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Abstract — Compressive sensing (CS) of signals that exhibit
sparsity in the domain of 2D Hermite transform (HT) is
considered. The aim is to provide a successful recgtruction of
randomly positioned missing samples. Gradient algdhm
originally developed for the case of 1D HT as the doain of
sparsity is applied as the reconstruction method,aneralized and
adapted for the case of signals sparse in 2D HT daim. This
reconstruction approach minimizes the sparsity mease, with
missing samples observed as minimization variablesd updated
in a steepest descent manner. Theoretical contribuths are
verified with numerical results.
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. INTRODUCTION

Compressive sensing (CS) and sparse signal pragessiThis

represent emerging research areas during the dasidd [1]-
[16]. Since the CS assumes the sparsity of sigimala

transformation domain, these areas are closelyemed [1]-
[3]. The sparsity of a signal is defined as the benof non-
zero transformation coefficients. Signals that a@ppén

different applications have different sparsity damsa For
example, digital images are sparse in the discoetgine
transform (DCT) domain. On the other side, QRS dergs,

that are one of crucial segments of ECG signatssparse in
the domain of discrete Hermite transform [10], [145B].

system of equations that has the sparsest transform
representation [1], [2], [10], [11]. The availaldéservations,
incorporated in equations of the undetermined aystef
equations, in fact define the conditions for th@imization of

the sparsity measures. The sparsity can be direwtigsured
using the/,-norm of the transform coefficients [1]-[4], [10]-

[15]. This norm is equal to the number of non-zgemsform
coefficients. A reconstruction approach that carctesidered
as {,-norm based is presented in [11] and [12]. Howetles,

since this norm is very sensitive to noise as vadl to
guantization effects, and moreover, it is not conve
minimization procedures cannot be directly applil] other
more robust norms are more commonly used in CS
reconstruction algorithms. For instance, the sparsiusually
measured witl/, -norm of the transform coefficients [1]-[16].

relaxed reconstruction constraint has openéd t
possibility to apply a number of different reconstion
approaches. There are several reconstruction #igwibased
on linear programing, for instance primal-dual iige point
methods [1], [4], as well as other approaches rafitee
gradient procedures such as Orthogonal MatchingsuRur
(OMP), Gradient Pursuit, CoSaMP [6], [10], [13],4]1 An
interesting steepest descent-based approach for
reconstruction of missing samples is presented3hdnd [14].

the

The Hermite transform (HT) and Hermite functionsg=jH
have attracted important research attention daetantageous

CS deals with signals with missing samples [1]-[15] properties in certain applications, when comparedh w

Namely, under the condition that a signal is sparsea
transformation domain, the aim is to recover ahal values
from a reduced set of observations. The reduced ofet
measurements might be a consequence of a samplaggy
or simply their physical unavailability [1]-[9]. Othe other
side, in a number of applications signal valueshinige highly
corrupted by noise. Thus, according to differenbusi
techniques such as L-estimation, it is better t@ dmse highly
corrupted signal values, and perform the analysisl a
processing of the signal with remaining values Wwhétce less
corrupted. Hence, CS and sparse signal proceskjogthms
can be also applied in the reconstruction of thétechhighly
corrupted signal values [4], [10]-[15]. Ether thaengles are
missing as a consequence of a sampling stratedly tia¢ aim
to reduce the data size) or they are intentioraitjtted due to
the corruption, the reconstruction problems cartrbated as
equivalent from the perspective of CS.

standard signal transforms, such as discrete Fowarsform
(DFT) and DCT [10], [14]-[17] Representation andalysis,
recognition and compression of QRS complexes [114],
[16], digital image processing [10], computed tomagdny,
analysis of protein structure etc. [14] are justmeo
representative applications of HT and HFs. HF afidhdve
very interesting properties regarding the possiedi of
recursive calculations, that opened the way to daktulation
algorithms [16]. Signals that have a compact tiongpert
usually have a concise HT due to the localizatimperties of
HFs, with a small number of non-zero coefficienezaded to
represent such signals. These facts lead to appfisaof this
transform in compression and recognition algoritiorsECG
signals and their important parts QRS complexes
[14][216][17], as well as in image processing apgiiens such
as the digital image segmentation [17].

Recently, we have proposed a gradient-based

The basic idea behind the CS based reconstructfon @econstruction approach for signals with missingsias, that

missing samples is to find the solution of an uedained

exhibit sparsity in the domain of 1D Hermite transfi [14].



The ideas behind the approach are based on signdaient-
based reconstruction procedure presented in [13e2D HT
represents the generalization of the 1D HT withyyeportant

Previous integral is calculated using the well-kndBauss-
Hermite quadrature, which can be understood adifwete
HT of the observed signal:

applications in image processing [10], we have tbuhe

motivation to investigate the possibility of thengealization of ¢ = 1 < 4’ (t) f(t),p=0,1..M -1 (6)
the CS concepts to the 2D signal case. Namelyptpsr deals PTM &L [QUM At )] n’ B '
with the reconstruction of missing samples in ssanals.

Herein, we formulate the CS problem and propose theshere the points, correspond to zeros of thé-th order
generalization of the gradient reconstruction atgor, Hermite polynomial (2). It is crucial to note thiétthe basis
originally developed for 1D signals sparse in HTndin to the  functions in expansion (4) are sampled at zerothefM-th
2D signal case. Presented theory is illustrateth witmerical order Hermite polynomial, then the numberMf= M basis
examples of successful missing samples reconsiructi functions uniquely and completely represent a discsignal
f(t,) in the HT domain. In the other words, the expamgi)

for N =M and with basis functiong(t,,0),p=0, ..M -1
and (6) represent the Hermite transform pair.

The rest of the paper is organized as follows. rAfte
Introduction, we revisit the 1D HT as well as the BT in
Section 2. The signals sparse in 2DI HT transforenpdaced in
the framework of CS in Section 3, where the geimydl
gradient-based algorithm is presented as well. Nigale
results are given in Section 4, while the papersenith
concluding remarks.

B. Two-dimensional Hermite transform
Two-dimensional Hermite functions are defined die¥es:

~D)Pe2 4P ) (~1f e T2 gk @Y’ )
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where indexegp and k denote that it is the 2D function of
orderpk. Two 2D HFs are shown in Fig.4s,(Xm, Yn) and

Wso(Xm» Yn) - Obviously, according to (2) and (3), 2D HFs
can be calculated as a product of correspondinglE®

Il.  HERMITE TRANSFORM Yok (X, y)=

A. Onedimensional Hermite transform

One-dimensional continuous Hermite functions arfindd
via following recursion:

1 -t
W,(t,0) = e, yto)= / e2”2

Nolr W ok (% V)= (O () - ®)
wp(t.a):iF voato)- [Pty 0. UNCRA

gy\p p -

They are closely related with thp-th order Hermite

. 0.5
polynomial:

Pt d’ (e_t ) 0
H, () =(-D°e aiP 2)

as follows: -0.5
v,t.0)=(o2nr) e H, 1 0). 3)

The scaling factoo controls the width of basis functions.
For the sake of simplicity, in our analysis it wile assumed
that o =1 and will be omitted in further notation of HFs.&'h
1D Hermite expansion of the sigrét) has the following form:

F)=Y e, ) (@)
p=0

wherey (t) is thep-th order Hermite basis function ahtis

the number of basis functions used in the expansion
general, an infinite number of basis functionsasded for the
representation of a continuous-time signal. Hermite
coefficients are defined as:

= [ 1w, 0d, p=0,1,..M - 1 (5)
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Figure 1. Two 2D Hermite functions



Let us assume that a 2D discrete sigf{@l, ym) with
dimensionsM x N is sampled at roots of th¥l-th order
Hermite polynomial in dimensior, and at roots of th&l-th
order Hermite polynomial in dimensiogy. Let us further
assume that functions (7) i.e. (8) are also sasnaleointsx,
in the first dimension, angy in the second. Then, the 2D
discrete Hermite expansion, i.e. the inverse discBD HT
reads:

M-IN-1

HCSSAEDY

p=0 k=0

Codp, (% ) (¥n) (9)

with m=1,....M ,n=1,...N Having in mind (5) and (6) 2D
Hermite coefficients are defined as:

M N
Cpk — 1 ZZ l//p(xm) - wk(yn) >
MN mzlnzl[wM—l(Xm)] [wN—l(yn)]
with  p=0,..M-1k=0,.N- 1 The Gauss-Hermite
qguadrature is used to calculate the integral ofahe:
Coc = | [ F06 Y, (0 ()b,

—00 —00

F (% ¥a)» (10)

(11)

which is defined for the case of continuous signal.

If we observe (9) and (10) it can be easily conetlthat
both direct and inverse HT can be calculated bggugie 1D
transform pair (4) and (6) over one variable witle tother
fixed, and then repeating the same calculationtfer second
variable.

Ill.  CSIN THE DOMAIN OF 2D HERMITE TRANSFORM

Let us observe the signal of sik&x N, sparse in the 2D
HT domain:

K
f(xmv)/n):zpilnllpiki (Xmiyn) (12)
=1

where A is used to denote the amplitude of thiéh signal
component. Signal has non-zero coefficients attiposi (i,

ki,) i =1,...,K in the 2D HT domain. The number of non-zero

updated in a steepest descent manner. A goochgtadiue of
the step can be obtained as:

A=rnax|f(Xmlynj’(xm’yn )DMA

Before the algorithm starts, the signal consisfealvailable
signal samples and with zeros at missing samplsgiqus is
formed, according to :

(s Ya)s for (¥, )OM

(13)
0, for (x,,.y,)ON\M ,

y(xm,yn)={

Then, for each iteratiok the following steps are repeated,
until the desired precision is obtained:

Sep 1: For each missing sample, form two signals defined
as:

8 (X, ¥,) +4, for (x,,y,)ON M
y:fk)(xm'yn)z{ytk)(xm Y,) (X Yn) A

V0 (% ¥a),  for (x,.y,)EOM

8 (X ¥) =4, for (x,,y,)ON\M
yék)(xm’yn)z{y?k)(xm Ya) X Yn) A

Vo) (% ¥a),  for (x,.y,)OM,

Sep 2: Calculate the finite difference of the signal
transform measure

g(xm,yn):%[z;)Zk _Zka|YF;<|]

Note that Y;k andY, denote calculated 2D HTs of signals

(14)

.
Yo

y(x,,y,) and y¥(x,y,) respectively. Also note that
szk Y:| represent, - norm of 2D HT [13], [14].

pk
Step 3: Form the gradient matri@¢™ of the same size as
the analyzed signalf(x,,y,) with elements defined as
follows:

g(xm’yn)l for (Xm Yyn )DN \MA

(15)
0, for (x,.y,)OM,,

G‘k’(xn.yn)={

componentskK is known as sparsity. These coefficientswhere g(x,,X,) is calculated in the Step 2.

represent signal support in the observed domaire 3ét
consisted of all signal positions is denoted\by

Now assume that onlyMaNa samples are available at

positions (x.,,y, )M, (i.e. (M =M ,)(N—-N,) samples are
missing at random positions). If the signal sasfithat

K[ MN, according to CS theory, missing samples can b

exactly reconstructed if certain conditions are,rastdiscussed
in [1]-[4].

A. Gradient reconstruction algorithm

The basic
presented in [14] is to set to zero the valuehéndignal at all
missing samples positions, then to vary these saiuvi¢h a

idea behind the gradient-based algorithm

Sep 4: Correct the values of(n) using the gradient vector
G™ with the steepest descent approach:

Y %00 ¥a) = Y (%0, 0) = 28G9 (x,,y, ). (16)

High level of precision can be achieved with therdase of
A when the algorithm convergence slows down. This loa
detected either by measuring reconstructed sigraaisgy or by
detecting oscillatory nature of the adjustment3] [114].

IV.  NUMERICAL RESULTS
Observe the signal of the form (12), with= 4, positions

(p.k) =@ 1), (P, k)= (3. 2), b2 ks F (5. 7).k, F (6,

small, appropriately chosen ste and then measure the 2D with corresponding component amplitude’s:= 4.5,A, = 3,

HT concentrations in both cases, in order to ddternthe
gradient direction. The missing samples values ten

A, =-3, and A, =0.2.The signal size i80x 30.



In our example, 200 samples out of 900 are availgiout
22%), while 700 samples are missing at random ipasit The
signal with missing samples is shown in Fig. 2s{fiow). We
have successfully applied the gradient algorithmsented in
the previous Section. The reconstructed signatasva in Fig.
2 (second row). The reconstruction MSE is belowdR2

V. CONCLUSION

In this paper the reconstruction of randomly positid
missing samples of signals sparse in 2D HT domain i
analyzed. Previously developed gradient algorithraxtended
to 2D HT domain of sparsity. Numerical results @onfthe
presented theory. The successful reconstructidmyha@epends

Moreover, we observe the 2D HT of the analyzedadign on signal sparsity and the number of missing sasnple

with missing samples, Fig. 3 (left). As the consawme of the
missing samples in signal domain, large numbepoefficients
has significant non-zero values.
reconstructed signal is shown on Fig 3 (right),hwitnly 4
coefficients with significant values, which corresgs to the
case when all samples available, proving that ¢leenstructed
signal also has the original signal sparsity. Thiesented
gradient algorithm successfully finds the valuesnugsing
samples that correspond to the sparsest possibitiosoof the
observed CS problem.

Signal with missing samples Signal with missing sample:

X -5 0 5

m
Reconstructed signal

Figure 2. The reconstruction of missing samplemaiwith missing samples
(first row) and the reconstructed signal (secawvd)r

2D HT of signal with missing samples 2D HT of reconstructed signe
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Figure 3. 2D HT coefficients of the signal with sirey samples (left) and 2D
HT coefficients of the reconstructed signal (right)

Successful reconstruction of sparse signals isagteed, if the
well-known reconstruction conditions are met. Ouwrrent

The 2D HT of theresearch includes the application of the presealgokithm to

the parameterized 2D Hermite basis, with the airméoease
the sparsity of real signals in the analyzed domain
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