsity measure can be
used to detect the event of disturbance-free based recovery. For a large number of
corrupted samples, with most of the noise being within the signal amplitude order a
criterion to detect and eliminate the corrupted samples is defined. This criterion used
alone or in a form of a iterative procedure, turn out to be a powerful tool for the anal-
ysis, even in the case when all signal samples are corrupted by impulsive noise. Some
improvements may be achieved in the case of Gaussian noise as well. All methods
are illustrated by examples and the theory was checked by simulations.
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