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Abstract

Sparse signals can be recovered from a reduced set of samples by using compressive sensing algorithms. In
common compressive sensing methods the signal is recovered in the sparsity domain. A method for the
reconstruction of sparse signals that reconstructs the missing/unavailable samples/measurements is recently
proposed. This method can be efficiently used in signal processing applications where a complete set of signal
samples exists. The missing samples are considered as the minimization variables, while the available samples
are fixed. Reconstruction of the unavailable signal samples/measurements is preformed using a gradient-
based algorithm in the time domain, with an adaptive step. Performance of this algorithm with respect to
the step size and convergence are analyzed and a criterion for the step-size adaptation is proposed in this
paper. The step adaptation is based on the gradient direction angles. Illustrative examples and statistical
study are presented. Computational efficiency of this algorithm is compared with other two commonly used
gradient algorithms that reconstruct signal in the sparsity domain. Uniqueness of the recovered signal is
checked using a recently introduced theorem. The algorithm application to the reconstruction of highly
corrupted images is presented as well.

1. Introduction

A signal is sparse in a transformation domain if the number of nonzero coefficients is much lower than
the number of signal samples. For linear signal transforms the signal samples can be considered as linear
combinations (measurements) of the signal transform coefficients. Sparse signals can be fully recovered
from a reduced set of samples/measurements. Compressive sensing theory is dealing with sparse signal
reconstruction [1]-[22]. In common signal processing problems, for signals sparse in a transformation domain,
signal samples can be considered as observations since they are linear combinations of the transformation
domain coefficients. The goal of compressive sensing is to reduce the set of signal measurements while
preserving complete information about the whole signal. In some applications unavailable signal samples
result from the system physical constraints including unavailability to perform all signal measurements.
Signals may also contain arbitrarily positioned samples that are heavily corrupted. In these cases it is better
to remove such samples and consider them as unavailable in the signal recovery [6]. Compressive sensing
theory based reconstruction algorithms may be also used when the unavailable signal samples are not a
result of an intentional strategy to compress the data. Note that one of the initial compressive sensing
theory successes in applications (computed tomography reconstruction) was not related to the intentional
compressive sensing strategy but to the physical problem constraints, restricting the set and positions of
available data.

Various algorithms for reconstruction of sparse signals from a reduced set of observations are introduced
[8]-[17]. Two the most important approaches are based either on the gradient of the sparsity measure [8] or
the orthogonal matching pursuit methods [16].

The topic of this paper is the reconstruction of signals with some arbitrary positioned unavailable samples.
These samples may result from a compressive sensing strategy or from their unavailability due to various
reasons. A method for the unavailable signal samples reconstruction, considering them as variables, has
been proposed in [22]. In contrast to the other common methods that recover sparse signals in their sparsity
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domain this method reconstructs missing samples/measurements to make the set of samples/measurements
complete. The available samples are fixed (invariant) during the reconstruction process. An analysis of
the algorithm performance is presented in this paper. A relation between reconstructed signal bias and
the algorithm step-size is derived and statistically confirmed. A new criterion for the algorithm step-size
adaptation is proposed. The improved version of this algorithm is compared with two other common gradient
based algorithms proving its accuracy and computational efficiency. The discrete Fourier transform domain
is used as a case study, although the algorithm application is not restricted to this transform [23]. The
solution uniqueness is checked after signal reconstruction by using the recently proposed theorem [25].

The paper is organized as follows. After the definitions in the next section, the adaptive gradient
algorithm presented. In the comments to the algorithm the step size, and bias are considered and illustrated.
A new criterion for the algorithm parameter adaptation is proposed in Section 3 as well. Reconstruction
is illustrated on examples and uniqueness of the obtained solution is analyzed. Statistical performance are
checked in Section 4. An illustration of the algorithm application to the image reconstruction is given as
well.

2. Gradient-based Reconstruction of Missing Samples

Discrete-time signal z(n) with N samples will be considered (with vector notation x = [z(0) z(1) ... x(N—
1)]T). Tts transform coefficients will be denoted by X (k) = T[z(n)]. If the number of nonzero coefficients
X (k) # 0 for k € {k1, ka, ..., ks} is such that s < N then the signal z(n) is sparse in this transformation
domain. Next assume that only M < N signal samples are available in the time domain at the discrete-time
positions

n; € Ny ={ny,ne,...,ny} CN={0,1,2,....,. N — 1}. (1)

Under some conditions, studied within the compressive sensing theory [1]-[3], full signal reconstruction is
possible based on the reduced set of available samples if the signal is sparse in a transformation domain.
In the signal theory this problem can be formulated as a full recovery of the unavailable samples as well.
In general, a reconstruction algorithm is based on the sparsity measure minimization. Nonzero transform
coefficients counting is the simplest sparsity measure. Counting can be achieved by the mathematical form
X, referred to as the “fp-norm”, [1], [20]. The signal reconstruction problem statement is then

min [|X[|, subject to y = AX. (2)
Vector y = [z(n1) z(n2) ... z(nar)]? contains the available signal samples, while the transform vector
X =[X(1) X(2) ... X(N)]T elements are the unknown transform coefficients. Matrix A is the measurement
matix. In common signal transforms it corresponds to the inverse transformation matrix where the rows
corresponding to the unavailable samples are omitted. If x = ¥X then the matrix A is a submatrix of ¥
containing its rows corresponding to the discrete-time instants (1).

Although there are some approaches to reconstruct the signal using the ¢yp-norm based formulation [26]
in principle, this is an NP-hard combinatorial optimization problem. It is the reason why the closest convex
¢1-norm of the signal transform is used instead of the “fg-norm” in the minimization process,

min [|X]|; subject to y = AX, (3)

where || X[, = Z,Ij:_ol |X (k)|. Under the conditions defined using the restricted isometry property (RIP),
[3], [4], minimization of the ¢;-norm can produce the same result as (2), [1, 22, 24]. Common gradient-
based algorithms reformulate the problem defined by (3) into a form suitable for application of standard
minimization tools. Minimization is done in the sparsity domain. One such a method is briefly reviewed in
the Appendix.

2.1. Algorithm
A gradient-based algorithm that minimizes the sparsity measure by varying the missing sample values
is presented next. In this gradient-based minimization approach the missing samples are considered as
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variables [22]. The missing sample values are varied in an iterative way to produce lower sparsity measure
values, and finally to approach to the minimum of the convex ¢1-norm based sparsity measure (3) with an
acceptable accuracy. Note that if the reconstruction conditions are met for the ¢1-norm [3] then the ¢;-norm
minimum position will correspond to the true values of the missing samples.

The signal

©y_ )0 for missing samples, n € Ng
Ta (n) = { xz(n) for available samples, n € Ny (4)

will be used as the initial estimate. Note that this signal would follow as a result of the ¢3-norm based
minimization of the signal transform. The set of missing sample positions is Ng. Values of the available
samples are fixed and will be considered as constants. The missing sample values are varied through
iterations. If we denote by xt(lm) the vector of signal values reconstructed after m iterations, then the goal is
to achieve

min | X,|, subject to z(™(n)=x(n) for n € Ny,

where the components of X, are X, (k) = T[x[(lm)(n)]. In order to find the position of function z = [|X,||,
minimum, the relation for iterative missing samples (variables) calculation is defined by using the gradient-
based descend on the sparsity measure | X,||; as

(m) _ o 9 Xally

yngrl) =y, Nay

. 5
YC:}Q(:M) ( )

Vector ygm) contains the minimization variables (missing signal sample values) in the mth iteration. The
gradient vector coordinates g(n;) = 0 ||Xqll; / (Oy.N) can be estimated, in the mth iteration, by using the
finite differences of the sparsity measure. They are calculated for each missing sample at instants n; € Ng

_ XL - 1%y
(n;) = IAN )
where
X (k) = T{zg (n)}
Xq (k) = T{z; (n)}
and

z;(n) = 2™ (n) — Ad(n — n;). (6)

Again, for n; € N4 the available signal values are not changed, g(n;) = 0. All gradient vector g(™) values,
including its zero and nonzero coordinates, in the m-th iteration are denoted by g(™ (n).

Through statistical study [22] it has been concluded that an appropriate step parameter value in (5) is
related to the finite difference step as a = 2A.

3. Comments on the Algorithm

- The algorithm inputs are the signal length IV, the set of available samples N 4, and the available signal
values z(n;), n; € Ny.
- For the DFT instead of using signals defined by (6) and their transforms for each n; € Ng it is possible



to calculate

with X{™ (k) = DFT[z{™ (n)] and D,,, (k) = DFT[5(n — n;)] = exp(—j2mn:k/N). Note that D,,, (k) values
are not dependent on the signal and the iteration number m. They can be calculated only once. Similar
simplification can be done for any linear signal transform T|-].

3.1. Adaptive Step

The influence of step-size A to the solution (minimum position) precision is analyzed next. Assume
that we have obtained the exact solution for the missing samples. The change of sparsity measure is tested
by the change of signal sample x(ng) for +A. For a signal of sparsity s in the DFT domain, whose form
is z(n) = >.5_, Aje??mmoki/N the signals with the steps used for the gradient estimate calculation are

xr(n) = z(n) + Ad(n — ng) and z (n) = x(n) — Ad(n — ng). Their sparsity measures are

x, = ‘Ai ¥ Ae—jQTrnoki/N‘ 4NV —5)A
i=1

1% |, = 3 |Ai = Aemazmmob /N4 (N = s)A,
i=1

In the worst case, amplitudes A; are in phase with e=7270ki/N and A < |A;| when

X5, = S Al + A + (N - $)A = |X], + NA
=1
X511, = 1A = sA + (N = $)A = [|[X]|, + (N — 25)A.

=1

It means g(no) = (| XTI, — IX5 ;) /(2NA) = s/N # 0. This is an important fact leading to the conclusion
that the stationary state of the iterative algorithm is biased. The algorithm moves the solution x(ng) to a
biased value x(no) — b in order to produce g(ng) = 0 in the algorithm stationary point. For the zero-value
of the gradient we have z} (ng) = z(ng) — b+ A and z (ng) = z(n) — b — A. By replacing A with A —b in
X, and A with A + b in || X ||, the worst case sparsity measures are || X, = || X]||; + N(A — b) and
X211, = IX]l; + (N — 2s)(A + b). In this case the bias b value can be obtained from ||X7 |, = X, | as

N(A = b) = (N — 25)(A +b)

s s
sz_SA:NAfors<<N. (7)

The bias limit is proportional to the step-size A. Obviously, the bias limit can be reduced by using small
values of the step A. Calculation with a very small step A would be inefficient and time consuming with an
extremely large number of iterations. An efficient way to use the gradient-based algorithm is in adapting
its step-size. In the initial iteration the step-size of an order of signal amplitude is used

A = max |x(n)|. 8

max [o(n)| )
When the algorithm reaches a stationary point with this step A then the bias will dominate and the mean
squared error will be almost constant. The algorithm can improve the solution precision by reducing the
step-size.



This simple relation between the bias and step-size has been confirmed through statistical analysis on
more complex cases, with a large number of missing samples.

3.2. Adaptation Criterion

The gradient-based algorithm convergence improvement by changing steps is analyzed in details in [22].
A criterion that can efficiently detect the event that the algorithm has reached the stationary point with
regard to the mean square error (the vicinity of the sparsity measure minimum defined by the bias) described
in the previous subsection, is proposed next. The presented criterion is based on the direction change of
the gradient vector. When the vicinity of the minimum sparsity measure point is reached within the region
defined by the bias value, then the gradient estimate oscillates and changes its direction for almost 180
degrees. The angle between two successive gradient vector estimations g™~ and g™, denoted f,, can be

calculated as N1
S0 9V (n)g™ (n )

VI (gm0 () SN (gt ()

If this angle 3,, is, for example, above 170° then we can conclude that the signal missing samples (variables)
reached oscillatory nature around the minimal sparsity measure position. When these values of the angles
are detected the algorithm step A is reduced, for example, for A/10 — A or A/y/10 — A. The iterations
are continued starting from the reconstructed signal values reached in the previous step.

When the minimum of the sparsity measure is reached with a sufficiently small A, the value of A can
also be used as an indicator of the solution precision. For example, if the signal amplitudes are of order of
1 and s/N = 0.1 taking A = 1 in the first iteration will produce the solution with a precision better than
20 [dB]. Then, if the step A is reduced to A = 0.1 a precision better than 40 [dB] will be obtained, and so
on. Value of A can be used as the algorithm stopping criterion.

B = arccos

3.3. Stopping Criterion

The precision of the result in iterative algorithms is commonly estimated based on the change of the
result values in the last iterations. Therefore an average of changes in a large number of variables is a good
estimate of the achieved precision. The value of

Y e, len(n) — 2™ (n)?
Y e 128 (n)]?

can be used as a rough estimate of the reconstruction error to signal ratio. In this relation z(n) is the

signal reconstructed before A reduction and xt(lm) (n) is the reconstructed signal after iterations done with

the reduced step. Value of T, can be used as the algorithm stopping criterion. If the value of T;. is above
the required precision T}, (for example, if T, > —100dB), the calculation procedure should be continued
with reduced values of step A.

TT = 10 loglo

3.4. Large Step Influence
A possible divergence of a gradient-based algorithm is related to large steps a = 2A. We can write

X ()] = [ Xg (0)] = | X () + ADy, ()] = [ X0 (k) = ADy, (k)|

(m )

In general for a complex number a = X, )(k)/(ADm(k)), with |a| < 1 and a large A, from the problem
geometry we can show that the following bounds hold 0 < ||1 + a| — |1 — a|| < 2]a|. Therefore,

X (k)
AD,, (k)

x{™ (k)
AD,, (k)

i

:A|Dm(k)|<1+ —1-

0< ‘ X (k)| — | X (k)| ‘ <2 ‘X}lm)(/{)‘.
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Lower limit 0 is obtained if a is imaginary-valued, while the upper limit 2 ‘Xém) (k)‘ follows if a is real-valued.

If A is large the missing signal values will be adapted for a value independent on A. The missing sample
values will oscillate within the range of the original signal values until the step A is reduced in iterations.
The variable values will be arbitrary changed within the signal amplitude order as far as A is too large. It
will not influence further convergence of the algorithm, when the step A assumes appropriately small values.

A pseudo code of this algorithm is presented in Algorithm 1.

Tllustrative Example 1:

The effects analyzed within the comments on the algorithm will be illustrated on a simple signal

(n) = 3 cos (%% - g) — 0.2sin (zm% + g)

with N = 8 and sparsity s = 4. Assume that the samples at positions n € Ng = {1,6} are missing.
Reconstruction of the signal is done in 60 iterations. The initial value of the step A = 1 and the initial
values of missing samples (1) = 0 and 2(6) = 0 are used. The missing sample values in the first 20 iterations
are given in Fig.1(top) by dots (connected by a line). After 6 iterations the algorithm does not significantly
change the missing sample values with given step size A = 1 (lower subplot within the figure presents
changes of variables in a highly zoomed scale). When the stationary point vicinity is reached with A =1
the gradient estimate is almost zero-valued. Its direction change for almost 180 degrees. The measure values
are on the contour with approximately the same value (circles on contour plot). The algorithm resumes its
fast approach toward the exact missing sample values after the algorithm step is reduced to A = 0.1 in the
20th iteration. When a new stationary state is reached change of A to A = 0.01 is done and the approach
to the correct missing sample values is continued.

The bias upper limit in the stationary state for step A = 1, according to (7), is 5> A = 1. After each
reduction of the step size from A to A/10 the bias caused MSE will be reduced for almost 20 [dB]. The
result for the signal reconstruction and the obtained MSE for the calculated missing values z(1) and z(6)
are presented in Fig.1.

Hllustrative Example 2:

The reconstruction process is repeated using the signal

z(n) = 3sin (207r%) + cos (607r%> + 0.7sin (4677%)

and N = 32. Its sparsity is s = 6. Missing sample positions are at n € Ng = {0, 1,2,5,7,8,11,15,18,27, 28, 30}.
The reconstruction results for this signal are presented in Fig.2. After the signal is reconstructed the prob-
lem is to establish if this reconstruction is unique in the sense that there is no other signal (missing sample
values) with the same or lower sparsity. A very simple check of the solution uniqueness, using the missing
sample positions and the positions of the reconstructed signal non-zero components in the sparsity domain,

is given in [25] by the following:

Theorem Consider a signal z(n) that is sparse in the DF'T domain with unknown sparsity. Assume that the
signal length is N = 2" samples and that QQ samples are missing at the instants ¢, € Ng. Also assume that
the reconstruction is performed and that the DFT of reconstructed signal is of sparsity s. Assume that the
positions of the reconstructed nonzero values in the DFT are ko; € Ks = {ko1, ko, -..., kos - Reconstruction
result is unique if the inequality

s< N — ,_ max {2h (Qorn — 1) — s+ 2527-%}

=0,1,...,r—1



Algorithm 1 Reconstruction

Require:

==
» B2

13:

14:
15:
16:
17:
18:

19:

20:
21:

22:

o Set of missing/omitted sample positions Ng

o Available samples z(n), n ¢ Ng

Set xt(lo)(n) +— z(n)
Set xé())(n) <0

Set m <0

Set A <+ max |x¢(10)(n)|
repeat

Set a(n) = 2™ (n)
repeat
m<m+1
for n; < 0to N —1do
if n; € Ng then
XF(k) + DFT{z{™ (n) + As(n — n;)}
X (k) + DFT{:z:(m) (n) — Ad(n —ny)}

9" (n E:IX+ )| = 1Xa (k)]
else
9" (n;) <0
end if
" (ng) = 2™ (i) — g™ (ny)
end for

5 — arecos zn ) g<m kg i

until 3, < 170°
A+ A/V10

Y e |78 (n) — 2™ (n)?

T, = 10logy, —
Y e 128" ()2

23: until T, < T4z

(

24: return 2™ (n)

Output:

e Reconstructed signal zg(n) = x((zm)( )

VEY (gm0 () VSN (9 (m)?

> for n ¢ Ng
> for n € Ng

> for each n
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Figure 1: a) Illustration of a signal reconstruction using variable step gradient algorithm. b) Original signal. c) Signal with
two missing samples. d) Reconstructed signal. e) Reconstructed signal MSE as a function of the iteration number.
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holds. Integers Qon and Sor—n are calculated as

— . .
Qan bzoflfméh_l{card{q :q € Ng and mod(q,2") = b}}
Qon—1
Spron = Pu(l)
1=1
Py(l) = . sort {card{k : k € K, and mod(k,2"~") = b}}
=0,1,...,2r " —1

where Ph(l) < Ph(2) <. < Ph(2r7h).
Signal independent uniqueness corresponds to the worst case signal form, when Sor—n = 0.

The answer is obtained almost immediately, since the computational complexity of the Theorem is of
order O(N). The proof is given in [25].

For the considered set of missing samples n € Ng = {0,1,2,5,7,8,11, 15,18, 27,28, 30}, from the previous
example, we easily get:

QQO = 87 Q21 = max{ﬁ, 6} = 67 Q22 = maX{S, 2) 37 4} = 47
Qos =max{2,1,2,2,1,1,1,2} =4, Qu = 2.

For signal independent uniqueness
s<32—max{1x(8—-1),2x(2—-1),4x(4-1),8x(2—-1),16 x(2—-1)} —s=16 —s.

It means that s < 8, with considered Ng, guarantees uniqueness of the reconstructed signal for any signal
parameters. When a sparse signal is reconstructed, for some sets of K, uniqueness may be guarantied for
higher values of sparsity s. Additional details and examples may be found in [25].

4. Statistical Analysis and Comparison

Consider a general real-valued form of a signal sparse in the DFT domain

K
x(n) = Z A; cos(2mnk; /N + ¢;). (9)

i=1

The total number of signal samples is N. The signal sparsity s = 2K is varied from s = 2 to s = N/2. The
signal amplitudes A;, frequencies k;, and phases ; are random variables. Signal amplitudes A; are Gaussian
random variables with unity variance, the frequency indices k; are random numbers within 1 < k; < N — 1.
The phases are uniform random variables 0 < ¢; < 27, in each signal realization. Signal is reconstructed
in 100 different realizations for each sparsity s and random positions of missing samples. The statistical
calculations are performed for N = 128. The reconstructed signals are denoted by xg(n). The reconstruction
results are presented in Fig.3(a). The signal-to-reconstruction-error ratio (SRR) is given in [dB]

Sl
Yoo a(n) — za(n)l?

Bright colors indicate the region where the algorithm had fully recovered missing samples (compared to
the original samples) in all realizations, while dark colors indicate the region where the algorithm could not
recover missing samples in any realization. In the transition region for M slightly greater than 2s we have
both the cases when the signal recovery is not achieved and the cases of full signal recovery. A stopping
criterion for the accuracy of 120 [dB] is used. It corresponds to a precision in the recovered signal of the
same order as in input samples, if they are acquired by a 20-bit A/D converter. The case with N = 64 is

9

SRR = 10log;, (10)
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Figure 2: Gradient-based reconstruction of a sparse signal with reconstructed MSE (three top rows). Angle between successive
gradient estimations By, and the MSE as a function of the number of iterations with step changes based on the gradient angles
(bottom).
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SRR N=128 [dB] SNR [dB]

120

100

sparsity s
sparsity s
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available samples M (a) available samples M

(b)

Figure 3: Signal-to-reconstruction-error (SRR) obtained by using Algorithm 1, averaged over 100 realizations for various
sparsity s and number of available samples M: (a) The total number of samples is N = 128. (b) With a Gaussian noise in the
input signal, SNR = 20 [dB] and N = 64.

repeated with an additive input Gaussian noise such that the input signal-to-noise ratio is 20 [dB] in each
realization Fig.3(b). The reconstruction error in this case is limited by the input signal-to-noise ratio.

The average reconstruction error in the noise-free cases is related to the number of the full recovery
events. For N = 64 the number of the full recovery events is checked and presented in Fig.4 (a),(b). The
average number of the algorithm iterations to produce the required precision, as a function of the number
of missing samples and signal sparsity s, is presented as well, Fig.4(c), along with the corresponding average
computation time (in seconds) for the Windows PC with Intel Dual Core processor, Fig.4(d). The average
computation time is proportional to the average number of iterations multiplied by the number of missing
samples (variables) @ = N — M.

The efficiency of the presented algorithm is compared with the standard routines used for the ¢;-norm
based minimization problems. The performance of the proposed algorithm are compared with the algorithm
that recasts the recovery problem (3) into regression framework (LASSO-ISTA) and a linear programming
framework with the primal-dual interior point method (L1-magic code in MATLAB). A simple review of the
LASSO-ISTA algorithm is presented in the Appendix. All there algorithms are run using 100 sparse signals
with random parameters. The algorithm parameters are set in such a way that the average computational
time for all cases is about 25 ms. The results are presented in Table 1. Columns notation in the table is:
s for sparsity, Q = N — M for the number of missing samples, MAE stands for the mean absolute error.
Calculation time using MATLAB is presented in all cases.

We can conclude that in most of the considered cases the proposed algorithm outperforms other two
algorithms in both the calculation time and accuracy.

Ezample 8: The algorithm can be applied to other signal transforms as well [23]. An example with
missing (salt-and-pepper noise) pixels in an image with the 2D-DCT as its sparsity domain will be presented.
Consider a standard MATLAB test image canoe.tif (Fig.5) and assume that 50% of the samples are corrupted
(noisy image). These pixels with extreme values are removed and considered as unavailable. Since the
coefficients in the 2D-DCT converges fast we will assume that the sparsity condition is satisfied (without
imposing it in an explicit way by making some 2D-DCT coefficients equal to zero). The image is reconstructed
by minimizing the 2D-DCT sparsity measure and varying missing pixel values according to the presented
algorithm. The original, corrupted and reconstructed images after 4th and 50th iteration are shown in Fig.5.
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Figure 4: (a)-(b) The percentage of the full recovery events as a function of the number of available samples M and the sparsity
s in the case of N = 64. (c) The average number of iterations as a function of the number of missing samples and sparsity. (d)
The average computation time.
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Table 1: MAE and computational time for the L1-magic (LP-DP), LASSO-ISTA, and the proposed algorithm

L1-magic LASSO Proposed
s N-M MAE Time MAE Time MAE Time
8 8 7.94x 1071 297 | 1.24x107* 259 | 6.05x 1072 7.6
16 8 6.70 x 10710 284 | 1.72x107* 259 | 7.56 x 10712 7.9
32 8 128 x 1079 29.8 | 225 x107* 315 | 496 x 1072 13.1

8 16 1.64x 107 312 | 1.30x10~* 30.1 | 6.92x 10" 15.2
16 16 1.22x107% 254 [1.91x107* 30.6 | 6.11x 1072 18.9
32 16 5.44 x 107> 22.7 | 716 x 107* 264 | 1.07 x 10711 21.5
8 24 2.83x 10719 232 | 1.37x107* 25.7 | 525 x 10712 20.6
16 24 4.62x107% 216 | 251 x107* 254 | 1.0l x10~' 228
32 24 258 x 107%  24.2 | 1.17x 1073 251 | 1.88 x 1071t  35.8
8 32 6.66 x 1071 204 | 1.51 x 107* 254 | 7.83 x 10712 28.1
16 32 1.94x107% 224 | 4.09x107* 25.0 | 1.89 x 10711 32.8
32 32 1.08 x 107%  25.0 | 8.08x10~* 25.1 | 1.95x 10~'* 74.1

Original image Noisy image

Reconstructed image. Iteration: 4 Reconstructed image. Iteration: 50

Figure 5: Original MATLAB image canoe.tif (top-left). Corrupted image with salt-and-pepper noise in 50% of the pixels
(top-right). Reconstructed images after 4 and 50 iterations (bottom).
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5. Conclusion

Performance of the recently proposed gradient-based signal reconstruction algorithm in the domain of the
signal samples/measurements are studied. Application of this algorithm is very efficient in signal processing
problems with reduced set of data, since it is easy to define a set of missing signal samples/measurements.
The values of signal samples are considered as variables, while the available samples are fixed and not changed
in the algorithm. An efficient criterion, based on the gradient directions, is proposed for the algorithm step-
size adaptation. Statistical analysis confirms calculation efficiency. The algorithm can easily be adapted to
the cases on nonuniform signal samples, when only a reduced set of linear combinations of the signal samples
are available.

6. Appendix: Gradient-Based Reconstruction in the Sparsity Domain

One of the forms for formulation of minimization problem (3), in order to find its solution, is based on

the Lagrangian
2
F(X) =lly = AX]3 + A IX]]; -
The minimization function is denoted by F'(X). The signal reconstruction in its sparsity domain is formu-
lated as [9]
X =argmin { |y = A+ A |X], }. (11)

This problem can be solved using least absolute selection and shrinking operator (LASSO) minimization.
Parameter \ defines a balance between the squared absolute error and sparsity.

The [;-norm based reconstruction algorithms do not have a closed form solution. In order to define an
iterative procedure a non-negative term

G(X) = (X=X, (eI -ATA)(X -X,)

is added. It has a zero value at the position of the problem solution, denoted by X,. This term is added to
the function F(X). New minimization function is

H(X)=F(X)+ (X -X_)"(al-ATA)(X - X,).

The solution follows from
~ 0H(X)

as
A 1
X+%Sign{X} :&AT(y - AX,)+X,.
The iterative procedure can be defined by
A 1, 7
Xs+1+%81gn{xs+1} :aA (y — AX,) + X,. (12)

The equation of the form
x + dsign(z) =y

can be solved by using the soft thresholding rule
x = soft(y, \) = sign(y)max{0, |y| — A}.
The same rule can be used for each coordinate of the sparsity vector in (12). The iterative form for the

signal reconstruction in the sparsity domain is

1
Xs+1=soft(aAT(y —AX,)+X (13)

8? %)
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This is the iterative soft-thresholding algorithm (ISTA) for problem (11) minimization [26]. The initial
estimate is Xg = ATy, corresponding to the transform of initial signal (4).
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