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Abstract—Performing an accurate 3D surface scan of every-
day objects is sometimes difficult to achieve. Using the 3D scanner
as a main sensor in a fast-moving mobile robot emphasizes this
issue even further. When small robots with limited payload are
considered, the professional Lidar systems are not likely to be
embedded due to their weight, dimensions and/or high cost.
Introduction of simple structured-light scanners makes possible
fast scanning, effective robot detection and evasion of obstacles.
Nevertheless, some obstacles may still be difficult to detect and
recognize, primarily due to limitations of scanner’s hardware
which results in a low number of reconstructed surface points.
In this paper a compressed sensing technique, primarily used
for the reconstruction of 2D images, is utilized to enhance the
quality of 3D scan, by increasing the number of reconstructed
3D points to the scanner’s theoretical maximum. Obtained results
demonstrated the feasibility of the approach in terms of mean
square error.

I. INTRODUCTION

The basic requirement for any mobile robot is an accurate
knowledge of its surroundings, in order to localize itself in
the space, avoid obstacles in its path, and demonstrate a
smart behavior in general. This leads to the introduction of
robot perception systems, whose main function is to detect
the surrounding objects and avoid possible collisions. The
detection and recognition of potential obstacles, especially in
the dynamic surroundings is a challenging task, and a simple
detection of obstacles (without an actual recognition) in the
robot’s vicinity is sometimes insufficient.

In the search for a solution, researchers and engineers
have introduced several sensor systems, which are based on
optoelectronics. They utilize simple geometry principles [1]-
[2], with the emphasis on multi-camera systems and various
3D scanners. The basic principle is similar to the function
of human vision [1]. Downside of this approach is the intro-
duction of complex calculations, which are often difficult to
execute in real-time with robot’s on-board computer.

In contrast to the camera systems, the laser scanners offer a
simpler calculation of the object’s location in the space, where
a laser point (line) is moved by a precise electromechanical
system (the rotating mirror in most systems). Since the number
of points returned is relatively low, the detection based solely
on laser data may be unreliable [3]. The industry-grade laser

scanners (e.g. SICK) [4] are in some cases more expensive
than the robot itself, or too bulky to be efficiently utilized.

Structured light scanners were introduced as a low cost
alternative to Lidar scanners [5]-[6], since they use a simple
light pattern projector and off the shelf components. The
development of the Microsoft Kinect system, which is in fact
a more advanced structured light sensor, inspired researchers
to use it as a robot navigation device. Correa et. al. [7] have
successfully implemented the Microsoft Kinect as a sensor for
indoor navigation of autonomous surveillance mobile robot.

Both structured light scanners and laser scanners are easier
to implement than a multi-camera system; nevertheless they
inherit some of the common imperfection of the optoelectronic
system. The challenging surface patterns like the camouflaged
objects, object with a low reflective ratio, parts of the object
in the shade and the object lighted by other light source may
be difficult to reconstruct due to a low number of 3D points
in the resulting point cloud. Each scan can retrieve a fixed
(maximum) number of reconstructed points (one projection of
the light structure, or a full Lidar swipe). Techniques used in
the compressed sensing, which are primarily developed for the
reparations of damaged/undersampled 2D images, may be used
for increasing the quality of a 3D scan, and supplement the
missing 3D points in a point cloud. A similar approach was
already successfully used for the refinement of depth-maps
obtained by the Microsoft Kinect sensor [8].

Sparse signal processing and the compressed sensing (CS)
attracted a significant research interest during the last decade
[9]-[23]. CS deals with the reconstruction of randomly under-
sampled signals with the assumption that these are sparse in
a known transformation domain. The reduced set of measure-
ments often represents a consequence of a sampling strategy,
in order to reduce the data size requirements and the number
of acquisitions, preserving the same quality of the information
as if these values are available [14]-[19]. On the other hand,
known denoising techniques from the robust theory, such as
the L-statistics, are used to eliminate signal samples corrupted
by high noise [13], [20], [21]. Due to the random nature of
the noise, the corrupted values assume random positions and if
the sparsity condition is satisfied, CS reconstruction algorithms
can be applied in the reconstruction of the eliminated values.



The theoretical foundation of CS lies in fact that the missing
samples can be reconstructed by solving an undetermined sys-
tem of linear equations with the additional sparsity constraint
[9]-[12], [14]-[19]. Hence, an adequate measure of sparsity
is exploited in the reconstruction procedures. A natural way
to measure the sparsity is the so-called `0-norm, that is, the
number of non-zero signal coefficients in the observed sparse
transform domain.

It is crucial to emphasize that direct variations of unavailable
samples values measuring `0-norm at the same time is an
NP (non-deterministic polynomial-time) hard problem. Linear
programming techniques and gradient-based algorithms are
applied in the reconstruction by relaxing the sparsity constraint
involving the `1-norm. Many studies [9]-[12] have confirmed
that in the domain of interest this relaxation procedure is
adequate in the CS context. Several reconstruction procedures
are based on this relaxation [14]-[19]: well-known convex
optimization algorithms such as primal-dual interior point
methods and gradient-based methods (Orthogonal Matching
Pursuit (OMP), Gradient Pursuit and CoSaMP).

In this paper, for the purpose of the observed 2D recon-
struction problem, the gradient-based reconstruction algorithm
presented in [13] is applied. The adaptations of the algorithm
for the case of 2D signals and transforms are presented in [22].
However, in this work the reconstruction of missing values of
disparity matrix (and not the pixel value based map) is based
on the variation of their values in a steepest descent manner,
minimizing the `1-norm-based sparsity measure. The available
samples are fixed during the reconstruction, thus setting the
constraints for the sparsity minimization.

II. THEORETICAL BACKGROUND

A. 3D scanner system

The method evaluated in this paper is presented as an
improvement of an in-house built structured light scanner,
with the current accuracy in the 3rd dimension of 1.52 mm
and RMSE below 1 cm [5]. It is built from off-the shelf
components, which include a DLP (Digital Light Processing)
projector, a digital camera and a computer. The design is
based on a stereovision system [6], where DLP projector
acts as an active component and camera is the passive one.
If a single light ray is projected from a projector (noted as
B on Fig. 1) it passes through the projector frame (noted
as point B’) and hits the target in point C. The reflected
light ray is captured by camera through its plane (noted as
point A’). The pixel on camera plane (A’) and the pixel on
projector plane (B’) positions depend on an angle between the
camera and the object (α) and the angle between the projector
and the object (β). If the exact positions of the camera and
the projector in the world coordinate frame are known, the
problem of reconstructing exact position of point C is reduced
to a triangulation problem. The position of point C in the
reference coordinate frame is derived using equations (1) and
(2), where A’ and B’ are its coordinates in the camera and
projector planes, respectively; Pc and Pp are the camera and

projector matrices; τ is a triangulation function; and H is the
linear transformation that transforms A’= HB’ [1].

C = τ (A′, B′, Pc, Pp) (1)

τ = H−1
(
A′, B′, PcH

−1, PpH
−1) (2)

Figure 1. Triangulation of a surface point

If the vertical line is projected, and there is an object present
in the front of the scanner system, line is curved on the camera
side (Fig. 2). This is basic idea how the proposed scanner
system operates.

By placing a plane at infinity distance from the scanner, the
projected pattern (matrix containing 41 x 41 points) captured
by the camera is a template image for objects at the infinity.
By placing any object between a plane at infinity and scanner
system, similar image of the projected matrix is captured but
with projected points horizontally shifted towards the projector
side, where the disparity (horizontal shift) is in direct function
of distance between the scanner and the object (Fig. 2). Placing
a plane at infinity distance is simple to achieve in a simulated
scanner, while in real-life scenario, for obvious reasons, plane
should be placed at scanner’s maximum operating distance.

Figure 2. Disparity as seen from camera, as a result of an object placed in
front of the scanner system

The horizontal displacement of each projected point with
index (i,j) is stored as a value of the matrix at position (i,j).



The complex 3D reconstruction problem is in this part reduced
to a 2D problem, which can be represented with a 2D image
with rows/columns that directly correspond to rows/columns
of the projected matrix, with values that correspond to the
disparity at a given 2D location. In real scenario the obtained
2D matrix may have some missing elements, due to fact
that some complex shapes can hide projected points from the
camera.

B. Scanner simulator

The simulator implemented in this paper is mimicking a
real-life scanner [5]. The virtual scanner is used rather than
a real scanner in this part of the development, as it allows
a fully controllable scene, which is hard to achieve even in
the laboratory conditions. The simulated virtual scanner is
created in Blender environment, and consist of a camera and
a light ray projector. The objects of known characteristics
and dimensions are placed in front of the scanner system in
the virtual scene. The result of Blender simulation is a video
stream recorded from the simulated scanner’s camera, which
has similar characteristics as a real camera. The projected
pattern consist of 41 x 41 points in the matrix format, where
each point is projected at a single frame, thus eliminating the
possible error due to the point missclassification. In the process
the frame rate (of virtual camera) was set to 30 Hz.

The simulated scanner is limited to 41 x 41 projected
points, due to the fact that projected light ray object (cone) in
Blender can only accept rounded numbers as angle of a cone
tip, and the smallest possible angle (1 degree) was chosen.
A higher density of points would be possible in a real-life
projector, which is limited only by the projector resolution.
Besides beneficial increase of scanners resolution, the real-
life scanner would introduce some hard-to control effects, like
unknown camera and projector lens distortion, errors due to
small vibrations and effects of external light sources. For those
reasons, effectiveness of the proposed algorithm is testes solely
on a simulated scene.

Algorithm that calculates 3D locations of projected points is
using previously obtained video stream [5]. Whole algorithm
is fully implemented in Matlab environment, all data analysis
and results visualizations are also done using Matlab tools.

III. THE COMPRESSED SENSING AND THE DISPARITY
MATRIX

A. Modelling the disparity matrix

Let us observe the disparity matrix f(n,m) of size M×M .
The 2D DCT (Discrete Cosine Transform) of the considered
disparity matrix has the following form (DCT II) :

C(k1, k2) =

M−1∑
n=0

M−1∑
m=0

ak1
ak2

f(n,m)bn,m(k1, k2). (3)

The corresponding inverse transform is defined by:

f(n,m) =

M−1∑
k1=0

M−1∑
k2=0

ak1
ak2

C(k1, k2)bm,n(k1, k2), (4)

with

bn,m(k1, k2) = cos

(
2π(2n+ 1)

2M
k1

)
cos

(
2π(2m+ 1)

2M
k2

)
,

(5)
representing 2D DCT basis functions, and ak1 = ak2 =√

1/M for k1 = 0 and k2 = 0 respectively and ak1 = ak2 =√
2/M for k1 6= 0, i.e. k2 6= 0 respectively.
Since it can be observed as a digital image, we assume

that the disparity matrix is a K-sparse signal in the 2D DCT
domain where K �M2, that is

f(n,m) =

K∑
i=1

Aibn,m(k1i, k2i), (6)

where Ai denotes the amplitude of the i-th signal compo-
nent. Disparity matrix has non-zero coefficients at positions
(k1i, k2i) i = 1, ...,K in the 2D DCT domain. This means
that only K 2D DCT coefficients of the disparity matrix have
significant non-zero values, while other values are equal to
zero or negligible.

We further assume that only MA elements of the disparity
matrix are available at positions (n,m) ∈MA (i.e. (M−MA)
values are missing at random positions). If the signal (i.e. the
disparity matrix) satisfies that K � M2, according to CS
theory, missing samples can be exactly reconstructed if certain
conditions are met [9].

B. 2D DCT gradient-based reconstruction algorithm

In the gradient reconstruction algorithm all values at missing
samples positions are set to zero. In further iterations these
values are considered as minimization variables, and they
are varied with a small, appropriately chosen step ±∆. For
every observed missing value position concentrations of the
both 2D DCTs are evaluated, in order to determine the
gradient direction, which is defined as the difference of the
concentration measures. The missing disparity matrix values
are then updated simultaneously in a steepest descent manner.
A good starting value of the step can be obtained as:

∆ = max |f(n,m)| , (n,m) ∈MA. (7)

Herein, we adapt the original algorithm for the considered case
of 2D signals. Before the algorithm starts, the signal consisted
of available signal samples and with zeros at missing samples
positions is formed, according to :

y(m,n) =

{
0, for (n,m) ∈ M\MA

f(n,m), for (n,m) ∈MA,

where M denotes the full set of signal positions.
For each iteration k, until the desired precision is obtained,

the following steps are repeated:
Step 1: For each missing value at the position (n,m) ∈

M\MA, form two auxiliary matrices according to:

y
(k)
1 (n,m) =

{
y
(k)
1 (n,m) + ∆, for (n,m) ∈M\MA

y
(k)
1 (n,m), for (n,m) ∈ MA

,



y
(k)
2 (n,m) =

{
y
(k)
2 (n,m)−∆, for (n,m) ∈M\MA

y
(k)
2 (n,m), for (n,m) ∈ MA

,

Step 2: Calculate the finite differences of the signal trans-
form concentration measures [24]

g(n,m) =
1

2∆

[
M+ −M−

]
(8)

where

M+ =
1

M2

∑
k1

∑
k2

∣∣C+(k1, k2)
∣∣

M− =
1

M2

∑
k2

∑
k2

∣∣C−(k1, k2)
∣∣

represent concentration measures. Note that C+(k1, k2) and
C−(k1, k2) denote calculated 2D DCTs of two previously
defined signals y(k)1 (n,m) and y(k)2 (n,m) respectively.

Step 3: Form the gradient matrix G(k) of the same size as
the disparity matrix f(n,m) with elements defined as follows:

G(k)(n,m) =

{
g(n,m), for (n,m) ∈M\MA

0, for (n,m) ∈ MA

with g(n,m) calculated in the Step 2.
Step 4: Correct the values of y(n,m) using the gradient

matrix G(k) with the steepest descent approach:

y(k+1)(n,m) = y(k)(n,m)− 2∆G(k)(n,m).

We multiply the gradient matrix with the factor 2∆ to elimi-
nate the dependence on ∆ that appears in (8). By decreasing
∆ when the algorithm convergence slows down a high level
of precision can be achieved. The proper decrease of the step
can be achieved when the oscillatory nature of the adjustments
is detected [13].

Let us approximate the numerical complexity of the
presented algorithm in one iteration only. Without loss
of generality, M is assumed to be a power of 2. For
the all missing samples, the total number of additions
is, having in mind the complexity of the (fast) 2D DCT
algorithm: (M −MA)

[
2(M log2(M)− 3M/2 + 4)2 + 4

]
.

The total number of multiplications is approximately:
(M −MA)

[
2(M log2(M)− 3M/2 + 4)2 + 11

]
.

IV. SIMULATION RESULTS AND DISCUSSION

In order to illustrate the presented theoretical concepts,
several disparity matrices are observed.

Example 1: We consider the compressed sensing scenario,
where M −MA = 400 randomly positioned disparity matrix
values are missing. Moreover, it is important to emphasize that
certain disparity matrix elements have infinite values, corre-
sponding to the background at infinity, and thus we considered
them also as unavailable, besides the observed 400 unavailable
samples. The number of these elements is 253, 225, 421, 204,
148, 232 respectively, These values represent an additional
challenge for the reconstruction algorithm, especially since
they are grouped. The corresponding disparity matrices with
missing elements are shown in Fig. 3, where missing values are
denoted with dark blue color. Light blue denotes infinity while
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Figure 3. Disparity matrices with M−MA = 400 missing values at random
positions
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Figure 4. Reconstructed disparity matrices

yellow to red shades denote from furthers to closest object or
its parts. We apply the gradient reconstruction algorithm and
the obtained results are shown in Fig. 4 (a)-(f). Please note that
scanned artificial objects were: a) Blender monkey standard
object, b) sphere, c) multiple objects (spheres and cubes), d)
small sphere with a background, e) single human, and f) three
humans.

Example 2: In order to additionally validate the results,
we calculate MSE between the original and undersampled
disparity matrices, as well as the MSE between the original
and reconstructed disparity matrices. We consider scenarios
from 10% to 80% of missing disparity matrix values, with
the step of 10%. MSEs are obtained based on averaging the



squared reconstruction errors calculated for 100 independent
random realizations of missing values positions in disparity
matrices, for each considered percent of missing values. The
results are shown in Fig. 5 proving the significant MSE
improvement after the reconstruction is performed.

With 80% of disparity missing, sphere object has the MSE
of 39.9 dB, while three humans object has MSE of 44.9 dB.
CS algorithm demonstrated significant improvement, lowering
MSE for both object to 15.7 dB and 15.8 dB respectively,
which is significantly better than undersampling of original
matrices by 10%. From Fig. 5 it can be seen that difference
between undersampled and reconstructed MSE value approx-
imately is the same across whole missing values range. Also,
as expected MSE value increases as the number of missing
values increases.

Figure 5. MSE analysis

V. CONCLUSION

The objective of the paper was to improve the quality of 3D
scanner data, by introducing the compressed sensing based
signal reconstruction. This in turn enables a more reliable
behavior of different smart systems, which can potentially use
the 3D scanner’s output. In real-life scenarios, the projected
patterns are not completely detected by the camera, and thus
the maximum number of surface points cannot be achieved. In
order to provide a better reconstruction of the scanned surface,
the complex 3D reconstruction problem is partly reduced to a
2D problem, and with the use of the compressed sensing algo-
rithms, missing data are filled, obtaining the almost maximum
theoretical number of points.

In simulated environment, the proposed method performs
very well. The presented results show that even when 80%
percent of disparity matrix is lost, the compressed sensing
reconstruction algorithm provided a high quality of the re-
constructed surface and successfully filled the missing parts
of the scanned objects. Despite the time-consumption and
the complexity of the CS algorithm, the small resolution of
disparity matrix allows future implementation of the algorithm
in a mobile robots scanner system. In the future research, the
presented CS algorithm would be included in a more complex
structured-light scanners with dynamically adaptable density
of the projected points, as well as implemented in a parallel
processing fashion for the increased computational efficiency.
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