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Abstract—Sparse signal reconstruction performed by two
different algorithms is considered. First algorithm is the ISTA
algorithm for LASSO minimization, while the second one is
the gradient-based descent algorithm. Algorithms perform
signal reconstruction in a completely different way. The ISTA
algorithm reconstructs signals in the sparsity transformation
domain. The gradient descent algorithm performs reconstruction
in time/measurements domain, considering the missing samples
as variables. Both of them use the l1-norm in minimization.
Computational time and mean absolute error are used in
comparison analysis presented in this paper.
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I. INTRODUCTION

In signal processing, reconstruction of sparse signals has
been an attractive research area in the recent years. A sparse
signal is a signal which has only a small number of non-
zero components in a transform domain, compared to the total
number of components. We can expect that a signal which is
sparse in a transformation domain can be reconstructed with
less randomly positioned samples compared to the number of
samples required by the traditional sampling theorem. This
procedure is defined within the field of compressive sensing
(CS) [1]–[8]. For a successful reconstruction of a sparse signal,
the signal has to meet some conditions. The most important
one is that the signal must be sparse. The second important
condition is the incoherence between the measurements taken
into account and the sparsity basis of the signal [9], [10].

Since the introduction of compressive sensing many meth-
ods have been developed for taking measurements and re-
constructing sparse signals. These methods have been applied
in many everyday applications of signal processing, such as
multimedia, radars, biomedicine, communications, etc [11]–
[14]. Some of the methods can also be applied for denoising
of sparse signals. When some signal samples are heavily
corrupted by noise, it is better to exclude them from the
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calculations and set them to zero. In this case we take less
measurements, and use the fact that the signal is sparse, in
order to reconstruct the original signal [5].

In this paper we will consider two algorithms with different
approaches to the reconstruction of the sparse signals within
compressive sensing framework. The first one is the iterative
soft-thresholding algorithm (ISTA) [15]. It is based on the
LASSO minimization, i.e. minimization of the signal sparsity
in the transformation domain by using the l1-norm problem
formulation. The second one, the gradient descent algorithm,
is from the convex relaxation group of the algorithms [16],
[17] for which the reconstruction procedure is done in the
spatial/measurements domain. In this algorithm [16], the miss-
ing samples are considered as variables. Comparison of these
two algorithms with respect to computational time and mean
absolute error (MAE) will be presented here.

The paper is organized as follows. In Section 2, a review
of the minimization problem formulation will be defined. In
Section 3 and Section 4, two considered algorithms will be
described and in Section 5 the results and comparison of
performances of the algorithms are presented. The conclusions
are given in Section 6.

II. THEORETICAL BACKGROUND

Consider a discrete-time signal x(n), 1 ≤ n ≤ N , and its
transformation domain coefficients X(k), 1 ≤ k ≤ N

x(n) =

N∑
k=1

X(k)ψk(n),

X(k) =

N∑
n=1

x(n)ϕk(n),

or in the vector/matrix notation

x = ΨX and X = Φx .

Matrix Ψ is the transformation matrix, Φ is its inversion,
while x, and X are signal vector column and transformation
coefficients vector column, respectively. A signal is considered
to be K-sparse in a transformation domain if the number of
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non-zero coefficients K is much lower than the total number of
coefficients N , i.e. K � N . Without loss of generality, signals
which are sparse in Discrete Cosine Transform (DCT) domain
will be considered in this paper. For the DCT transformation
matrix and its inverse, the elements are:

ψk(n) = φk(n) = w(k) cos

(
π(2n− 1)(k − 1)

2N

)
,

where w(k) = 1/
√
N for k = 1, and w(k) =

√
2/N for

2 ≤ k ≤ N .

Random subset of M signal x(n) samples at positions
ni ∈ M = {n1, n2, . . . , nM} ⊂ N = {1, 2, . . . , N} will be
considered as a set of available signal samples and denoted
by vector y, while N is the complete set of all signal x(n)
samples. Note that vector y elements

y = [x(n1), x(n2), . . . , x(nM )]T

are the measurements of a linear combination of X(k)

x(ni) =

N∑
k=1

X(k)ψk(ni).

This system of M equations can be written as

y = AX

where M ×N matrix A is obtained from N ×N matrix Ψ in
a way to preserve rows at the positions corresponding to the
positions of available samples ni ∈ M = {n1, n2, . . . , nM},
while the other N−M rows are eliminated from the complete
matrix.

The goal of CS reconstruction is to recover the most sparse
signal X from a reduced set of available measurements y. This
task can be formulated as:

min ‖X‖0 subject to y = AX. (1)

However, since task (1) is an NP-hard combinatorial approach,
the common l1-norm instead of l0-norm is used. Task (1) is
then reformulated as:

min ‖X‖1 subject to y = AX. (2)

It is important to note that the solutions of (1) and (2) are the
same if signal x(n) and its transform X(k) satisfy restricted
isometry property [3], [9]. According to Parseval’s theorem,
the l2-norm can not be used since it would produce zero values
for all missing samples.

III. LASSO MINIMIZATION - ISTA ALGORITHM FOR
RECONSTRUCTION IN THE DOMAIN OF SPARSITY

The standard minimization problem (2) can also be formu-
lated in a Lagrangian form

F (X) = ‖y −AX‖22 + λ ‖X‖1

where F (X) is the function that needs to be minimized.
Reconstruction task is formulated as

X = arg min
X

{
‖y −AX‖22 + λ ‖X‖1

}
(3)

and is titled LASSO (least absolute selection and shrinking
operator) minimization. Parameter λ balances between first
term (error) and second term (sparsity) in (3).

A. ISTA algorithm

Since the l1-norm based reconstruction does not have close
form solution like the l2-norm, the iterative procedure is used
in order to solve the problem. A non-negative term

G(X) = (X−Xs)
T (αI−ATA)(X−Xs),

having zero value at the solution Xs of the problem is added
to the function F (X), where α is a value greater than the
maximal eigenvector of ATA, what means that the added term
is always nonnegative. New function now reads

H(X) =F (X) + (X−Xs)
T (αI−ATA)(X−Xs).

The solution of the equation

∇H(X)=
∂H(X)

∂XT
= 0

is

X+
λ

2α
sign{X} =

1

α
AT (y −AXs) + Xs.

The iterative form is then defined as

Xs+1+
λ

2α
sign{Xs+1} =

1

2α
AT (y −AXs) + Xs. (4)

The equation

x+ λsign(x) = y

is solved by soft thresholding rule as

x = soft(y, λ) = sign(y)max{0, |y| − λ}.

By applying the same rule to (4) we get the final iterative form
for reconstruction

Xs+1=soft(
1

α
AT (y −AXs) + Xs,

λ

2α
). (5)

This is the iterative soft-thresholding algorithm for LASSO (3)
minimization, implemented from [9], [18].
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IV. GRADIENT-BASED ALGORITHM FOR
RECONSTRUCTION IN THE MEASUREMENTS DOMAIN

The main characteristic of this algorithm is that it is
based on the reconstruction of the missing samples in
time/measurements domain while the available samples re-
main unchanged. Consider a signal x(n) with n ∈ N =
{1, 2, . . . , N} which is K-sparse in a transformation domain.
Set of M available sample positions will be denoted by
M = {n1, n2, . . . , nM}, while the other N − M sample
positions which are missing will be denoted by NQ = N\M.
The algorithm implementation follows from [16].

Step 0: In the 0th (initial) iteration of the algorithm signal
x
(0)
r (n) is formed. Values of this signal at the available sample

positions M are equal to original signal x(n), while the values
at the positions of the missing samples are set to zero

x(0)r (n) =

{
x(n), n ∈M
0, n ∈ NQ

(6)

Step 1: For each missing sample position ni ∈ NQ, two signal
are formed by adding a constant value ±∆. New signals are
defined as

x+(n) = x
(k)
r (n) + ∆δ(n− ni)

x−(n) = x
(k)
r (n)−∆δ(n− ni)

(7)

where k is iteration number. In the initial calculation, constant
∆ will be set to ∆ = max|x(0)r (n)|.

Step 2: The differential of signal transform (DCT) measures
[19] is estimated as

g(ni) =
‖DCT [x+(n)]‖1 − ‖DCT [x−(n)]‖1

N
. (8)

Step 3: Form a gradient vector G of the same length as the
signal x(n). At the positions of available samples this vector
has value G(n) = 0. Its zero value provides that available
samples do not change since they have correct values set in
Step 0. At the positions of missing samples this vector has
values g(ni) calculated by (8).

Step 4: Update signal xr(n) in an iterative way as

xr
(k+1)(n) = xr

(k)(n)−G(n). (9)

This procedure is repeated until some desired error is
achieved. The parameter ∆ is reduced through iterations in
order to improve precision, and the algorithm is stopped when
the error between two successful iterations is negligible [16].
The theoretical proof of algorithm convergence is presented in
[20], while the experimental proof is given in next section.

V. EXPERIMENTAL RESULTS

In order to make comparison between two presented algo-
rithms, let us consider a signal x(n) sparse in the DCT domain
defined as

x(n) =

K∑
i=1

Ai cos

(
π(2n− 1)(ki − 1)

2N

)
(10)

where Ai and ki are random amplitudes and random fre-
quency positions of the signal x(n) components. The al-
gorithms are tested for different sparsity levels, K =
{1, 3, 5, ..., 63} and for different number of available sam-
ples, M = {2, 6, 10, ..., 126}. The algorithms have been
tested in the regions M ≥ 2K [1], [6]. For the gradient
algorithm, the parameter ∆ = max|x(0)r (n)| is used. For
the ISTA algorithm, different values of λ were examined,
λ = {0.001, 0.0025, 0.005, 0.01}, and the optimum λ was
found to be λ = 0.005. The algorithms are compared in terms
of two important parameters: computational time and mean
absolute error. Computational time is expressed in seconds,
while the MAE was calculated as

MAE = mean(|x(n)− xr(n)|),

where xr(n) is reconstructed signal, and its value expressed
in dB as

MAE[dB] = 20 log(MAE)

is presented. Results are averaged in 10 realizations for each
combination of parameters K and M . The same conclusions
regarding to reconstruction error can be obtained if MSE (mean
square error) were used instead of MAE.

Example 1: Computational time as a function of sparsity K
and the number of available samples M is presented in Fig.
1. Top graphic is for the gradient algorithm, while bottom
one is for the ISTA algorithm. It is obvious that the gradient
algorithm performs faster reconstruction for each combination
K and M . The time needed to perform reconstruction with
the gradient algorithm is of order 0.02 in comparison to the
order of 0.2 for the ISTA algorithm. The mean computational
time for the all combinations of K and M is 0.024 while for
gradient algorithm and 0.2353 for the ISTA algorithm. The
white region from graphics (M < 2K) where reconstruction
theoretically can not be performed [1], [6] was not considered.

Example 2: The mean absolute error expressed in dB for
each combination of K and M for both algorithms is pre-
sented in Fig. 2. Top graphic presents results for the gradient
algorithm, while the bottom one is for the ISTA algorithm.
White region (where reconstruction can not be performed)
was not considered here. It can be seen that the gradient
algorithm performs reconstruction with a smaller MAE. Mean
value of all MAEs for all combinations of K and M (where
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Fig. 1. Time needed for the algorithms to successfully reconstruct: the gradient
algorithm (top) and the ISTA algorithm (bottom).
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Fig. 2. Mean absolute error of: the gradient algorithm (top) and the ISTA
algorithm (bottom) in [dB].

M ≥ 2K) is -61.88 dB in comparison to -50.88 dB for the
ISTA algorithm.

VI. CONCLUSIONS

A comparison of two algorithms for sparse signal recon-
struction is done. The algorithms have been compared in terms
of computational time needed for the reconstruction and the

mean absolute error of each algorithm. Two presented algo-
rithms have been chosen because of their different approach
to the minimization problem. It is shown that the gradient
descent algorithm gives faster and more accurate results for
all considered combinations of K and M .
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