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Abstract—The procedure for the classification and reconstruction 

of randomly under-sampled signals transmitted through the 

communication channel, is proposed in this paper. The focus of 

this work is on the wireless communication signals that operate 

in the same frequency band and may interfere with each other. 

In the first stage, the separation of signal components is done by 

applying the concept of eigenvalue decomposition. Next, the 

compressive sensing approach is used to reduce the number of 

transmitted samples and to provide accurate signal 

reconstruction upon transmission. In the last step, the 

classification is done by observing the time-frequency 

characteristics of reconstructed separated components. The 

theory is proved by the experimental results. 
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I.  INTRODUCTION 

Wireless technology uses radio waves for the transmission 
of the useful information. Systems using the radio waves 
should satisfy certain requirements, such as low power 
consumption and high speed transmission. Therefore, 
depending on the system requirements, various standards in 
wireless communications are developed, such as: WLAN, 
WWAN, WPAN, WWAN, etc. [1]-[3]. The standards differ in 
the data rates, energy consumption, signal modulations, 
operation distances, etc. Since some of the standards use the 
same operational frequency band, the interferences may appear 
between signals belonging to different standards.  

Our focus in this paper is on the signals belonging to the 
Bluetooth (Frequency Hopping Spread Spectrum-FHSS 
signals) and IEEE 802.11b standards, both operating in the 
Industrial, Scientific and Medical (ISM) frequency band [1]. 
Both standards deal with the sinusoidal signals, but with 
different physical characteristics. Namely FHSS signal has 
short duration components, while the components of the IEEE 
802.11b signal have longer time duration. These features of the 
signal components will be exploited for the classification of the 
signal components, after decomposition which will be done by 
using the Eigenvalue Decomposition method (EVD) [5], [6].  

EVD has numerous practical applications. It is mainly used 

for characterization of signals and their components. Here, we 

apply the EVD to separate components of the initial 

multicomponent signal. EVD of the original wireless signal, 

consisted of different components, will produce eigenvectors 

that correspond to the separated components. Further, in order 

to increase the transmission efficiency and to decrease the 

amount of transmitted data, only a small percent of samples per 

component is considered. This means that the eigenvectors are 

randomly under-sampled to produce reduced set of data. At the 

receiver side, all signal components should be completely 

reconstructed from this small set of samples.  

For the reconstruction of randomly under-sampled 

eigenvectors at the receiver side, the Compressive Sensing 

(CS) approach is employed [7]-[13]. The CS allows high 

accuracy reconstruction of signals from an incomplete dataset 

called measurements, by using optimization algorithms [9]-

[12]. It is important to note that the measurement procedure 

should satisfy certain conditions. The first condition is that 

signal needs to be sparse in certain domain, and this condition 

is satisfied for both considered wireless signal types. The 

second condition is incoherence which is achieved by random 

selection of measurements (samples) from the observed 

eigenvectors. After the reconstruction, different components 

are classified based on their characteristics in the time-

frequency domain. A suitable time-frequency representation is 

obtained using the S-method and classification is done based 

on the time duration of signal components. 

The paper is structured as follows: Section II provides 

theoretical background on the approaches used for 

decomposition and reconstruction of under-sampled 

components. Section III describes the procedure for 

transmission and classification of the signals, while Section IV 

provides experimental results on synthetic signals. Conclusion 

is given in Section V. 

II. THEORETICAL BACKGROUND 

A. EigenValue Decomposition 

In order to efficiently analyze and classify multicomponent 
signals, one of the possible approaches is to separate signal 
components and to observe each component separately. In that 
sense, we consider the eigenvalue decomposition method [4]-



[6]. The EVD of the properly chosen matrix results in 
eigenvalues and eigenvectors. The eigenvectors correspond to 
the signals components, while the eigenvalues correspond to 
their energy. The eigenvalue decomposition method can be 
defined in time-frequency domain, by using the S-method [4]. 
In that sense, the autocorrelation matrix can be defined as: 
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where x(n) is a monocomponent signal, and x*(n)
 
are complex 

conjugate values of the vector x(n). For the signal with M 
components, the autocorrelation matrix will be: 
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The right side of the relation (2) could be defined by using 

inverse form of the Wigner distribution: 
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The Wigner distribution of signal components (if there is no 

overlapping in the TF plane) is equal to the S-method of the 

multicomponent signal. Therefore, (3) can be modified as 

follows: 
4
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In other words, 
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where AC
M

 is a square autocorrelation matrix. Then the 
eigenvalue decomposition of the square matrix AC

M
 could be 

written as: 
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where i  are eigenvalues and iu
 
are eigenvectors of matrix 

AC
M

, such that the eigenvectors correspond to the separated 

signals components. 

B. Compressive Sensing 

Compressive Sensing (CS), as a new approach to the 

signal acquisition, provides successful reconstruction of the 

signal from the small number of available samples 

(measurements). Random distribution of measurements is 

required in order to successfully reconstruct the signal. Also, 

the sparsity of the signal is necessary condition to be met in 

order to apply the CS approach. Large number of signals in 

real applications exhibit the sparsity property in certain 

transformation domain. The sparsity means that there exists a 

domain in which majority of the coefficients are zero valued 

and information about the signal is condensed in the small 

number of non-zero coefficients. If the discrete signal x of 

length N is sparse in the transform domain Ψ, the signal can be 

represented in terms of basis matrix as follows: 
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where X denotes vector of transform domain coefficients 

(where only K<<N coefficients are non-zero). The vector of 

available measurements y (of length M<N) is formed 

according to: 

 y X . (8) 

Matrix  is used to model random selections of the original 

signal samples. The system of equations (8) is undetermined 

since M<N and in order to obtain unique solution, the complex 

mathematical optimization algorithms are used [9]-[13]. 

 

III. A PROCEDURE FOR DECOMPOSITION, CS 

RECONSTRUCTION AND CLASSIFICATION OF WIRELESS SIGNALS 

 
In the sequel, the procedure for separation of signal 

components, their under-sampling, transmission and 
reconstruction from a reduced set of samples, is described. The 
procedure is illustrated using the diagram in Figure 1. The goal 
of the procedure is to separate the interfering standards: FHSS 
and IEEE 802.11b, and, at the same time, to enable 
transmission at lower rates.  

1) First, the short-time Fourier transform (STFT) and TF 
representation of the input signal are calculated. The STFT of 
the discrete signal x(n), with the sliding window w(n) is 
defined as follows: 
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Based on the STFT, we calculate the S-method as a quadratic 
TF distribution, that provides good concentration of the auto 
components of the signal, and, at the same time, avoids cross 
terms in the observed multicomponent signals. The S-method 
is defined as: 
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where P(i) denotes window function in the frequency domain. 
2) Next, the autocorrelation matrix AC is calculated as 

inverse of the S-method. The EVD is applied on the matrix AC 

resulting in eigenvalues and eigenvectors.  
3) The eigenvectors, corresponding to signal components 

are under-sampled by randomly choosing certain percent of 

existing samples. At the receiver side, the vectors are 

reconstructed by using optimization algorithms. Here, the 1 -

norm minimization is used for the vector reconstruction. The 

1 -norm minimization is defined as: 

 
1
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where X  is a solution of the minimization problem. The 1 -

norm of the vector X is defined as: 
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Here, the solution of the 1  minimization problem is based on 

the basis pursuit primal-dual, using the L1-magic solver.  
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Figure 1.  The algorithm for decomposition and classification of the 

signal components 
 

4) After the components reconstruction, the S-method is 

calculated - SMi for each component separately. Then the 

components features are extracted from the TF plane. The 

features could be extracted by using TF classification modes, 

introduced in [14],[15]. Based on these features, the decision 

is made – component belong either to the IEEE 802.11b signal 

or to the FHSS standard.  

Complexity of the proposed system could be observed by 

several parts: calculation of the time-frequency representation, 

eigenvalue decomposition and reconstruction based on the l1-

minimization. STFT calculation in T time instants, by using  

the NF samples FFT, requires O(TNFlog2NF) arithmetic 

operations and S-method calculation adds TNFL operations.  

EVD of the quadratic, N×N matrix, has a complexity of O(N
3
) 

while l1-minimization (solved by using primal-dual interior 

point method) has iteration complexity O(N
3
)  and requires O(

N ) iterations. 

IV. EXPERIMENTAL RESULTS 

The procedure is tested by using the synthetic signal, 
consisted of the two signals from the interfering standards: 
FHSS and IEEE 802.11b signal. FHSS signal is consisted of 
four components while IEEE 802.11b is consisted of two 
components. The S-method of the starting signal is shown in 
Figure 2. The EVD procedure is applied in order to obtain the 
eigenvectors. As it can be seen from the S-method of the 
signal, FHSS signal components are of higher energy 

compared to the IEEE 802.11b signal components. Therefore, 
first four eigenvectors obtained from the EVD correspond to 
the components of the FHSS signal, while fifth and sixth 
eigenvector correspond to the IEEE 802.11b signal 
components.  

           

Figure 2.  The S-method of the original signal 
 

 

  

  

   

Figure 3.  Separated components of the FHSS signal – blue is the 

original component, red is the CS reconstructed component. Left 

column is signal DFT, right column is time domain of the signal 

Eigenvectors are further randomly under-sampled using only 

40% of the total number of samples from each eigenvector. At 

the receiver side, the eigenvectors are reconstructed from this 
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relatively small set of available samples. The reconstruction is 

done by using the 1 minimization. The original (blue) and 

reconstructed (red) eigenvectors are shown in Figures 3 and 4. 

Figure 3 shows FHSS signal components, while IEEE 802.11b 

signal components are shown in Figure 4. Note that the left 

column in the Figures 3 and 4 corresponds to the component 

DFT, while the right column represents time domain of the 

separated components eigenvectors. After the separation and 

reconstruction of the signal components, the FHSS and IEEE 

802.11b signals are formed from the corresponding 

eigenvectors. Note that now, these two standards are 

separated. The S-methods of the separated signals are 

calculated and are shown in Figure 5. 
 

 

 
 

Figure 4.  Separated components of the IEEE 802.11b signal – blue 

is the original component, red is the CS reconstructed component. 

Left column is signal DFT, right column is time domain of the 
signal 

 

    
 

Figure 5.  a) S-method of the FHSS signal; b) S-method of the 
IEEE 802.11b signal 

V. CONCLUSION 

The procedure for the separation and reconstruction of the 

interfering wireless signals, is presented in the paper. The 

separation procedure is based on the EVD, while for the 

reconstruction the optimization algorithm developed in the CS 

theory is used. After being separated, components are 

randomly under-sampled and sent through the communication 

channel. At the receiver side, components are recovered by 

using the optimization algorithm based on 1  -norm 

minimization. Only 40% of the total number of samples per 

component is used. After the reconstruction, the S-method of 

the each component is calculated and components features are 

estimated. Based on the estimated features, signal can be 

successfully classified either as FHSS or IEEE 802.11b signal. 
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