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Abstract - The problem of the representation of uniformly 

sampled signals in the Hermite transform basis is revisited. 

Namely, due to the application of Gauss-Hermite quadrature in 

the calculation of transformation coefficients, the discrete 

Hermite transform assumes that the analyzed signal is sampled 

at the points proportional to the roots of the Hermite polynomial 

of the corresponding order. Since the most of discrete signals are 

sampled according to the sampling theorem, there is a particular 

interest for the representation of such signals. A form of the 

Hermite transform is defined based on the sampling theorem 

formula for the reconstruction of continuous-time signals from 

the samples of their discrete counterparts. 

Keywords – Digital Signal Processing; ECG signals; Hermite 

Fucntions; Hermite Transform; QRS complexes 

I.  INTRODUCTION 

The Hermite transform, as an alternative of the Fourier 
transform, has been studied for decades due to its suitability for 
the representation of signals with compact time support [1]-
[16]. Namely, the specific form of the transform basis 
functions, advantageous mathematical properties of the 
representation as well as the fast calculation algorithms lead to 
numerous applications, including the compression of QRS 
complexes in ECG signals [1]-[5], image segmentation and 
edge detection [6], [7], computed tomography, analysis of 
protein structure [8], radar signals [14], representation and 
analysis of optical waves [9]. Fast computation algorithms 
proposed in [2] and [8] ensured the placement of the Hermite 
transform and Hermite functions in state-of-the-art research in 
biomedicine and biology [1], [8]. Their good localization 
properties have found important applications in time-frequency 
signal analysis, radar signal processing and processing of video 
signals [16]. Since the Hermite functions are eigen-functions of 
the Fourier transform, the Hermite transform has been 
employed in representation and reconstruction of 
electromagnetic pulse signals [11], [12]. 

Mainly, the Hermite transform has been introduced in the 
literature as a series expansion of continuous signals on the 
basis formed of continuous-time Hermite functions. Several 
research papers deal with the discrete form of this 
representation [2]-[4], [6], [9], [10]. The discrete form of the 
transform assumes that samples are available at the points 
proportional to the roots of the Hermite polynomial. This fact is 
very important, since the Hermite coefficients are introduced in 
an integral form, which has to be properly calculated. Mainly, 
the Gauss-Hermite quadrature is used for the calculation of the 
integral, since it forms a complete discrete signal representation 
if both basis functions and the analyzed signal are sampled at 

the points proportional to the roots of the Hermite polynomial. 
If this condition is satisfied, any discrete signal of the length M 
can be uniquely represented as a summation of adequately 
scaled M Hermite basis functions [2]-[4], [9], [16].  

Most of the reported approaches to the representation of 
signals in the Hermite domain assume that the analyzed signal 
is available in its continuous-time form, and that we can 
sample it at the instants of the interest. However, in practice 
many analyzed signals have been already sampled uniformly, 
according to the sampling theorem [16], [17]. The sampling 
grid corresponding to the roots of the M-th order Hermite 
polynomial is non-uniform, and the required sampling points 
are dislocated from the sampling theorem grid. This means that 
the signal values are not available at instants of the interest, and 
consequently, the Gauss-Hermite quadrature cannot be applied 
in the Hermite coefficients calculation. 

In this paper, we deal with the problem of the 
representation of discrete signals in the Hermite domain, 
assuming that the analyzed signals have been sampled 
uniformly, according to the sampling theorem. The formula for 
the reconstruction of continuous-time signal from its samples, 
which is a consequence of the sampling theorem, will be 
engaged as the part of the transform. Namely, signal values at 
the instants proportional to the roots of the Hermite polynomial 
will be exactly calculated, under the condition that the existing 
samples are available at the discrete time grid satisfying the 
sampling theorem [17]. Since the Hermite polynomial roots 
assume fix predefined values, depending only on the signal 
length, it will be shown that a scaling factor should be engaged 
in the resampling process. A discussion on this scaling factor 
influence is provided. Theoretical contributions are illustrated 
by a numerical example with real biomedical signal known as 
QRS complex [1]-[5]. 

The rest of the paper is organized as follows. Section 2 
presents the discrete Hermite transform. The relation between 
uniformly and non-uniformly sampled signals is discussed in 
Section 3. Section 4 presents numerical examples illustrating 
the presented theory, while the concluding remarks are given in 
the end of the paper. 

II. HERMITE TRANSFORM 

Hermite transform enables the signal projection on Hermite 
basis functions defined as:  
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where the Hermite function order is denoted by p,  ( / )pH t   

is the p-th order Hermite polynomial, and the scaling factor σ is 
introduced to “stretch” and “compress” the corresponding 
Hermite function, thus increasing the basis suitability to better 
match the signal being represented [2], [4], [10]. The 
illustration of the first four Hermite functions is given in Fig. 1. 
It can be easily concluded that these basis functions have a 
compact time-support. The p-th order Hermite function and the 
functions of the orders 1p   and 2p   can be related with the 

following recursive formula: 
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The calculation of the function in a recursive manner has 
some important practical advantages, as emphasized in [2] and 
[16]. The Hermite expansion, whose discrete counterpart is 
referenced as Hermite transform, assumes that the analyzed 
signal can be represented as the summation of the weighted 
basis functions [1]-[16]: 
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where cp denotes the p-th order Hermite coefficient, defined via 
the following integral: 
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with 0,..., 1p M  , where the compact time-support of the 

signal is assumed, i.e. ( ) 0f t  , [ , ]t T T   . The number of 

basis functions is denoted as M. For the numerical calculation 
of the integral (4) quadrature approximation techniques are 
engaged. Since it provides significant calculation advantages 
over other approximations, the Gauss-Hermite quadrature, 
defined by: 
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is commonly used, where tm denote zeros of the M-th order 

Hermite polynomial, which satisfy 1 2 ... Mt t t   . 

An infinite number M   of Hermite functions is 

needed for the exact representation of the continuous signal 
f(t). However, in numerous applications, a finite number of 
M    Hermite functions can be used for the signal 
representation with a certain approximation error [2], [16]. In 
contrary to continuous signals, for the case of discrete signals, 
Hermite transform is an orthonormal and complete signal 
representation if certain conditions are met. 

Namely, in that case any discrete signal of length M, 
sampled at points tm proportional to the roots of the M-th order 
Hermite polynomial, the Gauss-Hermite quadrature formula (5) 
provides the exact value of the integral (4), and the analyzed 
signal can be uniquely represented in the domain of the discrete 
Hermite transform. 

The time axis scaling factor σ, used to “stretch” and 
“compress” Hermite functions relatively to the analyzed signal 
f(t). As it is proposed in [2] and [4] and we can fix σ = 1 and 
introduce an equivalent parameter λ to “stretch” and 
“compress” the signal f(t) relatively to the Hermite function 
basis.  

For the sake of simplicity, the scaling factor σ = 1 will be 
omitted from the basis functions notation, and the signal 
scaling factor λ will be used instead in the signal notation.  

In order to emphasize the difference between mentioned 
uniform and non-uniform sampling approaches, they are 
illustrated in Fig. 2, for the signal of length M = 51.  

0 10 20 30 40 50
0

0.5

1


0
(t
m

)

0 10 20 30 40 50
-1

0

1


1
(t
m

)

0 10 20 30 40 50
-1

0

1


2
(t
m

)

0 10 20 30 40 50
-1

0

1

t
m


3
(t
m

)

 
Figure 1. First four Hermite functions, where M = 51, and  σ = 1 
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Figure 2. Discrete time grid according to the sampling theorem (blue circles) 

and time points proportional to the roots of the Hermite polynomial (red dots). 
Two values of σ are used: 1 and 2.8. 

 



Namely, discrete time grids in two cases are shown: the 
grid obtained by uniform sampling and the one corresponding 
to the points equal to zeros of the M = 51-st Hermite 
polynomial are shown in upper figure, while the uniform grid 
and the one proportional to the roots of the Hermite polynomial 
by a factor σ = 2.8 is shown in the lower figure. It is important 
to notice that if a proper scaling factor is used, non-uniform 
sampling points can be mainly placed in time intervals between 
two neighboring sampling points.  

To summarize the described facts, the inverse (3) and direct 
Hermite transform (5), can be written in matrix-vector notation. 
Let us introduce the Hermite transform matrix as: 
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If we introduce the vector c = [c0, c1, …, cM -1]T consisted of  
Hermite coefficients cp, p = 1, 2,…, M - 1 and vector  

     1 2
ˆ , , ,

T

Mf t f t f t     f consisted of M signal 

samples, sampled at points proportional to the roots of the M-th 
order Hermite polynomial, λt1, λt2,…, λtM  the summation (5) 
can be written as: 
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Having in mind the form of the expansion (3), the inverse 
transform matrix is consisted of M Hermite functions: 
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Based on the previous matrix definitions, the Hermite 
transform for the case of discrete signals reads: 
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III. SAMPLING AT NON-UNIFORM POINTS 

Let us consider a continuous-time signal f(t) with a compact 

time support, such that ( ) 0 for ,f t T t T      sampled 

uniformly to obtain the corresponding finite duration discrete-
time signal f(n), of length M = 2K+1, n = -K,…, K according to 
the sampling theorem, with t  being the sampling period. The 

continuous-time signal can be reconstructed, according to the 
sampling theorem, by using the following relation: 
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If one is interested to resample the signal at points proportional 
to the roots of the M-th order Hermite polynomial, λt1, λt2,…, 
λtM  according to (10) we further have: 
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where m = 1,…, M. 

 The uniformly sampled signal and the corresponding 
Hermite transform now can be related by combining (7) and 
(11) as: 
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where p = 0, 2, …, M -1, m = 1,…, M. In other words, (12) is 
used to calculate Hermite transform coefficients of a uniformly 
sampled signal. 

IV. REPRESENTATION OF QRS COMPLEXES 

QRS complexes are important parts of ECG signals, and 
play an important part in medical diagnosis and treatment [1]-
[5]. Due to the visual similarity of QRS complexes and 
Hermite functions, Hermite transform has been widely 
employed for the representation of these signals, with different 
aims. Namely, since these signals can be represented with as 
small number of large Hermite coefficients, Hermite transform 
has been employed in compression algorithms developed 
particularly for QRS complexes [2], [4]. 

In order to confirm previous theoretical considerations, and 
having in mind that the Hermite basis is suitable for their 
representation, we analyze uniformly sampled ECG signals 
obtained from the online MIT-BIH ECG Compression Test 
Database [18]. In this database, every ECG signal is recorded 
with two channels, known as leads. ECG signal with two leads 
from this database, is shown on Fig. 3. First 10 seconds of the 
signal are shown. The signals are available in discrete form, 
sampled according to the Shannon-Nyquist theorem, with 

sampling period 1/ 250t  [s]. The database is consisted of 

168 ECG signals and 1486 detectable QRS complexes. 

We have further isolated one QRS complex, and employed 
(12) for its representation. Two different scaling factors λ were 
tested to scale the time axis of the signals, in the calculation of 
(12). Results are shown in Fig. 4. 

It can be further observed that the scaling factor λ has an 
important role in the representation of discrete signals with 
compact support. Namely, if the basic aim is to represent the 
signal with a small number of coefficients, then an optimal 
choice of the scaling factor must be made. The value of the 
scaling factor depends on the application of the transform, and 
it is the topic of our current research [19]. 
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Figure 3.  An example of ECG signal with two leads. 
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Figure 4. Hermite transform of the QRS complex: first row – the selected 

QRS complex, second row – Hermite coefficients of the signal with 

1 t   , third row – Hermite coefficients of the signal with 5.7 t   . 

V. CONCLUSION 

The Hermite transform of discrete-time signals sampled 
according to the sampling theorem is revisited in the paper. 
Representation of such signals is of a great interest in practice, 
since the signals are mainly available in their sampled form. 
The analyzed signals are resampled at the points proportional 
to the roots of the Hermite polynomial, by reconstructing their 
exact values at the points of the interest, engaging the theory of 
the sampling theorem.  

The influence of the time-scaling factor is emphasized, and 
the presented theory is illustrated by a numerical example with 
real signal. Namely, we have applied the Hermite transform on 
a uniformly sampled QRS complex, by resampling it at the 
points proportional to the roots of the Hermite polynomial. We 

have concluded that the scaling factor is very important for a 
concise representation of signals with compact time support. 
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