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Abstract—The paper examines an application of the gradient-
based algorithm to image denoising with noise values being in
the range of the available (non-noisy) pixel values. The analyzed
image is considered to be sparse in the 2D-DCT domain. The
presented algorithm is a generalization of the previous results
on denoising images when the noisy pixels can be detected
and eliminated using the L-statistics. The algorithm is based
on the recently developed technique used for denoising of one-
dimensional signals. A significant advantage of the presented
algorithm is that it does not use any a priori knowledge about
the positions, values or distribution of the noisy pixels. It is
assumed that the positions of noisy pixels cannot be determined
using the methods like the L-statistics based ones. Hence, the
proposed approach reconstructs the pixels values iteratively using
the highest gradient as pixel selection criterion, thus performing
blind denoising on a pixel-by-pixel basis. The examples with
synthetic two-dimensional signal and a test image are presented.
Quality of the image reconstruction is measured using the
structural similarity index and the mean absolute error (MAE).

Keywords—compressive sensing, recovery, noise, gradient al-
gorithm, denoising, image processing

I. INTRODUCTION

Compressive sensing (CS) is the field used for the re-
construction of signals which are sparse in a transformation
domain. A sparse signal is a signal with very few transform
coefficients. Knowing that a signal is sparse, it can be recon-
structed using less number of samples than in the conventional
way. The main two conditions that have to be met for the
successful reconstruction are sparsity and incoherence of the
signal. There are many methods and algorithms developed
since the introduction of CS, classified into two large groups,
one being greedy algorithms and the other based on convex
relaxation algorithms. Since many signals are sparse in the
transformation domain, the application of the CS algorithms
is widely spread in all areas of digital signal processing, such
as multimedia, biomedicine, radars, etc. The advantage in
using CS algorithms is that it is memory efficient and, as
long as the conditions are met, it gives a unique solution to
the reconstruction [1]-[7]. The algorithm used in this paper
is a modified version of the gradient-based algoritjm [8], [9],
from the convex relaxation group. The algorithm showed good
results in image denoising in the presence of different kind of
noise. The advantage of this algorithm is that the image does
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not have to be strictly sparse. So far, the cases of salt and
pepper and Gaussian noise were considered. In this paper, we
use the uniform random noise, which means that the noise
values are within the range of the uncorrupted pixels. That is,
the detection is different and much harder in this case than
in the previous ones. Another complex circumstance is that
we do not have the knowledge of the positions of corrupted
pixels.

In this paper, processing of sparse signals will be used
in a more specific way. The reduced set of samples will be
unchanged and the unavailable samples will be presented as
the uniform random noise, so that their values are within the
range of the available pixels. In comparison to the previous
results of the algorithm, there will be additional steps in
the reconstruction. The assumption is that we have miss-
ing/corrupted pixels in the spatial domain, and that we know
that the original image (i.e. the image with no corrupted pixels)
is sparse in the transformation domain. In contrast to the
greedy algorithms, the values of the uncorrupted (available)
samples will remain unchanged.

The paper is organised as follows: after the introduction
part, basic theoretical background about the image recon-
struction and proof of the detection of the positions using
the algorithm are shown in Section 2. In Section 3, the
reconstruction algorithm and its explanation are presented. In
Section 4, the numerical results for two-dimensional synthetic
signals are shown, as well as for a test image.

II. THEORETICAL BACKGROUND

Let us consider an N⇥N 8-bit grayscale sparse image with
impulsive noise. The image can be defined as
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where 0 is black and 255 is white colour, with M

number of uncorrupted (available) pixels and M =

{(m1, n1), (m2, n2), ..., (mM

, n
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)} presents set of the uncor-
rupted pixels. The image is sparse in the DCT domain and the
sparsity is K. For the gradient algorithm, the reconstruction
is done in the spatial domain. When the available pixels are
known, or the image has impulsive noise so the corrupted ones
are distinguishable from the available ones, the image does not
have to be strictly sparse.

The approach considered in this paper deals with an image
with some number of pixels corrupted with uniform random
noise and with a reduced set of available pixels. The aim is to



reconstruct the pixels that are corrupted without knowing the
positions and the number of the corrupted samples. To make
the reconstruction possible, the sparsity in the transformation
domain should be implicitly assumed.

Before the introduction of the algorithm, we will present
why the gradient is high for the unavailable/corrupted samples.
Consider a sparse signal x(m,n) as in equation (1). The signal
with one corrupted sample at position (m0, n0) can be defined
as x

a

(m0, n0) = x(m0, n0)+z with z being the uniform noise.
Due to the change of z, form the signals
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where � is the gradient parameter. The sparisty measure is
defined as
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where X+
a

and X�
a

are the vectors of the transformation
domains of the signals in (2). Let us consider that the
transformation domain is the two-dimensional Discrete Cosine
Tranform (2D-DCT). The proof for 1D-DFT can be found in
[10]. So, the transformation domains of signals x
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The 2D-DCT of the known samples is X(k, l) and
(z ±�)'(k, l) is the DCT of the missing (corrupted) sample.
The measures can be defined as the addition of the measure
of the original (non-corrupted samples) and the corrupted one
(with the � shifts)
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where µ = kXk1 is the sparsity measure of the original signal
x(n) and C is a constant dependent on number of samples N

and is close to C

⇠
=

p
⇡

2 . For example, when N = 64, the
constant C = 1.2214 and when N = 512, C = 1.2321. The
sparsity measure can be written as
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For deviations from the true signal value smaller than the
step |z| < � we get

g(m0, n0)
⇠
=

Cz

�

⇠ Cz, (8)

which means that the gradient is proportional to the shift of
the corrupted samples at its position, and the gradient is equal
to zero at the positions of the available samples.

The sparsification is done using the quantization matrix of
the JPEG standard. The quantization is applied on the 8 ⇥ 8

DCT blocks with 50% quality factor. In this paper, the standard
was assumed with quality factor being 25%, which defines the
number of the DCT components considered in a block [11].

III. RECONSTRUCTION ALGORITHM

The gradient algorithm is based on the efficient minimisa-
tion of the missing/corrupted samples. For the beginning of the
description, assume that the number and positions of the avail-
able pixels are known. For this scenario, the one-dimensional
algorithm is introduced in [8] and two-dimensional in [12],
[13]. Let us consider a two-dimensional signal x(m,n), which
is sparse in the 2D-DCT domain. Missing values are con-
sidered as variables. Then the signal with only M available
samples in the first iteration can be represented as in equation
(1).

A. Algorithm

Step 1: Firstly, we add and subtract a value � to the
corrupted/missing samples. The new signals are
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Step 2: The transforms of such signals are calculated and
the gradient value is estimated as a finite difference of `1-
norms of these transforms. Based on the gradient value, the
missing signal sample x(m
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and � is the missing samples change step. In our case, T{.}
is the 2D-DCT.

Step 3: The available samples are not
changed. Each missing pixel value (m
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direction opposite of the gradient for a step µ
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Step 4: Since `1-norm is convex but of specific form,
gradient based procedure will approach the solution of the
problem up to the value proportional to the steps � and µ.
When the values are close to the true signal values, they will
oscillate around the solution with magnitude proportional to
the step. When the oscillation is detected, the step size is
reduced, for example as � = �/3 and µ = µ/3. These new



parameters continue approach to the true signal values until
the new precision is reached. The procedure is repeated until
the desired reconstruction accuracy is achieved.

Step 5: The algorithm is stopped when the change in two
successive iterations is smaller than the desired accuracy ",

max
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Note that only missing samples contribute to this difference,
since the available samples are not changed. The proof of
the L1-norm convexity with respect to the corrupted pixels as
variables can be found in [14]. This is the basic reconstruction
algorithm with the knowledge of the position of the missing
samples or, at least, with very high impulsive noise so that the
positions of the corrupted samples/pixels are distinguishable
from the non-corrupted ones. In the next subsection, a method
for selection of the corrupted pixels is explained.

B. Pixel selection

There are two ways in which the corrupted sample can be
selected: single-step and the iterative way. For both ways we
repeat Step 1 and 2 (i.e. equations (9) and (10)) for all samples
since we do not know the positions of missing ones:
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Note that the value of � here is different to the value of �
in the algorithm itself. For this calculation, � must be a high
number i.e. � > max

m,n

= x(m,n).
For the single-step estimation, we sort the values of the

gradient and set a threshold to find largest M values. The
detected positions are considered as positions of the corrupted
samples. Other values are considered as the available pixels.
A drawback in this calculation is that the information about
the number of the missing/corrupted samples (or at least
approximate number) is crucial.

For the iterative way, we do not need the information about
the number of corrupted samples nor the positions of them.
The procedure is similar: each time we take the pixel with
the largest gradient, reconstruct it (Note: use the algorithm
explained above for only one missing sample with a known
position), eliminate it from the array of possible values, and
repeat the whole procedure. This will be repeated until the
error of two successful iterations is below an acceptable level.

IV. NUMERICAL RESULTS

The algorithm was already tested on one-dimensional sig-
nals in [15]. The extension to two-dimensional signals is
presented here. In the first subsection, a synthetic two-
dimensional signal is shown to explain how the algorithm
was improved in the two-dimensional case. In the second
subsection, the image reconstruction using a grayscale image
”Lena” is shown.

A. Two-dimensional signals
In this section, a synthetic two-dimensional signal is intro-

duced. The signal is given in the form:
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piqi and k

pi,qi are random amplitudes and random fre-
quency positions of the signal. The image is a N ⇥N signal
where N = 16, M = 196 signal samples are available and
the sparsity (i.e. number of DCT components) is K = 6

(consider 6 components in a 16 ⇥ 16 = 256 samples signal).
From this it follows that approximately 25% (196/256) of
the image is missing. Fig. 1 shows the result for the case
when missing samples are set to zero (and the positions are
known). In Fig. 1(top) we present the original image and its
DCT, Fig. 1(middle) is the image with the available values
(the unavailable are the blue pixels) and Fig. 1(bottom) is the
reconstructed image.

The improvement achieved using the introduced algorithm
is that we can reconstruct signals whose corrupted samples
are within the range of the available pixel values. It is hard to
distinguish the difference between the corrupted and available
pixels and to find the unavailable ones (as it is seen in Fig.
2). In the first case (explained above), if we do not know
the positions of the available ones, the reconstruction will not
be successful. In this example, we will take 50% of samples
with largest gradient and set them to zero. This will make the
algorithm straightforward. The original image, the one with
available pixels and the reconstruction image are shown in
Fig. 2. The order of images is as in the previous one.

B. Image reconstruction
Unlike the classical reconstruction of the image using the

gradient-based algorithm, we need to assure the image is
sparse in the DCT domain. We will represent it with the
standard JPEG image reconstructed with 8⇥ 8 reconstruction
blocks.

The 512 ⇥ 512 image “Lena” image is tested using the
algorithm presented. As the sparsity should be as high as
possible (meaning that we use as few DCT components as
possible), without destroying the visual effect too much, it is
seen that the quality of image using quality factor QF = 25 is
very similar to the quality of 50% and with less components
(i.e. sparser). Because of that, the analysis is done for the
QF = 25 (higher sparsity will give higher probability for
reconstruction using CS algorithms). The original image and
the sparsified image are shown in Fig. 3. The sparse image is
then split into blocks and each block has 12.5% of corrupted
samples. The block size is 8⇥ 8. The noisy and reconstructed
images are shown in Fig. 4.

C. Comparison
The structural similarity (SSIM) index value is defined as

a function of luminance, contrast and structure of two images
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Fig. 1. Original signal and its 2D-DCT (top); Signal with corrupted samples
and its 2D-DCT (middle); Reconstructed signal and its 2D-DCT (bottom)

[16], and can be written as
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where x1, x2 are the two considered images (in our case
x1 is the original sparse image and x2 is the reconstructed
image), µ

x1 , µx2 , and �

x1 ,�x2 , and �

x1x2 represent the mean,
variance and covariance of the two images respectively and
c1, c2 are stabilization variables. If the SSIM index is close
to 1, the images are highly similar, and if the index is close
to 0, it means that the images are not similar. In our case,
the SSIM index calculated for the reconstructed image is
0.9858. The SSIM index for the median filter of size 3 ⇥ 3

is calculated 0.9825 and for the 5 ⇥ 5 is 0.9486. The MAE
is calculated as MAE(x1, x2) = mean(mean(|x1 � x2|)).
For the gradient algorithm, it is calculated to be 0.5693, for
the median 3 ⇥ 3 is 1.9726, and for 5 ⇥ 5 is 3.3173. The
disadvantage of median filtering is that it degrades the whole
image. The gradient algorithm reconstructs only the pixels
which are found to be corrupted, and the pixels which are
set as uncorrupted/available remain unchanged.
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Fig. 2. Original signal and its 2D-DCT (top); Signal with corrupted samples
and its 2D-DCT (middle); Reconstructed signal and its 2D-DCT (bottom)

V. CONCLUSIONS

The gradient-based algorithm for reconstruction of noisy
images with noise pixel values being within the range of
the available pixel values is shown in this paper. The recon-
struction is done on a synthetic two-dimensional image and
on a grayscale test image. On the synthetic two-dimensional
signals, the reconstruction using the gradient-based algorithm
in a conventional way is shown as well, to explain the
difference between what was done before and what are the
features of the modified algorithm. When the number and
the positions of the corrupted samples are unknown (and
additionally the corrupted samples are in the range of the
available ones), we use the algorithm presented here. It is
shown that the reconstruction can be done successfully without
the knowledge of corrupted sample positions. There are few
parts that we have to consider in the reconstruction of a noisy
image. In contrast to the conventional gradient (i.e. when we
have the knowledge of the available pixels), the image has to
be sparse in the transformation domain.
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Springer - Verlag, 2012.
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