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Abstract—The analysis of ISAR image recovery from a reduced
set of data presented in [1] is extended in this correspondence to
an important topic of signal nonsparsity (approximative sparsity).
In real cases the ISAR images are noisy and only approximately
sparse. Formula for the mean square error in the nonsparse
ISAR, reconstructed under the sparsity assumption, is derived.
The results are tested on examples and compared with statistical
data.
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I. I NTRODUCTION

The inverse synthetic aperture radar (ISAR) is a method for
obtaining an image of a target in the range/cross-range domain
based on the change in viewing angle with respect to the fixed
radar [2]–[4]. Application of compressive sensing methods
to the ISAR data is an intensively studied topic, [5]–[9]. A
reduced set of data in the ISAR imaging is analyzed in [1] as
well. In real cases ISAR images are only approximately sparse.
In this correspondence, the analysis of nonsparsity influence to
the reconstructed images extends the results from [1]. Simple
formula for the mean square error (MSE) in the reconstructed
image is derived. The results are tested on examples and
compared with statistical data in the cases of nonsparse ISAR
images reconstructed under the assumption that they were
sparse.

The organization of this correspondence is as follows. After
a short review of the results from [1] in Section II, the main
result is presented in a form of a theorem in Section III. The
result is statistically checked on examples in Section IV.

II. REVIEW

A radar output signal can be modeled as a sum of the signals
reflected from individual scattering points. The received signal
from the ith scattering point, after an appropriate demodula-
tion, range compensation, and residual video phase filtering,
can be defined as

qi(m,n) = σie
j2πβim/Mej2πγin/N , (1)

whereσi is the reflection coefficient,βi andγi are the cross-
range and range coefficients, respectively (they depend on the
radar parameters as well [1]–[4]),M is the number of pulses,
andN is the number of samples within each pulse.
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The signal forK scattering points is

q(m,n) =
K∑

i=1

qi(m,n). (2)

The two-dimensional Fourier transform of the signal
q(m,n), assuming that some parts (samples or blocks of
samples) of the signal are not available, is estimated as

Q(k, l) =
M−1∑

m=0

∑

n∈NA(m)

q(m,n)e−j( 2πmk
M + 2πnl

N ), (3)

whereNA(m) represents the set of available samples within
the m-th pulse. The total number of available samplesNA

satisfies1 � NA ≤ MN . The presented model could be
applied to the SAR and other imaging systems.

For a large number of randomly positioned unavailable
samplesMN − NA the value ofQ(k, l) is a sum of terms
with quasi arbitrary phases (fork and l not corresponding to
βi andγi). It can be considered as a complex-valued variable
(missing samples noise) with Gaussian distributed real and
imaginary parts, as shown in [10], [13]. Its variance is

var{Q(k, l)} = NA
MN − NA

MN − 1
|σi|

2. (4)

For K scattering points we may write [10], [13]

E{Q(k, l)} =
K∑

i=1

σiNAδ(k − βi, l − γi) (5)

var{Q(k, l)} =

NA
MN − NA

MN − 1

K∑

i=1

|σi|
2 (1 − δ(k − βi, l − γi)) , (6)

where δ(k, l) = 1 only for k = l = 0 and δ(k, l) = 0,
elsewhere.

Assume that an additive noiseε(m,n) exists in the available
dataq(m,n). When the recovery is achieved, accuracy of the
result is related to the input additive noise [1], [11] only. The
energy of noise in the reconstructed signal, assuming only
K � MN nonzero coefficients (K-sparse signal), is

EεR =
K

MN

M2N2

N2
A

M−1∑

m=0

∑

n∈NA(m)

|ε(m,n)|2 . (7)

The SNR in the recovered signal is

SNR = 10 log
Es

EεR
= 10 log

∑M−1
m=0

∑N−1
n=0 |q(m,n)|2

K
NA

∑M−1
m=0

∑N−1
n=0 |ε(m,n)|2

= 10 log
Es

K
NA

Eε

, (8)
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whereEs is the energy of input signal. In the case of white
noise the energy of input noise in all samples would beEε =
MNσ2

ε , whereσ2
ε is the input additive noise variance.

III. N ONSPARSESIGNAL RECONSTRUCTION

In general, the signal sparsity assumption in a real data does
not hold in a strict sense. Even one point scatterer produces
a nonsparse signal if the cross-range and range coefficients
βi and γi are not integers (on the discrete-frequency grid).
The assumption that the received ISAR signal is sparse is
only an approximation1. General bounds for the reconstruction
error for nonsparse signals, reconstructed with the sparsity
assumption, are given in [12]. The exact relation for the
considered ISAR problem is given by the next theorem.

Theorem: Consider a nonsparse two-dimensional radar
signalq(m,n) whose Fourier transform isQ(k, l), with vector
notationsq and Q, respectively. Total number of the signal
samples isM × N . Assume that the input additive noise
ε(m,n) is white, with varianceσ2

ε . Assume that the signal
samples atNA positions, defined by(m,n) ∈ NA, are
available. The signal is reconstructed under the assumption as
it wereK-sparse (with the assumption that the reconstruction
conditions are met). The reconstructed signal withK nonzero
coefficients at(k, l) ∈ K is denoted byQR. The error in the
reconstructed coefficients with respect to theK corresponding
coefficients in the original signal is:

‖QK − QR‖
2
2 =

K
MN − NA

NAMN
‖Q − QK‖2

2 + K
(MN)2

NA
σ2

ε , (9)

whereQK is equal to the original signal Fourier transformQ
at the reconstructed positions,QK(k, l) = Q(k, l) for (k, l) ∈
K and QK(k, l) = 0 for (k, l) /∈ K. The assumed nonzero
coefficients are above the additive noise level.

Proof: According to (4) and (5) the missing samples in the
initial two-dimensional Fourier transform can be represented
as a noise. It has been assumed that the assumed sparsity (num-
ber of components)K and the measurements matrix satisfy
the reconstruction conditions. Then a reconstruction algorithm
can detectK signal components whose amplitudes in the time
domain are (σ1,σ2,...,σK) and perform signal reconstruction.
In the simulations we used the algorithm presented in [1],
Section III.A (any of its three presented forms can be used).
Additional details of this reconstruction algorithm (including a
MATLAB code that can be used to reconstruct the presented
results) may be found in [16]. The result of this algorithm,
or any other reconstruction algorithm which explicitly uses
the fact that the resulting signal is sparse with a sparsity
K, is a reconstructedK-sparse signalQR. The remaining

1The sparsity degradation in the off-grid cases (basis mismatch) problem
can be reduced by signal oversampling, making the frequency grid finer
(increasing the number of basis functions), at the expanse of the computation
complexity. Efficiency of an reconstruction algorithm in the ISAR can be
improved taking into account the property that scattering points are usually
grouped in space and by recovering the signal under the group sparsity
constraint.

nonreconstructedMN−K signal components with amplitudes
(σK+1,σK+2,...,σMN ) produce noise in theseK reconstructed
components. The variance of noise from a nonreconstructed
signal component with amplitudeσi is defined by (4) as

|σi|
2
NA(MN − NA)/(MN − 1). (10)

The variance is increased after the reconstruction. The signal
amplitudes inQ(k, l), defined by (5), are proportional to
NA. The amplitudes are restored during the reconstruction
to their correct values, proportional toMN (as in the case
when all signal samples were available). The scaling factor
for the reconstructed amplitudes isMN/NA. Then the scaling
factor for the noise variance in the reconstructed components
is (MN/NA)2. It means that in these components the noise
variance from a nonreconstructed component is

|σi|
2 M2N2

N2
A

NA(MN − NA)
MN − 1

∼= |σi|
2
MN

MN − NA

NA
.

(11)
The total energy of white noise inK reconstructed com-
ponents ofQR will be K times greater than the variance
in one reconstructed component. Total noise caused by the
nonreconstructed components (σK+1,σK+2,...,σMN ), is

‖QR−QK‖2
2 = KMN

MN − NA

NA

MN∑

i=K+1

|σi|
2
. (12)

Energy of the remaining signal, whenK components are
removed from the original signal (corresponding to the re-
maining nonreconstructed components), will be denoted by

‖Q − QK‖2
2 =

MN∑

i=K+1

|MNσi|
2
. (13)

From (12) and (13) we get

‖QR−QK‖2
2 = K

MN − NA

NAMN
‖Q − QK‖2

2 . (14)

If the original signal isK-sparse, i.e.Q = QK , then there is
no error

‖QR−QK‖2
2 = 0. (15)

The same result‖QR−QK‖2
2 = 0 follows if all signal

samples are available,MN = NA. Obviously, if a complete
set of samples is used, then the error is zero for any sparsity.

Consider now that a nonsparse signalq(m,n) has an
additive complex-valued noise. According to the results in
[1], [13], [14], with the assumption that all reconstructed
amplitudes are above the additive noise level, this noise can be
considered as additive after reconstruction as well. The total
error in the reconstructed signal, with respect to the original
signal at the same coefficient positions, is

EεR =
K

NA
Eε = MN

K

NA
σ2

ε . (16)

The noise energy in the Fourier domain is multiplied by a
factor MN as well, since‖Q‖2

2 = MN ‖q‖2
2. It means that

for a noise only case we would get

‖QK−QR‖
2
2 = MNEεR = (MN)2

K

NA
σ2

ε . (17)
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Including both components (14) and (17) we get the theorem
result

‖QK−QR‖
2
2 =

K
MN − NA

NAMN
‖Q − QK‖2

2 + K
(MN)2

NA
σ2

ε . (18)

This completes the proof.

The relation (9) can be written in a form of the recon-
structed error, normalized with the number of reconstructed
components, as

1
K

‖QK−QR‖
2
2 =

MN − NA

NAMN
‖Q − QK‖2

2 +
(MN)2

NA
σ2

ε .

(19)

IV. EXAMPLES

Example 1:Consider a nonsparse signal

q(m,n) =
1

MN

(MN∑

i=1

σie
j2π(βim/M+γin/N) + ε(n)

)
, (20)

where 0 ≤ βi < M and 0 ≤ γi < N are random
frequency indices. Signal amplitudes are normalizedσi = 1
for i = 1, ..., S, while the components for indices aboveS
areσi = e−2i/(S+1), i = S + 1, S + 2, . . . ,MN . The signal
can be considered as an approximatelyS-sparse signal. Using
M = N = 64 and S = 50, the first K components of the
signal are reconstructed for various assumed sparsity within
a wide rangeK = 24, 26, 28, ..., 48, 50, 52, ..., 98, 100, which
are bellow and above sparsityS. The remainingMN − K
signal components behave as disturbance. Additive noise is
Gaussian with standard deviation of the real and imaginary
partσε = 0.1. Reconstruction of the nonsparse signalq(m,n)
for the assumed values of sparsityK is done. The aver-
age squared error in20 realizations with random frequency
value positions and positions of the availableNA samples
is calculated. The results withNA = 1024 = MN/4 and
NA = 2048 = MN/2 available samples (25% and 50% of the
total number of samples) are presented. The normalized error
energies in the frequency domain (normalized to the assumed
sparsity) are calculated according to the theorem and (19)

Estatistics = 10 log

(
1
K

‖QK−QR‖
2
2)

)

(21)

Etheory = 10 log

(
MN − NA

NAMN
‖Q − QK‖2

2 +
(MN)2

NA
σ2

ε

)

.

(22)

They are given in Fig.1 and Fig.2, as a function of the assumed
sparsityK. The theoretical values are plotted with solid line.
The statistical data are presented by dots with average values
(presented by circles) which almost coincides with the theory
in both cases. The simulation is repeated with 50% of the
total number of samples and a stronger noise whose standard
deviation isσε = 0.5, Fig.3.

Example 2:The same analysis is done on the ISAR data
according to the delta-wing experiment described in [15]. The

30 40 50 60 70 80 90 100
-55

-50

-45

-40

-35

-30

-25

-20

-15

Assumed sparsity  K

S
ta

tis
tic

al
 a

nd
 th

eo
ry

 e
rr

or
 [d

B
]

 N
A
=2048=MN/2

Fig. 1. Error energy in the reconstruction of nonsparse signal calculated
statistically (dots for realizations and circles for average) and according to
the theory (solid line) for various assumed sparsity and 50% of the available
samples.
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Fig. 2. Error energy in the reconstruction of nonsparse signal calculated
statistically (dots for realizations and circles for average) and according to
the theory (solid line) for various assumed sparsity and 25% of the available
samples.
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Fig. 3. Error energy in the reconstruction of nonsparse signal calculated
statistically (dots for realizations and circles for average) and according to
the theory (solid line) for various assumed sparsity and 50% of the available
samples withσε = 0.5.
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TABLE I
ERROR ENERGY IN THEISAR RECONSTRUCTED COEFFICIENTS WITH33%

AVAILABLE SAMPLES FOR VARIOUS ASSUMED SPARSITYK .

NA = MN/3 K = 6 K = 9 K = 12 K = 48
Theory −24.85 −26.42 −27.67 −34.39

Statistics −24.66 −26.39 −27.88 −34.01

experiment was conducted by using an X-band radar operating
at a center frequency of10.1 GHz with 300 MHz bandwidth
and a range resolution of0.5 m. The pulse repetition time
is Tr = 1/2000 = 0.5 ms. The total data set used in this
example contains samples for2048 range profiles with50 bins.
The target was a delta-wing shaped apparatus. It consisted of
six-scatterer model. The target model has a length of5 m on
each of its three sides of regular triangle. The delta-wing is at
a range of 2 km and was rotating at 3 degree/s. Data within
the interval of 50 range bins (where the target was located)
are shown only. The original ISAR image with all available
samples is presented in Fig.4(a), (b). Assuming different
sparsities the results with a third of the available samples are
presented in Fig.4. The accuracy of the reconstructed signal
components (with respect to original ones with all signal
samples used in the calculation) is proportional to the energy
of the remaining signal content (above the assumed sparsity).
The square error, normalized to the assumed sparsityK and
the maximal coefficient absolute value, is calculated using

Estatistics = 10 log




1
K ‖QK−QR‖

2
2

max
k,l

{|Q(k, l)|2}



 (23)

Etheory = 10 log




MN−NA

NAMN ‖Q − QK‖2
2

max
k,l

{|Q(k, l)|2}



 . (24)

The errors are checked statistically by using 33% of the
total number of samples as available samples,NA = MN/3,
at random positions in 100 realizations. These errors inK
reconstructed components, obtained statistically and by using
the energy of remaining components, are given in Table I.

V. CONCLUSIONS

In this correspondence, we examined the influence of non-
sparsity to the ISAR image reconstruction, using the method
of the sparse signal processing. From the main result we
can conclude that the influence of noise increases with an
increase of the assumed sparsity in the reconstruction. Since
the reconstruction error is also proportional to the energy of
the remaining part of the signal, the optimal assumed sparsity
will be the smallest one when all signal components above
noise level are included. The results are statistically checked.
The statistical values confirms theoretical results.
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