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Abstract – Compressive sensing (CS) of signals that exhibit 
sparsity in the domain of 2D Hermite transform (HT) is 
considered. The aim is to provide a successful reconstruction of 
randomly positioned missing samples. Gradient algorithm 
originally developed for the case of 1D HT as the domain of 
sparsity is applied as the reconstruction method, generalized and 
adapted for the case of signals sparse in 2D HT domain. This 
reconstruction approach minimizes the sparsity measure, with 
missing samples observed as minimization variables and updated 
in a steepest descent manner. Theoretical contributions are 
verified with numerical results. 
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I.  INTRODUCTION 

Compressive sensing (CS) and sparse signal processing 
represent emerging research areas during the last decade [1]-
[16]. Since the CS assumes the sparsity of signals in a 
transformation domain, these areas are closely connected [1]-
[3]. The sparsity of a signal is defined as the number of non-
zero transformation coefficients. Signals that appear in 
different applications have different sparsity domains. For 
example, digital images are sparse in the discrete cosine 
transform (DCT) domain. On the other side, QRS complexes, 
that are one of crucial segments of ECG signals, are sparse in 
the domain of discrete Hermite transform [10], [14], [16]. 

CS deals with signals with missing samples [1]-[15]. 
Namely, under the condition that a signal is sparse in a 
transformation domain, the aim is to recover all signal values 
from a reduced set of observations. The reduced set of 
measurements might be a consequence of a sampling strategy 
or simply their physical unavailability [1]-[9]. On the other 
side, in a number of applications signal values might be highly 
corrupted by noise. Thus, according to different robust 
techniques such as L-estimation, it is better to omit these highly 
corrupted signal values, and perform the analysis and 
processing of the signal with remaining values which are less 
corrupted. Hence, CS and sparse signal processing algorithms 
can be also applied in the reconstruction of the omitted highly 
corrupted signal values [4], [10]-[15]. Ether the samples are 
missing as a consequence of a sampling strategy (with the aim 
to reduce the data size) or they are intentionally omitted due to 
the corruption, the reconstruction problems can be treated as 
equivalent from the perspective of CS. 

The basic idea behind the CS based reconstruction of 
missing samples is to find the solution of an undetermined 

system of equations that has the sparsest transform 
representation [1], [2], [10], [11]. The available observations, 
incorporated in equations of the undetermined system of 
equations, in fact define the conditions for the minimization of 
the sparsity measures. The sparsity can be directly measured 
using the 0l -norm of the transform coefficients [1]-[4], [10]-
[15]. This norm is equal to the number of non-zero transform 
coefficients. A reconstruction approach that can be considered 
as 0l -norm based is presented in [11] and [12]. However, the 
since this norm is very sensitive to noise as well as to 
quantization effects, and moreover, it is not convex, 
minimization procedures cannot be directly applied, and other 
more robust norms are more commonly used in CS 
reconstruction algorithms. For instance, the sparsity is usually 
measured with 1l -norm of the transform coefficients [1]-[16]. 
This relaxed reconstruction constraint has opened the 
possibility to apply a number of different reconstruction 
approaches. There are several reconstruction algorithms based 
on linear programing, for instance primal-dual interior point 
methods [1], [4], as well as other approaches - iterative 
gradient procedures such as Orthogonal Matching Pursuit 
(OMP), Gradient Pursuit, CoSaMP [6], [10], [13], [14]. An 
interesting steepest descent-based approach for the 
reconstruction of missing samples is presented in [13] and [14]. 

The Hermite transform (HT) and Hermite functions (HF) 
have attracted important research attention due to advantageous 
properties in certain applications, when compared with 
standard signal transforms, such as discrete Fourier transform 
(DFT) and DCT [10], [14]-[17] Representation and analysis, 
recognition and compression of QRS complexes [10], [14], 
[16], digital image processing [10], computed tomography, 
analysis of protein structure etc. [14] are just some 
representative applications of HT and HFs. HF and HT have 
very interesting properties regarding the possibilities of 
recursive calculations, that opened the way to fast calculation 
algorithms [16]. Signals that have a compact time-support 
usually have a concise HT due to the localization properties of 
HFs, with a small number of non-zero coefficients needed to 
represent such signals. These facts lead to applications of this 
transform in compression and recognition algorithms for ECG 
signals and their important parts – QRS complexes 
[14][16][17], as well as in image processing applications such 
as the digital image segmentation [17]. 

Recently, we have proposed a gradient-based 
reconstruction approach for signals with missing samples, that 
exhibit sparsity in the domain of 1D Hermite transform [14]. 



The ideas behind the approach are based on similar gradient-
based reconstruction procedure presented in [13]. Since 2D HT 
represents the generalization of the 1D HT with very important 
applications in image processing [10], we have found the 
motivation to investigate the possibility of the generalization of 
the CS concepts to the 2D signal case. Namely, this paper deals 
with the reconstruction of missing samples in such signals. 
Herein, we formulate the CS problem and propose the 
generalization of the gradient reconstruction algorithm, 
originally developed for 1D signals sparse in HT domain to the 
2D signal case. Presented theory is illustrated with numerical 
examples of successful missing samples reconstruction. 

The rest of the paper is organized as follows. After 
Introduction, we revisit the 1D HT as well as the 2D HT in 
Section 2. The signals sparse in 2Dl HT transform are placed in 
the framework of CS in Section 3, where the generalized 
gradient-based algorithm is presented as well. Numerical 
results are given in Section 4, while the paper ends with 
concluding remarks. 

II. HERMITE TRANSFORM 

A. One dimensional Hermite transform 

One-dimensional continuous Hermite functions are defined 
via following recursion: 
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They are closely related with the p-th order Hermite 
polynomial: 
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The scaling factor σ  controls the width of basis functions. 
For the sake of simplicity, in our analysis it will be assumed 
that  1σ =  and will be omitted in further notation of HFs. The 
1D Hermite expansion of the signal f(t) has the following form: 
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where ( )p tψ  is the p-th order Hermite basis function and N is 

the number of basis functions used in the expansion. In 
general, an infinite number of basis functions is needed for the 
representation of a continuous-time signal. Hermite 
coefficients are defined as: 

 ( ) ( ) , 0,1,..., 1.p pc f t t dt p Mψ
∞

−∞

= = −∫  (5) 

Previous integral is calculated using the well-known Gauss-
Hermite quadrature, which can be understood as the discrete 
HT of the observed signal: 
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where the points tn correspond to zeros of the M-th order 
Hermite polynomial (2). It is crucial to note that if the basis 
functions in expansion (4) are sampled at zeros of the M-th 
order Hermite polynomial, then the number of N = M basis 
functions uniquely and completely represent a discrete signal 
f(tn) in the HT domain. In the other words, the expansion (4) 
for N = M and with basis functions ( , )p mtψ σ , p = 0, …, M -1 

and (6) represent the Hermite transform pair. 

B. Two-dimensional Hermite transform 

Two-dimensional Hermite functions are defined as follows: 
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where indexes p and k denote that it is the 2D function of 
order pk. Two 2D HFs are shown in Fig.1: 12( , )m nx yψ  and 

52( , )m nx yψ . Obviously, according to (2) and (3), 2D HFs 

can be calculated as a product of corresponding 1D HFs: 

 ( , ) ( ) ( )pk p kx y x yψ ψ ψ= . (8) 
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Figure 1. Two 2D Hermite functions 

 



Let us assume that a 2D discrete signal f(xn, ym) with 
dimensions M x N is sampled at roots of the M-th order 
Hermite polynomial in dimension x, and at roots of the N-th 
order Hermite polynomial in dimension y. Let us further 
assume that functions (7) i.e. (8)  are also sampled at points xn 

in the first dimension, and ym in the second. Then, the 2D 
discrete Hermite expansion, i.e. the inverse discrete 2D HT 
reads: 
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with 1,..., , 1,..., .m M n N= = Having in mind (5) and (6) 2D 

Hermite coefficients are defined as: 
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with 0,..., 1, 0,..., 1.p M k N= − = −  The Gauss-Hermite 

quadrature is used to calculate the integral of the form: 
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∞ ∞

−∞ −∞

= ∫ ∫  (11) 

which is defined for the case of continuous signal.  

If we observe (9) and (10) it can be easily concluded that 
both direct and inverse HT can be calculated by using the 1D 
transform pair (4) and (6) over one variable with the other 
fixed, and then repeating the same calculation for the second 
variable. 

III.  CS IN THE DOMAIN OF 2D HERMITE TRANSFORM 

Let us observe the signal of size M x N, sparse in the 2D 
HT domain: 
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where Ai is used to denote the amplitude of the i-th signal 
component. Signal has non-zero coefficients at positions (pi, 
ki,) 1,...,i K=  in the 2D HT domain. The number of non-zero 
components K is known as sparsity. These coefficients 
represent signal support in the observed domain. The set 
consisted of all signal positions is denoted by N. 

Now assume that only MANA samples are available at 
positions ( , )m nx y ∈ AM  (i.e. ( )( )A AM M N N− −  samples are 
missing at random positions). If the signal satisfies that 
K MN , according to CS theory, missing samples can be 
exactly reconstructed if certain conditions are met, as discussed 
in [1]-[4]. 

A. Gradient reconstruction algorithm 

The basic idea behind the gradient-based algorithm 
presented in [14] is to set to zero the values in the signal at all 
missing samples positions, then to vary these values with a 
small, appropriately chosen step ±∆  and then measure the 2D 
HT concentrations in both cases, in order to determine the 
gradient direction. The missing samples values are then 

updated in a steepest descent manner. A good starting value of 
the step can be obtained as: 

max ( , ) , ( , )m n m nf x y x y∆ = ∈ AM  

Before the algorithm starts, the signal consisted of available 
signal samples and with zeros at missing samples positions is 
formed, according to : 
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Then, for each iteration k the following steps are repeated, 
until the desired precision is obtained: 

Step 1: For each missing sample, form two signals defined 
as: 
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Step 2: Calculate the finite difference of the signal 
transform measure 
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Note that  pkY +  and pkY −  denote calculated 2D HTs of signals 
( )
1 ( , )k

m ny x y  and  ( )
2 ( , )k

m ny x y  respectively. Also note that 

pkp k
Y ±∑ ∑  represent 1l - norm of  2D HT [13], [14]. 

Step 3: Form the gradient matrix ( )kG of the same size as 
the analyzed signal ( , )m nf x y  with elements defined as 
follows: 
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where ( , )m ng x x  is calculated in the Step 2. 

Step 4: Correct the values of y(n) using the gradient vector 
( )kG  with the steepest descent approach: 

 ( 1) ( ) ( )( , ) ( , ) 2 ( , )k k k
m n m n m ny x y y x y G x y+ = − ∆ . (16) 

High level of precision can be achieved with the decrease of  
∆  when the algorithm convergence slows down. This can be 
detected either by measuring reconstructed signal sparsity or by 
detecting oscillatory nature of the adjustments, [13] , [14]. 

IV.  NUMERICAL RESULTS 

Observe the signal of the form (12), with K = 4, positions  

1 1 2 2 3 3 4 4( , ) (1, 1), ( , ) (3, 2), ( , ) (5, 7), ( , ) (6,9)p k p k p k p k= = = =
 with corresponding component amplitudes: 1 24.5, 3,A A= =  

3 3,A = − and 4 0.2.A = The signal size is 30 30× . 



In our example, 200 samples out of 900 are available (about 
22%), while 700 samples are missing at random positions. The 
signal with missing samples is shown in Fig. 2 (first row). We 
have successfully applied the gradient algorithm presented in 
the previous Section. The reconstructed signal is shown in Fig. 
2 (second row). The reconstruction MSE is below -120dB. 

Moreover, we observe the 2D HT of the analyzed signal 
with missing samples, Fig. 3 (left). As the consequence of the 
missing samples in signal domain, large number of coefficients 
has significant non-zero values. The 2D HT of the 
reconstructed signal is shown on Fig 3 (right), with only 4 
coefficients with significant values, which corresponds to the 
case when all samples available, proving that the reconstructed 
signal also has the original signal sparsity. The presented 
gradient algorithm successfully finds the values of missing 
samples that correspond to the sparsest possible solution of the 
observed CS problem.  
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Figure 2. The reconstruction of missing samples: signal with missing samples 

(first row) and the  reconstructed signal (second row) 
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Figure 3. 2D HT coefficients of the signal with missing samples (left) and 2D 
HT coefficients of the reconstructed signal (right) 

V. CONCLUSION 

In this paper the reconstruction of randomly positioned 
missing samples of signals sparse in 2D HT domain is 
analyzed. Previously developed gradient algorithm is extended 
to 2D HT domain of sparsity. Numerical results confirm the 
presented theory. The successful reconstruction highly depends 
on signal sparsity and the number of missing samples. 
Successful reconstruction of sparse signals is guaranteed, if the 
well-known reconstruction conditions are met. Our current 
research includes the application of the presented algorithm to 
the parameterized 2D Hermite basis, with the aim to increase 
the sparsity of real signals in the analyzed domain. 
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