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Abstract 

The concentration and sparsity of signal representation in the Hermite transform (HT) basis may highly depend on a 

properly chosen scaling factor and discrete time shift parameter. In that sense, we propose a simple and efficient 

iterative procedure for automatic determination of the optimal scaling factor. The optimization criterion is based on 

the ℓ1-norm acting as a measure of signal concentration in the HT domain. Instead of centering the signal at the zero 

time instant, we also propose to shift the center for a few points left or right, which will additionally improve the 

concentration. An important application of the proposed optimization approach is the compression of QRS 

complexes, where properly chosen scaling factor and time-shift increase the compression performance. The results 

are verified using synthetic and real examples and compared with the existing approach for the compression of QRS 

complexes. 

Keywords: Concentration measures, Gradient algorithm, ECG signal, Hermite function, Hermite transform, QRS 

complex 

1. Introduction 

The Hermite transform (HT) has been studied during the last few decades, particularly as an alternative to the 

Fourier transform [[1]-[16]]. Although covering a wide range of possible applications due to many interesting 

properties, Hermite transform has been extensively used for the representation of QRS complexes, especially for their 

compression, as well as feature evaluation and extraction [[1]-[9],[11]]. Other applications include: molecular 

biology [[8]], image processing and computed tomography [[8],[9],[11]], radar signal processing [[12]], physical 
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optics [[13]] etc. 

QRS complexes, as the most characteristic waves of ECG signals, are important for medical diagnosis and 

treatments. In the processing and compression of ECG signals and QRS complexes, many authors applied different 

kinds of wavelets and corresponding transforms [[17]-[19]]. Recently, it was shown that the Hermite transform may 

provide far better performance, when it is appropriately optimized [[1]]. Namely, the Hermite transform is found to 

be a suitable mathematical tool for the representation of QRS complexes due to their similarity with Hermite 

functions (HF). In other words, these signals can be represented using a few Hermite coefficients [[1]-[7],[10]]. This 

property has been exploited in the development of several compression algorithms for QRS complexes [[5]-[7]], that 

established a theoretical framework, having a lack of practical applications due to use of continuous domain 

functions [[1]]. An algorithm that proposes the use of discrete Hermite functions is presented in [[1],[2]]. Hence, we 

start from the HT based algorithm [[1],[2]], which significantly outperforms the compression based on other 

transforms, such as DFT, DCT and DWT, in the applications with ECG signals. This approach uses an 

experimentally obtained value of the scaling factor, which “stretches” and “compresses” the QRS complex to match 

the orthogonal basis. Herein, we employ a concentration measure based algorithm to get optimal HF parameters [20]. 

It leads to better performance of approach proposed in [[1],[2]]. The idea arises from the currently attractive area of 

compressive sensing and sparse signal reconstruction [[14]-[22]]. Hence, an iterative procedure for the determination 

of the optimal scaling factor and time-shift is proposed leading to the improved compression performance, as verified 

on real ECG signals database [[23]]. 

The paper is organized as follows. In Section 2, an overview of the discrete HT calculation for uniformly sampled 

signals is provided. The optimization of the spread factor and time-shift parameter is proposed in Section 3. Section 4 

presents the numerical results, while the concluding remarks are given in Section 5. 

2. The Hermite transform 

2.1. Discrete Hermite transform 

Hermite polynomial of the p-th order, widely known among the orthogonal polynomials, can be defined as [[1]-

[14], [24]]: 
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The p-th order HF is related with p-th order Hermite polynomial as follows: 
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where the scaling factor σ is introduced to “stretch” and “compress” HF, in order to better match the signal [[1]-[10]]. 

The Hermite expansion is defined as [[1]-[14]]: 
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where cp denotes the p-th order Hermite coefficient: 
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For the numerical calculation of the integral (4) the Gauss-Hermite quadrature approximation [[1]-[8],[14]]: 
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is commonly used, where tm denotes the zeros of the M-th order Hermite polynomial (1). As it is discussed in the 

literature [[1], [24], 25], there is no closed-form expression for the roots of the Hermite polynomials. Also, some 

examples of the roots for the first 10 Hermite polynomials are given in [[14]]. 

In general, for the case of continuous-time signals, an infinite number of Hermite functions is needed for the 

representation of the signal without approximation errors in (3), [[1]]. In the discrete case, it is assumed that discrete 

HF and analyzed signals are obtained by sampling their continuous counterparts at non-equispaced sampling points 

associated with the roots of Hermite polynomials [[1],[2],[4],[13]]. Namely, in that case any discrete signal of length 

M can be uniquely represented by the expansion of exactly M discrete Hermite functions in (3), i.e., this signal 

representation is complete, [[1]]. 

The time axis scaling factor σ is used to “stretch” and “compress” HF relatively to the analyzed signal f(t). As 

proposed in [[1],[2]], we can alternatively fix σ = 1 and introduce an equivalent parameter λ to “stretch” and 

“compress” the signal f(t) relatively to the HF basis. 

The inverse and direct HT, (3) and (5) can be written in matrix-vector notation. Let us introduce the HT matrix as: 
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If we introduce the vector of Hermite coefficients [ ]0 1 1 , , ,
T

Mc c c −= …c  and ( ) ( ) ( )[ ]1 2
ˆ , , ,

T

Mf t f t f tλ λ λ= …f vector 

with M signal samples at the points proportional to the roots of the M-th order Hermite polynomial, λt1, λt2,…, λtM, 

according to Gauss-Hermite quadrature formula (5) the HT can be written as: 

 ˆ.H=c W f
 

(7)
 

Having in mind the expansion (3), the inverse transform matrix is: 
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Based on the previous matrix definitions, the inverse HT for the case of discrete signals reads: 

 1ˆ .H
−=f W c

 
(8)

 

2.2. Hermite transform of uniformly sampled signals 

Consider a continuous-time signal f(t) with compact support, such that [ ]( ) 0 for ,f t t T T= ∉ − , sampled uniformly 

to obtain the corresponding finite duration discrete-time signal f(n), of odd-length M = 2K+1, n = –K,…, K, with t∆  

being the sampling period. According to the sampling theorem, the continuous-time signal can be reconstructed and 

resampled at the desired points λt1, λt2,…, λtM  according to:  
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where m = 1,…, M, n = -K,…, K, or in matrix form: 

 ˆ ,λ≈f A f
 

(10) 
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with f̂  being the vector containing values of signal sampled at the desired points ,mt tλ=  corresponding to zeros of 

the M-th order Hermite polynomial (1) and f is the vector of original signal samples taken uniformly according to the 

sampling theorem. In the case of even-length signal M = 2K, in (9) values n = –K,…, K – 1 are assumed.   

In the expanded form, (10) can be written as: 
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where M = 2K + 1 and elements aij being defined with: 

[ ] [ ]sin ( ( 1) ) / / ( ( 1) ) /ij i ia t j K t t t j K t tπ λ π λ= − − − ∆ ∆ − − − ∆ ∆ , 

with , {1, 2, ... , }i j M∈ . As recently presented in [[26]], the truncation error [27] using sinc interpolation is largest for 

time instants near the edges of the grid. However, in the case of compact time-support signals, the truncation error 

will be negligible even at the edges (e.g., -50dB for signal given in Example 1). Furthermore, the problem of 

interpolation of finite signals is also discussed from the perspective of FIR filter-based sinc interpolation in [27], 

where it is emphasized that the truncation effects could be alleviated by multiplying the interpolation kernel 

( )sin ( ) / / ( ( ) / )t n t t t n t tπ π− ∆ ∆ − ∆ ∆  with a window function. 

The uniformly sampled signal and the corresponding HT now can be related by combining (7) and (11) as: 

 ˆ .H H λ= ≈c W f W A f
 

(12)
 

3. Parameter optimization 

3.1. Scaling factor 

In this Section, we propose to employ the concentration measure of the Hermite coefficients vector c to calculate 

the suitable value of λ, which will allow to represent the signal with most concentrated (or even the sparsest) Hermite 

transform vector c. It is important to emphasize that the criterion is defined such that the classical uniform sampling 

of signals is assumed, without need for new sampling devices. The concentration measures, such as the ℓ1-norm of 

transform coefficients, have been used in optimizations where it is crucial to concentrate a signal transform in a small 

number of coefficients [[4],[20]-[22]]. One of the most recent applications is in the compressed sensing. The ℓ1-norm 

of the HT can be calculated as: 
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Thus, the optimal value of λ is obtained by solving: 
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Note that (14) is a 1D search problem over the possible range of λ values. Thus, one can perform the search over 

the range of possible values of λ, finding the one that minimizes the concentration measure. This range can be 

determined such that the roots of the Hermite polynomial are mainly placed between the existing sampling points, as 

discussed in [[1]]. 

The basic idea behind the proposed algorithm is to iteratively search for the optimal value λ, starting from a 

predefined value λ(0). In each iteration k, a small value ∆ is added and subtracted from the current λ, to determine the 

change of concentration measure. Then, λ(k) is updated by a value which decreases the measure (13) in a steepest 

descent manner. Similar approach was employed to reconstruct missing samples of sparse signals [[4],[21]]. The 

algorithm is given as follows: 

Algorithm 1. Calculation of the optimal scaling factor λ 

Require:  

• Signal vector f  of length M = 2K + 1 
• Step parameter µ 
• Transform matrix WH, calculated according to (6) 
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6: ( )( ) /k M+ −∇ ← −M M  

7. ( 1) ( ) ( )k k kλ λ µ+ ← − ∇  

8: ( )( ) ( 1)sign k kβ −← ∇ ∇  

9: If 0β <  then / 2∆ ← ∆  
End while 

10: Return ( )kλ  

Here, (0) / 2( ( 1) /1.7 1.8)M t Mλ π= ∆ − + 
   is used as the starting point, which is the lower bound for the scaling 

factor defined in [[15],[16]] in order to ensure the convergence of the algorithm. The values of µ and ∆ are chosen to 

provide optimal results for all considered signals. A too small step µ leads to slow convergence, while on the other 

side µ should be as small as possible to keep the algorithm stable (i.e., to ensure that the upper bound 

[ ]/1.7 1.8 / 2M Wλ π π < +   is satisfied [[15],[16]], with W being the frequency bandwidth). Hence, the value of µ 

is set up empirically as a trade-off between these two requirements. 

Maximal number of iterations corresponds to the signal length (in the experiments, the convergence is obtained 

even for number of iterations equal to the half of the signal length). The computational complexity of the algorithm 

can be approximated as follows (one iteration is considered): a) to generate the argument of the sinc function in Step 

4, we need 2M2+2 additions (or subtractions) and 6M2 multiplications with constants; b) the interpolation is done 

with M2 multiplications and M(M-1) additions; c) For the two HT calculations, the complexity is 2M2 additions and 

2M2 multiplications; d) the concentration measures requires 2M-2 additions. Hence, the proposed algorithm requires 

5M2+M additions and 9M2 multiplications in total.  

Two-dimensional (2D) Hermite transform can be obtained by calculating one-dimensional Hermite transforms 

separately in both directions [14]. Hence, the proposed approach can be easily generalized in a straight-forward 

manner for the case of 2D signals. 

3.2. Shift parameter 

The basis functions can be also shifted left or right along the time axis [[10]]. Instead of centering the signal at the 

zero time instant [[1],[2]], here we propose to shift center for a few sampling points left or right, before the 

calculation of the coefficients. In other words, instead of ( )f n t∆ , we use: ( ) (( ) )mf n t f n l t∆ = ± ∆  in (9), with 
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[ ]max max,l l l= −  . 

For every discrete shift value l, optimal λ is calculated in order to minimize (14). The measure vector L is formed 

containing the minimal measure value (14) obtained for the optimal λ, for every considered l. We find the l 

corresponding to the minimal value of L, solving: 

 argmin
l

l = L
 

(15)
 

 Note that lmax has a small value, e.g. lmax = 3 for the case of QRS complexes, and thus a direct search in (15) is 

applied. The integer shift values are used in this paper, since the fractional shifts may require an additional 

interpolation which causes difficulties in the minimization of the concentration measure [[10]].  

4. Numerical results 

Example 1: Let us observe the signal of the form: 
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with M = 61, 0 1.25σ = , 1 / 2 1 / 2t− < < , sampled with 1 /t M∆ = to obtain discrete values at the uniform grid 

( 1) / 2, ..., ( 1) / 2n M M= − − − . Original signal with uniformly sampled points and the corresponding Hermite 

coefficients with 1σ =  are shown on Fig. 1 (a) and (b) respectively. Note that the signal is characterized by the 

compact time support and it has the similar shape as the Hermite basis functions. Hence, these types of signals 

(windowed or low-pass filtered sinusoids, QRS segments, short-duration signals such as FHDSS, or UWB signals) 

are amenable to the proposed approach.   
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Fig. 1. Scaling factor influence on the HT: (a) original signal (16) and (b) the corresponding Hermite coefficients; (c) optimally 

scaled signal resampled at the roots of Hermite polynomial, and (d) Hermite coefficients of resampled signal  

The proposed iterative procedure has been applied in order to find the most concentrated HT of the resampled 

signal. The obtained result is 0 1.25 /t Mλ σ= ∆ =  since we have intentionally incorporated the spread factor as the 

parameter of the Gaussian window in (16). The resampled signal with appropriately rescaled time axis, sampled at 

the roots of the M-th order Hermite polynomial, and corresponding Hermite coefficients are shown on Fig. 1 (c) and 

(d). We can observe that the optimal value of the scaling factor will assure that there is only one significant 

coefficient at p = 2, while other coefficients are close or equal to zero. 

In order to check whether the proposed algorithm finds the optimal value, the concentration measure is calculated 

for different values of scaling factor λ : 1 / / 2 /t t tλ∆ ≤ ∆ ≤ ∆ , varied with the step 0.01 / t∆ . The results are plotted 

in Fig. 2a, where the global minimum min 1.25 / tλ = ∆  is clearly visible on the curve.  

 

Fig. 2. a) The concentration measure in terms of λ/∆t, b) the learning curve of λ/∆t through the iterations 

Here, it is assumed that the lower and upper bounds of λ are satisfied [[15],[16]]. Lower bound is controlled by the 

algorithm initialization, and suitably chosen step µ assures that the upper bound is never reached. In this interval, a 

global minimum is expected to exist, corresponding to the most concentrated Hermite transform. Further, the 

learning curve of λ/∆t with respect to iteration number is given in Fig. 2b. It can be observed that, as the algorithm 

reaches the minimum of the concentration measure, it stabilizes.   
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Fig. 3. MSE caused by the sinc interpolation kernel 

The influence of truncation error introduced by the finite sinc kernel is also examined calculating the MSE 

between the interpolated signal int ( )mf tλ  (interpolation is done based on uniform samples f(n) and relation (10)) and 

the original (analytic) signal (16) observed at points mt tλ= : 21
int1

( ) ( )
M

m mM m
MSE f t f tλ λ

=
= −∑ . Hence, the signal 

length M is varied from 21 to 401 samples (with step 2). The results are shown in Fig. 3 (logarithmic scale) showing 

that even the largest error caused by sinc interpolation is as small as -50dB. 

Example 2: In the framework of the considered compression problem, it is important to represent QRS complexes 

with the smallest possible number of coefficients, with a medically acceptable error. The compression algorithm 

proposed in [[1]] and [[2]] operates as follows. It is assumed that the ECG signal (i.e. QRS complex) f(t) is sampled 

at points λt1, λt2,…, λtM, to obtain the vector f̂ . Then the HT coefficients c are calculated by (7). Further, the vector c%  

is formed by keeping L largest coefficients in c and setting others to zero. The signal approximation can be obtained 

according to (8): 

 1 .H
−=f W c% %

 
(17)

 

Here, we will refer to the algorithm presented in [[1],[2]] which can be further improved, by the proposed 

optimization of the scaling factor and time-shift. The continuous signal f(t) was sampled at the points λt1, λt2,…, λtM, 

where the scaling factor λ is chosen to obtain smallest number of coefficients in c%  under the condition that the 

relative reconstruction error: 

 
2

2

E
−

=
f f

f

%

 
(18)

 

is below 10%, which is medically acceptable [[1],[2]]. However, several problems arise. To determine the optimal 

scaling factor λ, starting from the continuous ECG signals, sampling process needs to be repeated for every λ from a 

suitable range of possible values, which can be a technical problem for sampling devices. Then, the HT is calculated 

for every possible λ, and (18) is used to find the optimal λ such that E ≤ 10%. The other possibility is to use a fixed 

value of λ. However, it can be shown that improper λ leads to the larger number of Hermite coefficients in c% . 

Moreover, our experiments as well as those in [[1],[2]] show that each QRS complex has a different optimal value of 

λ, which means that the sampling device has to be continuously readjusted. On the other side, when dealing with the 

discrete QRS complexes in [[1]], the signal is resampled according to (11) and search for the optimal λ is done by 
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measuring the compression ratio, which has to be maximized under the condition that E ≤ 10%. However, this 

approach is numerically exhausting, since both direct and inverse Hermite transform need to be calculated for each 

observed number of largest coefficients and for each λ.  

In this paper, we propose to search for an optimal λ by minimizing the concentration measure, before the 

compression is done. The compression procedure is done as in [[1]], while the improvement is provided using the 

scaling factor optimization and the time-shift optimization based on concentration measure (14). 

 We have extracted Q = 1486 QRS complexes, from the first 10 seconds in the first leads of 168 ECG signals 

obtained from the MIT-BIH Compression Test Database [[23]]. The signals are uniformly sampled with 1/ 250t∆ =

. Three different signal lengths are used [1]: { }2 1 27, 29, 31K + ∈ . The compression results are shown in Table I as 

the average number of coefficients (producing E≤ 10%) and the average compression ratio: 

0 0
ACR (2 1) / ,

Q Q
i ii i

K L= == +∑ ∑ where Li is the number of nonzero HT coefficients in the i-th complex producing E ≤ 

10%, 2Ki+1 is the length of the i-th QRS complex.  The second column (as well as the third and the fourth) shows the 

result published in [[1]].  

Table 1  
Average number of coefficients and compression ratio for 10% approximation error 

Comparison 
criterion 

Proposed HT 
algorithm 

HT based 
algorithm in [1] 

DFT-
based 

DCT-
based 

Average number of 
coefficients 

5.0 5.8 8.3 7.3 

Average 
compression ratio 

6.2 5.3 3.7 4.3 

 
In the original approach [[1]] that uses a demanding search approach over all possible λ, and average number of 5.8 

coefficients is needed for the proper reconstruction with E ≤ 10%. The proposed method (first column of Table I) 

shows further improvement, if the set of considered time-shifts is extended with max 3l = , { }3, 2, 1, 0, 1, 2, 3l ∈ − − − . 

Namely, when both the time-shift and scaling factor are optimized as proposed, the same error level is achieved even 

if only 5 coefficients are used, which means that the improvement over the original algorithm is about 13.8%. The 

average value of the scaling factor over all Q = 1486 QRS complexes is /  4.2495tλ ∆ =  (in seconds 

 4.2495 / 250 0.017λ = = , which is the value experimentally obtained in [[2]], thus confirming the accuracy of the 

proposed approach). The step 0.05µ = is used in the experiment. 
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Let us consider the estimate of average number of bits per sample: a) for the time domain we have 9 bps, b) in the 

case of optimized HT, there are 5 most important real-valued coefficients out of 31 within QRS complex (one zero 

value may appear between 5 nonzero coefficients, and 6 coefficients are count to be encoded), which results in the 

rate 2 bps; c) in the case of DFT, there are approximately 8 most important coefficients (with real and imaginary 

parts) to be encoded out of 31, which is approximately 7 bps in average. 

 An example of the analyzed QRS complexes from the database [[23]] is shown in Fig. 4. Original signal is shown 

on Fig 4. (a), with the Hermite coefficients in Fig 4. (b). The concentration measure is lowest for the time-shift l = 1, 

with the corresponding optimal scaling factor / 0.4352tλ ∆ =  (in seconds 0.0176λ = ). The optimally shifted signal 

resampled at the roots of Hermite polynomial (with M = 27 and / 0.4352tλ ∆ = ) is shown in Fig 4. (c), with the 

Hermite coefficients given in Fig. 4 (d). The reconstructed signal is given by dash-dotted line in Fig. 4. (c). 

 

Fig. 4. Optimal scaling, shifting and resampling of QRS complex: (a) original signal (blue) and its shifted version (red); (b) 

Hermite coefficients of the original signal (standard Hermite transform); (c) shifted resampled signal with the optimal scaling 

factor (solid line) and reconstructed signal using largest 4 Hermite coefficients (relative error < 10%); (d) Optimized Hermite 

transform of rescaled and resampled signal (circles denote largest 4 coefficients) 

Example 3: It is interesting to emphasize that the same approach can be applied to other types of signals such as 

the T waves of ECG signals, but also to the commonly present UWB signals (known as Gaussian doublets). 

Transmitting common Gaussian pulses directly to the antennas results in filtered pulses modeled as a derivative 

operation producing [[29]-[31]]: ( ) ( )22 2 /( ) 1 4 / mt
ms t t e π τπ τ − = −

 
. A discrete version of this signal is considered, 

sampled at 2GHz, of length 100 ns and with 22.2mτ =  ns. The results of applying the proposed method on the ECG 
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T waves are shown in Fig. 5a. After applying the proposed algorithm, the observed part of ECG signal can be 

represented with only 14 coefficients out of 106 (13%), assuring the relative error (18) smaller than 10%. The 

average number of coefficients for the entire MIT-BIH Compression Test Database (first leads, first 10 seconds of 

168 ECG signals) [23] is approximately 23% of the total length. In the case of UWB signals, the algorithm shows a 

high level of efficiency, providing a compact support with only 2 significant coefficients (Fig. 5b). Hence, in the 

context of UWB signals, the proposed approach has a potential in the design of UWB receivers, allowing the signals 

to be easily detected at the receiver. 

    
a)                            b) 

Fig. 5. a) Application to ECG T waves, b) application to the UWB signals 

5. Conclusion 

An optimization approach for the Hermite transform scaling factor and time-shift is presented. Concentration 

measure of the transform is employed as the optimization criterion. An iterative algorithm for the scaling factor 

search is presented. The results are confirmed on both synthetic signal and real ECG signals. The presented theory is 

applied in the compression of QRS complexes, reducing the average number of coefficients that need to be stored. 

Finally, it has been shown that the same concept can be also applied to other segments of ECG signal (such as T 

waves), but also to the UWB signals in communications.  
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